Supplemento ordinario alla "Gazzetta Ufficiale,, n. 42 del 20 febbraio 2018 - Serie generale

Spediz. abb. post. - art. 1, comma 1 Legge 27-02-2004, n. 46 - Filiale di Roma

DELLA REPUBBLICA ITALIANA

PARTE PRIMA

Roma - Martedì, 20 febbraio 2018

SI PUBBLICA TUTTI I GIORNI NON FESTIVI

DIREZIONE E REDAZIONE PRESSO IL MINISTERO DELLA GIUSTIZIA - UFFICIO PUBBLICAZIONE LEGGI E DECRETI - VIA ARENULA, 70 - 00186 ROMA Amministrazione presso l'istituto poligrafico e zecca dello stato - via Salaria, 691 - 00138 Roma - centralino 06-85081 - libreria dello stato Piazza G. Verdi. 1 - 00198 Roma

N. 8

MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

DECRETO 17 gennaio 2018.

Aggiornamento delle «Norme tecniche per le costruzioni».

SOMMARIO

MINISTERO DELLE INFRASTRUTTURE **E DEI TRASPORTI**

DECRETO 17 gennaio 2018.		
Aggiornamento delle «Norme tecniche per le costruzioni». (18A00716)	Pag.	1
Allegato	>>	3

DECRETI, DELIBERE E ORDINANZE MINISTERIALI

MINISTERO DELLE INFRASTRUTTURE E DEI TRASPORTI

DECRETO 17 gennaio 2018.

Aggiornamento delle «Norme tecniche per le costruzioni».

IL MINISTRO DELLE INFRASTRUTTURE E DEI TRASPORTI

DI CONCERTO CON

IL MINISTRO DELL'INTERNO

ŀ

IL CAPO DIPARTIMENTO DELLA PROTEZIONE CIVILE

Vista la legge 5 novembre 1971, n. 1086, recante «Norme per la disciplina delle opere in conglomerato cementizio armato, normale e precompresso ed a struttura metallica»;

Vista la legge 2 febbraio 1974, n. 64, recante «Provvedimenti per le costruzioni con particolari prescrizioni per le zone sismiche»;

Vista la legge 21 giugno 1986, n. 317, recante «Procedura di informazione nel settore delle norme e regolamentazioni tecniche delle regole relative ai servizi della società dell'informazione in attuazione della direttiva 98/34/CE del Parlamento europeo e del Consiglio del 22 giugno 1998, modificata dalla direttiva 98/48/CE del Parlamento europeo e del Consiglio del 20 luglio 1998»;

Visto il regolamento (UE) del Parlamento europeo e del Consiglio 9 marzo 2011, n. 305 che fissa condizioni armonizzate per la commercializzazione dei prodotti da costruzione e che abroga la direttiva 89/106/CEE del Consiglio;

Visto il decreto legislativo 31 marzo 1998, n. 112, recante «Conferimento di funzioni e compiti amministrativi allo Stato, alle regioni e agli enti locali in attuazione del capo I della legge 15 marzo 1997, n. 59»;

Visto il decreto del Presidente della Repubblica 6 giugno 2001, n. 380, recante «Testo unico delle disposizioni legislative e regolamentari in materia edilizia»;

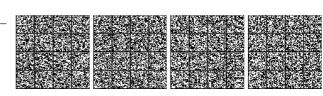
Visto il decreto-legge 28 maggio 2004, n. 136, convertito, con modificazioni, dalla legge 27 luglio 2004, n. 186, ed in particolare l'art. 5, comma 1, che prevede la redazione, da parte del Consiglio superiore dei lavori pubblici, di concerto con il Dipartimento della protezione civile, di normative tecniche, anche per la verifica sismica ed idraulica, relative alle costruzioni, nonché per la progettazione, la costruzione e l'adeguamento, anche sismico ed idraulico, delle dighe di ritenuta, dei ponti e delle opere di fondazione e sostegno dei terreni, per assicurare uniformi livelli di sicurezza;

Visto il decreto del Ministro delle infrastrutture e dei trasporti 14 gennaio 2008, con il quale sono state approvate le «Nuove norme tecniche per le costruzioni», pubblicato nel supplemento ordinario n. 30 della *Gazzetta Ufficiale* del 4 febbraio 2008, n. 29;

Visto il decreto del Ministro delle infrastrutture e dei trasporti 26 giugno 2014, recante «Norme tecniche per la progettazione e la costruzione degli sbarramenti di ritenuta (dighe e traverse)», pubblicato nella *Gazzetta Ufficiale* Serie generale n. 156 dell'8 luglio 2014;

Considerata la necessità di procedere al previsto aggiornamento delle «Nuove Norme tecniche per le costruzioni» di cui al citato decreto ministeriale 14 gennaio 2008;

Visto il voto n. 53 con il quale l'Assemblea generale del Consiglio superiore dei lavori pubblici nella adunanza del 14 novembre 2014 si è espressa favorevolmente in ordine all'aggiornamento delle «Nuove norme tecniche per le costruzioni», di cui al citato decreto ministeriale 14 gennaio 2008;


Vista la nota n. 7889, del 27 febbraio 2015, con la quale il Presidente del Consiglio superiore dei lavori pubblici ha trasmesso all'Ufficio legislativo del Ministero delle infrastrutture e dei trasporti il suddetto aggiornamento delle Norme tecniche per le costruzioni, licenziato dall'Assemblea generale del Consiglio superiore dei lavori pubblici;

Visto l'art. 52 del citato decreto del Presidente della Repubblica n. 380 del 2001, che dispone che in tutti i comuni della Repubblica le costruzioni, sia pubbliche, che private debbono essere realizzate in osservanza delle norme tecniche riguardanti i vari elementi costruttivi fissate con decreti del Ministro per le infrastrutture, di concerto con il Ministro dell'interno qualora le norme tecniche riguardino costruzioni in zone sismiche;

Considerato che il comma 2 dell'art. 5 del predetto decreto-legge n. 136 del 2004 prevede che le norme tecniche siano emanate con le procedure di cui all'art. 52 del citato decreto del Presidente della Repubblica n. 380 del 2001, di concerto con il Dipartimento della protezione civile;

Visto l'art. 54 del citato decreto legislativo n. 112 del 1998, il quale prevede che alcune funzioni mantenute in capo allo Stato, quali la predisposizione della normativa tecnica nazionale per le opere in cemento armato e in acciaio e le costruzioni in zone sismiche, siano esercitate di intesa con la Conferenza unificata;

Visto l'art. 93 del suddetto decreto legislativo n. 112 del 1998, il quale prevede che alcune funzioni mantenute in capo allo Stato, quali i criteri generali per l'individuazione delle zone sismiche e le norme tecniche per le costruzioni nelle medesime zone, siano esercitate sentita la Conferenza unificata;

Visto l'art. 83 del citato decreto del Presidente della Repubblica n. 380 del 2001, il quale prevede che tutte le costruzioni la cui sicurezza possa comunque interessare la pubblica incolumità, da realizzarsi in zone dichiarate sismiche, siano disciplinate, oltre che dalle disposizioni di cui a predetto art. 52 del medesimo decreto del Presidente della Repubblica n. 380 del 2001, da specifiche norme tecniche emanate con decreti del Ministro per le infrastrutture ed i trasporti, di concerto con il Ministro per l'interno, sentiti il Consiglio superiore dei lavori pubblici, il Consiglio nazionale delle ricerche e la Conferenza unificata;

Visto il concerto espresso dal capo del Dipartimento della protezione civile con nota prot. n. CG/0006287 del 26 gennaio 2017, ai sensi del citato art. 5, comma 2, del decreto-legge n. 136 del 2004;

Visto il concerto espresso dal Ministro dell'interno con nota prot. n. 0000808 del 17 gennaio 2017, ai sensi dell'art. 1, comma 1, del citato art. 52 del decreto del Presidente della Repubblica n. 380 del 2001;

Sentito il Consiglio nazionale delle ricerche con nota n. 73455 del 3 novembre 2016 ai sensi del citato art. 83 del decreto del Presidente della Repubblica n. 380 del 2001;

Acquisita l'intesa con la Conferenza unificata resa nella seduta del 22 dicembre 2016, ai sensi del citato art. 54 del decreto legislativo n. 112 del 1998;

Considerato, che lo schema di decreto è stato notificato, per il tramite del Ministero dello sviluppo economico, alla Commissione europea ai sensi della direttiva 2015/1535 del Parlamento europeo e del Consiglio del 9 settembre 2015 e che alla data dell'8 maggio 2017 è venuto a scadenza il termine di astensione obbligatoria di cui all'art. 6, paragrafo 1, della medesima direttiva;

Considerata la necessità di definire l'ambito di applicazione delle norme tecniche, anche in relazione alle opere con progetto definitivo o esecutivo approvato e alle opere con lavori in corso di esecuzione, in conformità al citato voto n. 53/2014 del Consiglio superiore dei lavori pubblici;

Accertato che sono stati adempiuti gli obblighi di notifica ai sensi degli articoli 15, paragrafo 7, e 39, paragrafo 5, della direttiva 2006/123/CEE del Parlamento europeo e del Consiglio, relativa ai servizi nel mercato interno, del 12 dicembre 2006;

Decreta:

Art. 1.

Approvazione

1. È approvato il testo aggiornato delle norme tecniche per le costruzioni, di cui alla legge 5 novembre 1971, n. 1086, alla legge 2 febbraio 1974, n. 64, al decreto del Presidente della Repubblica 6 giugno 2001, n. 380, ed al

decreto-legge 28 maggio 2004, n. 136, convertito, con modificazioni, dalla legge 27 luglio 2004, n. 186, allegato al presente decreto. Le presenti norme sostituiscono quelle approvate con il decreto ministeriale 14 gennaio 2008.

Art. 2.

Ambito di applicazione e disposizioni transitorie

- 1. Nell'ambito di applicazione del decreto legislativo 18 aprile 2016, n. 50, per le opere pubbliche o di pubblica utilità in corso di esecuzione, per i contratti pubblici di lavori già affidati, nonché per i progetti definitivi o esecutivi già affidati prima della data di entrata in vigore delle norme tecniche per le costruzioni di cui all'art. 1, si possono continuare ad applicare le previgenti norme tecniche per le costruzioni fino all'ultimazione dei lavori ed al collaudo statico degli stessi. Con riferimento alla seconda e alla terza fattispecie del precedente periodo, detta facoltà è esercitabile solo nel caso in cui la consegna dei lavori avvenga entro cinque anni dalla data di entrata in vigore delle norme tecniche per le costruzioni di cui all'art. 1. Con riferimento alla terza fattispecie di cui sopra, detta facoltà è esercitabile solo nel caso di progetti redatti secondo le norme tecniche di cui al decreto ministeriale 14 gennaio 2008.
- 2. Per le opere private le cui opere strutturali siano in corso di esecuzione o per le quali sia già stato depositato il progetto esecutivo, ai sensi delle vigenti disposizioni, presso i competenti uffici prima della data di entrata in vigore delle Norme tecniche per le costruzioni di cui all'art. 1, si possono continuare ad applicare le previgenti Norme tecniche per le costruzioni fino all'ultimazione dei lavori ed al collaudo statico degli stessi.

Art. 3.

Entrata in vigore

1. Le norme tecniche di cui all'art. 1 entrano in vigore trenta giorni dopo la pubblicazione del presente decreto nella *Gazzetta Ufficiale* della Repubblica italiana.

Il presente decreto ed i relativi allegati sono pubblicati nella *Gazzetta Ufficiale* della Repubblica italiana.

Roma, 17 gennaio 2018

Il Ministro delle infrastrutture e dei trasporti Delrio

> Il Ministro dell'interno Minniti

Il Capo Dipartimento della protezione civile Borrelli

NORME TECNICHE PER LE COSTRUZIONI

Approvate con Decreto Ministeriale 17 gennaio 2018

Testo aggiornato delle norme tecniche per le costruzioni, di cui alla legge 5 novembre 1971, n. 1086, alla legge 2 febbraio 1974, n. 64, al decreto del Presidente della Repubblica 6 giugno 2001, n. 380, ed al decreto-legge 28 maggio 2004, n. 136, convertito, con modificazioni, dalla legge 27 luglio 2004, n. 186. Le presenti norme sostituiscono quelle approvate con il decreto ministeriale 14 gennaio 2008.

SOMMARIO

CAPITOLO 1 - OGGETTO

PREMESSA

1.1 **OGGETTO**

2.1.

CAPITOLO 2 – SICUREZZA E PRESTAZIONI ATTESE

PRINCIPI FONDAMENTALI

2.2.	REQUISITI DELLE OPERE STRUTTURALI
2.2.1.	STATĪ LIMITE ULTIMI (SLU)
2.2.2.	STATI LIMITE DI ESERCIZIO (SLE)
2.2.3.	SICUREZZA ANTINCENDIO
2.2.4.	DURABILITA'
2.2.5.	ROBUSTEZZA
2.2.6.	VERIFICHE
2.3.	VALUTAZIONE DELLA SICUREZZA
2.4. 2.4.1. 2.4.2. 2.4.3.	VITA NOMINALE DI PROGETTO, CLASSI D'USO E PERIODO DI RIFERIMENTO VITA NOMINALE DI PROGETTO CLASSI D'USO PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA
2.5.	AZIONI SULLE COSTRUZIONI
2.5.1.	CLASSIFICAZIONE DELLE AZIONI
2.5.1.1	CLASSIFICAZIONE DELLE AZIONI IN BASE AL MODO DI ESPLICARSI
2.5.1.2	CLASSIFICAZIONE DELLE AZIONI SECONDO LA RISPOSTA STRUTTURALE
2.5.1.3	CLASSIFICAZIONE DELLE AZIONI SECONDO LA VARIAZIONE DELLA LORO INTENSITÀ NEL TEMPO
2.5.2.	CARATTERIZZAZIONE DELLE AZIONI ELEMENTARI
2.5.3.	COMBINAZIONI DELLE AZIONI

3.6.1.2

RICHIESTE DI PRESTAZIONE

CAPITOLO 3 – AZIONI SULLE COSTRUZIONI

3.1. 3.1.1.	OPERE CIVILI E INDUSTRIALI GENERALITÀ
3.1.2.	PESI PROPRI DEI MATERIALI STRUTTURALI
3.1.3.	CARICHI PERMANENTI NON STRUTTURALI
3.1.4.	SOVRACCARICHI COMPAGNACIA MENTERO MANAGEMENTE PAGNETINAMENTE
3.1.4.1	SOVRACCARICHI VERTICALI UNIFORMEMENTE DISTRIBUITI
3.1.4.2	SOVRACCARICHI VERTICALI CONCENTRATI
3.1.4.3	SOVRACCARICHI ORIZZONTALI LINEARI
3.2.	AZIONE SISMICA
3.2.1.	STATI LIMITE E RELATIVE PROBABILITÀ DI SUPERAMENTO
3.2.2 3.2.3.	CATEGORIE DI SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE VALUTAZIONE DELL'AZIONE SISMICA
3.2.3.1	DESCRIZIONE DELL'AZIONE GIOMICA DESCRIZIONE DEL MOTO SISMICO IN SUPERFICIE E SUL PIANO DI FONDAZIONE
3.2.3.2	SPETTRO DI RISPOSTA ELASTICO IN ACCELERAZIONE
3.2.3.2.1	Spettro di risposta elastico in accelerazione delle componenti orizzontali
3.2.3.2.2	Spettro di risposta elastico in accelerazione della componente verticale
3.2.3.2.3	Spettro di risposta elastico in spostamento delle componenti orizzontali
3.2.3.3	SPOSTAMENTO ORIZZONTALE E VELOCITÀ ORIZZONTALE DEL TERRENO
3.2.3.4	SPETTRI DI RISPOSTA DI PROGETTO PER LO STATO LIMITE DI OPERATIVITÀ (SLO)
3.2.3.5	SPETTRI DI RISPOSTA DI PROGETTO PER GLI STATI LIMITE DI DANNO (SLD), DI SALVAGUARDIA DELLA VITA (SLV) E DI
0.2.0.0	PREVENZIONE DEL COLLASSO (SLC)
3.2.3.6	IMPIEGO DI STORIE TEMPORALI DEL MOTO DEL TERRENO
3.2.4.	EFFETTI DELLA VARIABILITÀ SPAZIALE DEL MOTO
3.2.4.1	Variabilità spaziale del moto
3.2.4.2	SPOSTAMENTO ASSOLUTO E RELATIVO DEL TERRENO
3.3. 3.3.1. 3.3.2. 3.3.3. 3.3.4. 3.3.5. 3.3.6. 3.3.7. 3.3.8. 3.3.9. 3.3.10.	AZIONI DEL VENTO VELOCITÀ BASE DI RIFERIMENTO VELOCITÀ DI RIFERIMENTO AZIONI STATICHE EQUIVALENTI PRESSIONE DEL VENTO AZIONE TANGENTE DEL VENTO PRESSIONE CINETICA DI RIFERIMENTO COEFFICIENTE DI ESPOSIZIONE COEFFICIENTI AERODINAMICI COEFFICIENTE DINAMICO AVVERTENZE PROGETTUALI
3.4.	AZIONI DELLA NEVE
3.4.1.	CARICO DELLA NEVE SULLE COPERTURE
3.4.2. 3.4.3.	VALORE DI RIFERIMENTO DEL CARICO DELLA NEVE AL SUOLO COEFFICIENTE DI FORMA DELLE COPERTURE
3.4.3.1	GENERALITÀ
3.4.3.2	COPERTURA AD UNA FALDA
3.4.3.3	COPERTURA A DUE FALDE
3.4.4.	COEFFICIENTE DI ESPOSIZIONE
3.4.5.	COEFFICIENTE TERMICO
3.5.	AZIONI DELLA TEMPERATURA
3.5.1.	GENERALITÀ
3.5.2.	TEMPERATURA DELL'ARIA ESTERNA TEMPERATURA DELL'ARIA INTERNA
3.5.3. 3.5.4.	TEMPERATURA DELL'ARIA INTERNA DISTRIBUZIONE DELLA TEMPERATURA NEGLI ELEMENTI STRUTTURALI
3.5.5.	AZIONI TERMICHE SUGLI EDIFICI
3.5.6.	PARTICOLARI PRECAUZIONI NEL PROGETTO DI STRUTTURE SOGGETTE AD AZIONI TERMICHE SPECIALI
3.5.7.	EFFETTI DELLE AZIONI TERMICHE
3.6.	AZIONI ECCEZIONALI
3.6.1.	INCENDIO
3.6.1.1	Definizioni

3.6.1.3	CLASSI DI RESISTENZA AL FUOCO
3.6.1.4	CRITERI DI PROGETTAZIONE
3.6.1.5	PROCEDURA DI ANALISI DELLA RESISTENZA AL FUOCO
3.6.1.5.1	Incendio di progetto
3.6.1.5.2	Analisi dell'evoluzione della temperatura
3.6.1.5.3	Analisi del comportamento meccanico
3.6.1.5.4	Verifiche di sicurezza
3.6.2.	ESPLOSIONI
3.6.2.1	GENERALITÀ
3.6.2.2	CLASSIFICAZIONE DELLE AZIONI DOVUTE ALLE ESPLOSIONI
3.6.2.3	MODELLAZIONE DELLE AZIONI DOVUTE ALLE ESPLOSIONI
3.6.2.4	CRITERI DI PROGETTAZIONE
3.6.3.	URTI
3.6.3.1	GENERALITÀ
3.6.3.2	CLASSIFICAZIONE DELLE AZIONI DOVUTE AGLI URTI
3.6.3.3	URTI DA TRAFFICO VEICOLARE
3.6.3.3.1	Traffico veicolare sotto ponti o altre strutture
3.6.3.3.2	Traffico veicolare sopra i ponti
3.6.3.4	URTI DA TRAFFICO FERROVIARIO

CAPITOLO 4 - COSTRUZIONI CIVILI E INDUSTRIALI

	STRUZIONI DI CALCESTRUZZO
4.1.1.	VALUTAZIONE DELLA SICUREZZA E METODI DI ANALISI
4.1.1.1	ANALISI ELASTICA LINEARE
4.1.1.2	ANALISI PLASTICA
4.1.1.3	ANALISI NON LINEARE
4.1.1.4	EFFETTI DELLE DEFORMAZIONI
4.1.2. 4.1.2.1	VERIFICHE DEGLI STATI LIMITE MATERIALI
4.1.2.1.1	Resistenze di calcolo dei materiali
4.1.2.1.1	Resistenza di calcolo del materiali Resistenza di calcolo a compressione del calcestruzzo
4.1.2.1.1.2	Resistenza di calcolo a trazione del calcestruzzo
4.1.2.1.1.3	Resistenza di calcolo dell'acciaio
4.1.2.1.1.4	Tensione tangenziale di aderenza acciaio-calcestruzzo
4.1.2.1.2	Diagrammi di calcolo dei materiali
4.1.2.1.2.1	Diagrammi di calcolo tensione-deformazione del calcestruzzo
1.1.2.1.2.1	Calcestruzzo confinato
4.1.2.1.2.2	Diagrammi di calcolo tensione-deformazione dell'acciaio
4.1.2.2	STATI LIMITE DI ESERCIZIO
4.1.2.2.1	Generalità
4.1.2.2.2	Stato limite di deformazione
4.1.2.2.3	Stato limite per vibrazioni
4.1.2.2.4	Stato limite di fessurazione
4.1.2.2.4.1	Combinazioni di azioni
4.1.2.2.4.2	Condizioni ambientali
4.1.2.2.4.3	Sensibilità delle armature alla corrosione
4.1.2.2.4.4	Scelta degli stati limite di fessurazione
4.1.2.2.4.5	Verifica dello stato limite di fessurazione
	Stato limite di decompressione e di formazione delle fessure
	Stato limite di apertura delle fessure
4.1.2.2.5	Stato limite di limitazione delle tensioni
4.1.2.2.5.1	Tensione massima di compressione del calcestruzzo nelle condizioni di esercizio
4.1.2.2.5.2	Tensione massima dell'acciaio in condizioni di esercizio
4.1.2.3	STATI LIMITE ULTIMI
4.1.2.3.1	Generalità
4.1.2.3.2	Stato limite di resistenza
4.1.2.3.3	Stato limite di duttilità
4.1.2.3.4	Resistenza flessionale e duttilità massima in presenza e in assenza di sforzo assiale
4.1.2.3.4.1	Ipotesi di base
4.1.2.3.4.2	Verifiche di resistenza e duttilità
4.1.2.3.5	Resistenza nei confronti di sollecitazioni taglianti
4.1.2.3.5.1	Elementi senza armature trasversali resistenti a taglio
4.1.2.3.5.2	Elementi con armature trasversali resistenti al taglio
4.1.2.3.5.3	Casi particolari
	Componenti trasversali
	Carichi in prossimità degli appoggi
	Carichi appesi o indiretti
4.1.2.3.5.4	Verifica al punzonamento
4.1.2.3.6	Resistenza nei confronti di sollecitazioni torcenti
	Sollecitazioni composte
4.1.2.3.7	Resistenza di elementi tozzi, nelle zone diffusive e nei nodi
4.1.2.3.8	Resistenza a fatica
4.1.2.3.9	Indicazioni specifiche relative a pilastri e pareti
4.1.2.3.9.1	Pilastri cerchiati
4.1.2.3.9.2	Verifiche di stabilità per elementi snelli
	Snellezza limite per pilastri singoli
	Effetti globali negli edifici
4.1.2.3.9.3	Metodi di verifica

Analisi elastica lineare

Analisi non lineare

Trazione Compressione

Flessione monoassiale (retta)

4.1. 2.3.10	Verifica dell'aderenza delle barre di acciaio con il calcestruzzo
4.1.3.	VERIFICHE PER SITUAZIONI TRANSITORIE
4.1.4.	VERIFICHE PER SITUAZIONI ECCEZIONALI
4.1.5	PROGETTAZIONE INTEGRATA DA PROVE E VERIFICA MEDIANTE PROVE
4.1.6.	DETTAGLI COSTRUTTIVI ELEMENTI MONODIMENSIONALI: TRAVI E PILASTRI
4.1.6.1	
4.1.6.1.1	Armatura delle travi
4.1.6.1.2	Armatura dei pilastri
4.1.6.1.3	Copriferro e interferro
4.1.6.1.4 4.1.7.	Ancoraggio delle barre e loro giunzioni ESECUZIONE
4.1.7. 4.1.8.	NORME ULTERIORI PER IL CALCESTRUZZO ARMATO PRECOMPRESSO
4.1.8.1	VALUTAZIONE DELLA SICUREZZA - NORME DI CALCOLO
4.1.8.1.1	Stati limite ultimi
4.1.8.1.2	Stati limite di esercizio
4.1.8.1.3	Tensioni di esercizio nel calcestruzzo a cadute avvenute
4.1.8.1.4	Tensioni iniziali nel calcestruzzo
4.1.8.1.5	Tensioni limite per gli acciai da precompressione
4.1.8.2	DETTAGLI COSTRUTTIVI PER IL CALCESTRUZZO ARMATO PRECOMPRESSO
4.1.8.2.1	Armatura longitudinale ordinaria
4.1.8.2.2	Staffe
4.1.8.3	ESECUZIONE DELLE OPERE IN CALCESTRUZZO ARMATO PRECOMPRESSO
4.1.9.	NORME ULTERIORI PER I SOLAI
4.1.9.1	SOLAI MISTI DI C.A. E C.A.P. E BLOCCHI FORATI IN LATERIZIO
4.1.9.2	SOLAI MISTI DI C.A. E C.A.P. E BLOCCHI DIVERSI DAL LATERIZIO O CALCESTRUZZO
4.1.9.3	SOLAI REALIZZATI CON L'ASSOCIAZIONE DI COMPONENTI PREFABBRICATI IN C.A. E C.A.P.
4.1.10.	NORME ULTERIORI PER LE STRUTTURE PREFABBRICATE
4.1.10.1	PRODOTTI PREFABBRICATI NON SOGGETTI A MARCATURA CE
4.1.10.2	PRODOTTI PREFABBRICATI IN SERIE
4.1.10.2.1	Prodotti prefabbricati in serie dichiarata
4.1.10.2.2	Prodotti prefabbricati in serie controllata
4.1.10.3	RESPONSABILITÀ E COMPETENZE
4.1.10.4	PROVE SU COMPONENTI
4.1.10.5	NORME COMPLEMENTARI
4.1.10.5.1	Appoggi
4.1.10.5.2	Realizzazione delle unioni
4.1.10.5.3	Tolleranze
4.1.11.	CALCESTRUZZO A BASSA PERCENTUALE DI ARMATURA O NON ARMATO
4.1.11.1	VALUTAZIONE DELLA SICUREZZA – NORME DI CALCOLO
4.1.12.	CALCESTRUZZO DI AGGREGATI LEGGERI
4.1.12.1	NORME DI CALCOLO
4.1.13.	RESISTENZA AL FUOCO
4.2.	COSTRUZIONI DI ACCIAIO
4.2.1.	MATERIALI
4.2.1.1	ACCIAIO LAMINATO
4.2.1.2	ACCIAIO INOSSIDABILE
4.2.1.3	SALDATURE
4.2.1.4	BULLONI E CHIODI
4.2.2.	VALUTAZIONE DELLA SICUREZZA
4.2.2.1	STATI LIMITE
4.2.3 .	ANALISI STRUTTURALE
4.2.3.1	CLASSIFICAZIONE DELLE SEZIONI
4.2.3.2	CAPACITÀ RESISTENTE DELLE SEZIONI
4.2.3.3	METODI DI ANALISI GLOBALE
4.2.3.4	EFFETTI DELLE DEFORMAZIONI
4.2.3.5	EFFETTO DELLE IMPERFEZIONI
4.2.4.	VERIFICHE
4.2.4.1	VERIFICHE AGLI STATI LIMITE ULTIMI
4.2.4.1.1	Resistenza di calcolo
4.2.4.1.2	Resistenza delle membrature

4.3.4.2

RESISTENZA DELLE SEZIONI

	Taglio
	Torsione
	Flessione e taglio
	Presso o tenso flessione retta
	Presso o tenso flessione biassiale
	Flessione, taglio e sforzo assiale
4.2.4.1.3	Stabilità delle membrature
4.2.4.1.3.1	Aste compresse
	Limitazioni della snellezza
4.2.4.1.3.2	Travi inflesse
4.2.4.1.3.3	Membrature inflesse e compresse
4.2.4.1.3.4	Stabilità dei pannelli
4.2.4.1.4	Stato limite di fatica
	Verifica a vita illimitata.
	Vertifica a danneggiamento
4.2.4.1.5	Fragilità alle basse temperature
4.2.4.1.6	Resistenza di cavi, barre e funi
4.2.4.1.7	Resistenza degli apparecchi di appoggio
4.2.4.2	VERIFICHE AGLI STATI LIMITE DI ESERCIZIO
4.2.4.2.1	Spostamenti verticali
4.2.4.2.2	Spostamenti laterali
4.2.4.2.3	Stato limite di vibrazioni
4.2.4.2.3.1	Edifici
4.2.4.2.3.2	Strutture di elevata flessibilità e soggette a carichi ciclici
4.2.4.2.3.3	Oscillazioni prodotte dal vento
4.2.4.2.4	Stato limite di plasticizzazioni locali
4.2.5.	VERIFICHE PER SITUAZIONI PROGETTUALI TRANSITORIE
4.2.6. 4.2.7.	VERIFICHE PER SITUAZIONI PROGETTUALI ECCEZIONALI PROGETTAZIONE INTEGRATA DA PROVE E VERIFICA MEDIANTE PROVE
4.2.8.	UNIONI
4.2.8.1	UNIONI CON BULLONI, CHIODI E PERNI SOGGETTI A CARICHI STATICI
4.2.8.1.1	Unioni con bulloni e chiodi
	Unioni con bulloni o chiodi soggette a taglio e/o a trazione
	Unioni a taglio per attrito con bulloni ad alta resistenza
4.3.	COSTRUZIONI COMPOSTE DI ACCIAIO - CALCESTRUZZO
4.3.1.	VALUTAZIONE DELLA SICUREZZA
4.3.1.1	STATI LIMITE ULTIMI
4.3.1.2	STATI LIMITE DI ESERCIZIO
4.3.1.3	FASI COSTRUTTIVE
4.3.2.	ANALISI STRUTTURALE
4.3.2.1	CLASSIFICAZIONE DELLE SEZIONI
4.3.2.2	METODI DI ANALISI GLOBALE
4.3.2.2.1	Analisi lineare elastica
4.3.2.2.2	Analisi plastica
4.3.2.2.3	Analisi non lineare
4.3.2.3	LARGHEZZE EFFICACI
4.3.2.4	EFFETTI DELLE DEFORMAZIONI
4.3.2.5	EFFETTI DELLE IMPERFEZIONI
4.3.3.	RESISTENZE DI CALCOLO
4.3.3.1	MATERIALI
4.3.3.1.1	Acciaio
4.3.3.1.2	Calcestruzzo
4.3.4.	TRAVI CON SOLETTA COLLABORANTE
4.3.4.1	TIPOLOGIA DELLE SEZIONI

4.4.8.1.7

Tensoflessione

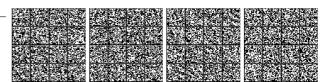
4.3.4.2.1	Resistenza a flessione
4.3.4.2.1.1	Metodo elastico
4.3.4.2.1.2	Metodo plastico
4.3.4.2.1.3	Metodo elasto-plastico
4.3.4.2.2	Resistenza a taglio
4.3.4.3	SISTEMI DI CONNESSIONE ACCIAIO-CALCESTRUZZO
4.3.4.3.1	Connessioni a taglio con pioli
4.3.4.3.1.1	Disposizione e limitazioni
4.3.4.3.1.2	Resistenza dei connettori
4.3.4.3.2	Altri tipi di connettori
4.3.4.3.3	Valutazione delle sollecitazioni di taglio agenti sul sistema di connessione
4.3.4.3.4	Dettagli costruttivi della zona di connessione a taglio
4.3.4.3.5	Armatura trasversale
4.3.4.4	MODALITÀ ESECUTIVE
4.3.4.5 4.3.5.	SPESSORI MINIMI COLONNE COMPOSTE
4.3.5.1	GENERALITÀ E TIPOLOGIE
4.3.5.2	RIGIDEZZA FLESSIONALE, SNELLEZZA E CONTRIBUTO MECCANICO DELL'ACCIAIO
4.3.5.3	RESISTENZA DELLE SEZIONI
4.3.5.3.1	Resistenza della sezione per tensioni normali
4.3.5.3.2	Resistenza a flessione e taglio della sezione
4.3.5.4	STABILITÀ DELLE MEMBRATURE
4.3.5.4.1	Colonne compresse
4.3.5.4.2	Instabilità locale 4.3.5.4.3 Colonne pressoinflesse
4.3.5.5	TRASFERIMENTO DEGLI SFORZI TRA COMPONENTE IN ACCIAIO E COMPONENTE IN CALCESTRUZZO
4.3.5.5.1	Resistenza allo scorrimento fra i componenti
4.3.5.6	COPRIFERRO E MINIMI DI ARMATURA
4.3.6.	SOLETTE COMPOSTE CON LAMIERA GRECATA
4.3.6.1	ANALISI PER IL CALCOLO DELLE SOLLECITAZIONI
4.3.6.1.1	Larghezza efficace per forze concentrate o lineari
4.3.6.2	VERIFICHE DI RESISTENZA ALLO STATO LIMITE ULTIMO
4.3.6.3	VERIFICHE AGLI STATI LIMITE DI ESERCIZIO
4.3.6.3.1	Verifiche a fessurazione
4.3.6.3.2	Verifiche di deformazione
4.3.6.4	VERIFICHE DELLA LAMIERA GRECATA NELLA FASE DI GETTO
4.3.6.4.1	Verifica di resistenza
4.3.6.4.2	Verifiche agli stati limite di esercizio
4.3.6.5	DETTAGLI COSTRUTTIVI
4.3.6.5.1	Spessore minimo delle lamiere grecate
4.3.6.5.2	Spessore della soletta
4.3.6.5.3	Inerti
4.3.6.5.4	Appoggi
4.3.7. 4.3.8.	VERIFICHE PER SITUAZIONI TRANSITORIE VERIFICHE PER SITUAZIONI ECCEZIONALI
4.3.9.	RESISTENZA AL FUOCO
4.3.10.	PROGETTAZIONE INTEGRATA DA PROVE E VERIFICA MEDIANTE PROVE
4.4.	COSTRUZIONI DI LEGNO
4.4.1.	VALUTAZIONE DELLA SICUREZZA
4.4.2. 4.4.3.	ANALISI STRUTTURALE AZIONI E LORO COMBINAZIONI
4.4.4.	CLASSI DI DURATA DEL CARICO
4.4.5.	CLASSI DI SERVIZIO
4.4.6.	RESISTENZA DI CALCOLO
4.4.7. 4.4.8.	STATI LIMITE DI ESERCIZIO STATI LIMITE ULTIMI
4.4.8.1	VERIFICHE DI RESISTENZA
4.4.8.1.1	Trazione parallela alla fibratura
4.4.8.1.2	Trazione perpendicolare alla fibratura
4.4.8.1.3	Compressione parallela alla fibratura
4.4.8.1.4	Compressione perpendicolare alla fibratura
4.4.8.1.5	Compressione inclinata rispetto alla fibratura
4.4.8.1.6	Flessione

4.4.8.1.8	Pressoflessione
4.4.8.1.9	Taglio
4.4.8.1.10	Torsione
4.4.8.1.11	Taglio e torsione
4.4.8.2	VERIFICHE DI STABILITÀ
4.4.8.2.1	Elementi inflessi (instabilità di trave)
4.4.8.2.2	Elementi compressi (instabilità di colonna)
4.4.9.	COLLEGAMENTÎ
4.4.10.	ELEMENTI STRUTTURALI
4.4.11. 4.4.12.	SISTEMI STRUTTURALI ROBUSTEZZA
4.4.12.	DURABILITÀ
4.4.14.	RESISTENZA AL FUOCO
4.4.15.	REGOLE PER L'ESECUZIONE
4.4.16.	VERIFICHE PER SITUAZIONI TRANSITORIE, CONTROLLI E PROVE DI CARICO
4.4.17. 4.4.18.	VERIFICHE PER SITUAZIONI PROGETTUALI ECCEZIONALI PROGETTAZIONE INTEGRATA DA PROVE E VERIFICA MEDIANTE PROVE
4.4.10.	PRODEI IAZIONE INTEGNATA DA PROVE E VERIFICA MEDIANTE PROVE
4.5.	COSTRUZIONI DI MURATURA
4.5.1.	DEFINIZIONI
4.5.2.	MATERIALI E CARATTERISTICHE TIPOLOGICHE
4.5.2.1	MALTE
4.5.2.2	ELEMENTI RESISTENTI IN MURATURA
	Elementi artificiali
	Elementi naturali
4.5.2.3	Murature
4.5.3.	CARATTERISTICHE MECCANICHE DELLE MURATURE
4.5.4.	ORGANIZZAZIONE STRUTTURALE
4.5.5. 4.5.6.	ANALISI STRUTTURALE VERIFICHE
4.5.6.1	RESISTENZE DI PROGETTO
4.5.6.2	VERIFICHE AGLI STATI LIMITE ULTIMI
4.5.6.3	VERIFICHE AGLI STATI LIMITE DI ESERCIZIO
4.5.6.4	VERIFICHE SEMPLIFICATE
4.5.7.	MURATURA ARMATA
4.5.8.	MURATURA CONFINATA
4.5.9.	VERIFICHE PER SITUAZIONI TRANSITORIE
4.5.10.	VERIFICHE PER SITUAZIONI ECCEZIONALI
4.5.11. 4.5.12.	RESISTENZA AL FUOCO PROGETTAZIONE INTEGRATA DA PROVE E VERIFICA MEDIANTE PROVE
4.0. I Z.	PRUGELIAZIONE INTEGRATA DA PRUVE E VERIFICA MEDIANTE PRUVE

4.6. ALTRI SISTEMI COSTRUTTIVI

5.1.7.5

CAPITOLO 5 - PONTI


5.1.	PONTI STRADALI
5.1.1.	OGGETTO
5.1.2.	PRESCRIZIONI GENERALI
5.1.2.1	GEOMETRIA DELLA SEDE STRADALE
5.1.2.2	ALTEZZA LIBERA
5.1.2.3	Compatibilità idraulica
5.1.3.	AZIONI SUI PONTI STRADALI
5.1.3.1	AZIONI PERMANENTI
5.1.3.2	DISTORSIONI E DEFORMAZIONI IMPRESSE
5.1.3.3	AZIONI VARIABILI DA TRAFFICO. CARICHI VERTICALI; Q1
5.1.3.3.1	Premessa
5.1.3.3.2	Definizione delle corsie convenzionali
5.1.3.3.3	Schemi di Carico
5.1.3.3.4	Categorie Stradali
5.1.3.3.5	Disposizione dei carichi mobili per realizzare le condizioni di carico più gravose
5.1.3.3.6	Strutture secondarie di impalcato
	Diffusione dei carichi locali
	Calcolo delle strutture secondarie di impalcato
5.1.3.4	AZIONI VARIABILI DA TRAFFICO. INCREMENTO DINAMICO ADDIZIONALE IN PRESENZA DI DISCONTINUITÀ STRUTTURALI:
	q2
5.1.3.5	AZIONI VARIABILI DA TRAFFICO. AZIONE LONGITUDINALE DI FRENAMENTO O DI ACCELERAZIONE: q3
5.1.3.6	AZIONI VARIABILI DA TRAFFICO. AZIONE CENTRIFUGA: q4
5.1.3.7	AZIONI DI NEVE E DI VENTO: q5
5.1.3.8	AZIONI IDRODINAMICHE: q6
5.1.3.9	AZIONI DELLA TEMPERATURA: q7
5.1.3.10	AZIONI SUI PARAPETTI E URTO DI VEICOLO IN SVIO: q8
5.1.3.11	RESISTENZE PASSIVE DEI VINCOLI: q9
5.1.3.12	AZIONI SISMICHE: E
5.1.3.13	AZIONI ECCEZIONALI: A
5.1.3.14	COMBINAZIONI DI CARICO
5.1.4.	VERIFICHE DI SICUREZZA
5.1.4.1	Verifiche agli Stati Limite Ultimi
5.1.4.2	STATI LIMITE DI ESERCIZIO
5.1.4.3	VERIFICHE ALLO STATO LIMITE DI FATICA
	Verifiche per vita illimitata
	Verifiche a danneggiamento
5.1.4.4	VERIFICHE ALLO STATO LIMITE DI FESSURAZIONE
5.1.4.5	VERIFICHE ALLO STATO LIMITE DI DEFORMAZIONE
5.1.4.6	VERIFICHE DELLE AZIONI SISMICHE
5.1.4.7	VERIFICHE IN FASE DI COSTRUZIONE
5.1.5.	STRUTTURE PORTANTI
5.1.5.1	IMPALCATO
5.1.5.1.1	Spessori minimi
5.1.5.1.2	Strutture ad elementi prefabbricati
5.1.5.2	Рпе
5.1.5.2.1	Spessori minimi
5.1.5.2.2	Schematizzazione e calcolo
5.1.6.	VINCOLI
5.1.6.1	Protezione dei vincoli
5.1.6.2	CONTROLLO, MANUTENZIONE E SOSTITUZIONE
5.1.6.3	VINCOLI IN ZONA SISMICA
5.1.7.	OPERE ACCESSORIE
5.1.7.1	Impermeabilizzazione
5.1.7.2	PAVIMENTAZIONI
5.1.7.3	Giunti
5.1.7.4	SMALTIMENTO DELLIOLIDI PROVENIENTI DALL'IMPALCATO

DISPOSITIVI PER L'ISPEZIONABILITÀ E LA MANUTENZIONE DELLE OPERE

5.1.7.6

VANI PER CONDOTTE E CAVIDOTTI

5.2.	PONTI FERROVIARI
5.2.1.	PRINCIPALI CRITERI PROGETTUALI E MANUTENTIVI
5.2.1.1	ISPEZIONABILITÀ E MANUTENZIONE
5.2.1.2	COMPATIBILITÀ IDRAULICA
5.2.1.3	ALTEZZA LIBERA
5.2.2.	AZIONI SULLE OPERE
5.2.2.1	AZIONI PERMANENTI
5.2.2.1.1	Carichi permanenti portati
5.2.2.2	AZIONI VARIABILI VERTICALI
5.2.2.2.1	Modelli di carico
5.2.2.2.1.1	Modello di carico LM 71
5.2.2.2.1.2	Modelli di carico SW
5.2.2.2.1.3	Treno scarico
5.2.2.2.1.4	Ripartizione locale dei carichi.
5.2.2.2.1.5	Distribuzione dei carichi verticali per i rilevati a tergo delle spalle
5.2.2.2.2	Carichi sui marciapiedi
5.2.2.2.3	Effetti dinamici
5.2.2.3	AZIONI VARIABILI ORIZZONTALI
5.2.2.3.1	Forza centrifuga
5.2.2.3.2	Azione laterale (Serpeggio)
5.2.2.3.3	Azioni di avviamento e frenatura
5.2.2.4	AZIONI VARIABILI AMBIENTALI
5.2.2.4.1	Azione del vento
5.2.2.4.2	Temperatura
5.2.2.5	EFFETTI DI INTERAZIONE STATICA TRENO-BINARIO-STRUTTURA
5.2.2.6	EFFETTI AERODINAMICI ASSOCIATI AL PASSAGGIO DEI CONVOGLI FERROVIARI
5.2.2.6.1	Superfici verticali parallele al binario
5.2.2.6.2	Superfici orizzontali al di sopra del binario
5.2.2.6.3	Superfici orizzontali adiacenti il binario
5.2.2.6.4	Strutture con superfici multiple a fianco del binario sia verticali che orizzontali o inclinate
5.2.2.6.5	Superfici che circondano integralmente il binario per lunghezze inferiori a 20 m
5.2.2.7	AZIONI IDRODINAMICHE
5.2.2.8	AZIONI SISMICHE
5.2.2.9	AZIONI ECCEZIONALI
5.2.2.9.1	Rottura della catenaria
5.2.2.9.2	Deragliamento al di sopra del ponte
5.2.2.9.3	Deragliamento al di sotto del ponte
5.2.2.10	AZIONI INDIRETTE
5.2.2.10.1	Distorsioni
5.2.2.10.2	Ritiro e viscosità
5.2.2.10.3	Resistenze parassite nei vincoli
5.2.3.	PARTICOLARI PRESCRIZIONI PER LE VERIFICHE
5.2.3.1	COMBINAZIONE DEI TRENI DI CARICO E DELLE AZIONI DA ESSI DERIVATE PER PIÙ BINARI
5.2.3.1.1	Numero di binari
5.2.3.1.2	Numero di treni contemporanei
5.2.3.1.3	Simultaneità delle azioni da traffico - valori caratteristici delle azioni combinate in gruppi di carichi
5.2.3.1.4	Valori rari e frequenti delle azioni da traffico ferroviario
5.2.3.1.5	Valori quasi-permanenti delle azioni da traffico ferroviario
5.2.3.1.6	Azioni da traffico ferroviario in situazioni transitorie
5.2.3.2	VERIFICHE AGLI SLU E SLE
5.2.3. 2.1	Requisiti concernenti gli SLU
5.2.3.2.2	Requisiti concernenti gli SLE
5.2.3. 2.2.1	Stati limite di esercizio per la sicurezza del traffico ferroviario
5.2.3.2.3	Verifiche allo stato limite di fatica

Verifiche allo stato limite di fessurazione

5.2.3.2.4

6.6.

TIRANTI DI ANCORAGGIO

CAPITOLO 6 - PROGETTAZIONE GEOTECNICA

6.1. 6.1.1. 6.1.2.	DISPOSIZIONI GENERALI Oggetto delle norme Prescrizioni generali
6.2. 6.2.1. 6.2.2. 6.2.3. 6.2.4.	ARTICOLAZIONE DEL PROGETTO CARATTEZZAZIONE E MODELLAZIONE GEOLOGICA DEL SITO INDAGINI, CARATTEZZAZIONE E MODELLAZIONE GEOTECNICA FASI E MODALITA' COSTRUTTIVE VERIFICHE DELLA SICUREZZA E DELLE PRESTAZIONI
6.2.4.1	VERIFICHE NEI CONFRONTI DEGLI STATI LIMITE ULTIMI (SLU)
6.2.4.1.1	Azioni
6.2.4.1.2	Resistenze
6.2.4.1.3 .	Verifiche SLU con l'analisi di interazione terreno-struttura
6.2.4.2	VERIFICHE NEI CONFRONTI DEGLI STATI LIMITE ULTIMI IDRAULICI
6.2.4.3	VERIFICHE NEI CONFRONTI DEGLI STATI LIMITE DI ESERCIZIO (SLE)
6.2.5 6.2.6.	IMPIEGO DEL METODO OSSERVAZIONALE MONITORAGGIO DEL COMPLESSO OPERA-TERRENO
6.3. 6.3.1. 6.3.2.	STABILITÀ DEI PENDII NATURALI PRESCRIZIONI GENERALI MODELLAZIONE GEOLOGICA DEL PENDIO
6.3.3.	MODELLAZIONE GEOTECNICA DEL PENDIO
6.3.4.	VERIFICHE DI SICUREZZA
6.3.5. 6.3.6.	INTERVENTI DI STABILIZZAZIONE CONTROLLI E MONITORAGGIO
0.0.0.	CONTROLL E MONTORAGIO
6.4.	OPERE DI FONDAZIONE
6.4.1.	CRITERI GENERALI DI PROGETTO
6.4.2.	FONDAZIONI SUPERFICIALI
6.4.2.1.	VERIFICHE AGLI STATI LIMITE ULTIMI (SLU)
6.4.2.2	VERIFICHE AGLI STATI LIMITE DI ESERCIZIO (SLE)
6.4.3.	FONDAZIONI SU PALI
6.4.3.1	VERIFICHE AGLI STATI LIMITE ULTIMI (SLU)
6.4.3.1.1	Resistenze di pali soggetti a carichi assiali
6.4.3.1.1.1	Resistenza a carico assiale di una palificata
6.4.3.1.2	Resistenze di pali soggetti a carichi trasversali
6.4.3.2	VERIFICHE AGLI STATI LIMITE DI ESERCIZIO (SLE)
6.4.3.3	VERIFICHE AGLI STATI LIMITE ULTIMI (SLU) DELLE FONDAZIONI MISTE
6.4.3.4	VERIFICHE AGLI STATI LIMITE DI ESERCIZIO (SLE) DELLE FONDAZIONI MISTE
6.4.3.5	ASPETTI COSTRUTTIVI
6.4.3.6	CONTROLLI D'INTEGRITÀ DEI PALI
6.4.3.7	PROVE DI CARICO
6.4.3.7.1	Prove di progetto su pali pilota
6.4.3.7.2	Prove in corso d'opera
6.5. 6.5.1 6.5.2	OPERE DI SOSTEGNO CRITERI GENERALI DI PROGETTO AZIONI
6.5.2.1	Sovraccarichi
6.5.2.2	MODELLO GEOMETRICO DI RIFERIMENTO
6.5.3	VERIFICHE AGLI STATI LIMITE
6.5.3.1	VERIFICHE DI SICUREZZA (SLU)
6.5.3.1.1	Muri di sostegno
6.5.3.1.2	Paratie
6.5.3.2	VERIFICHE DI ESERCIZIO (SLE)

6.6.1. 6.6.2. 6.6.3. 6.6.4.	CRITERI DI PROGETTO VERIFICHE DI SICUREZZA (SLU) ASPETTI COSTRUTTIVI PROVE DI CARICO
6.6.4.1.	Prove di progetto su ancoraggi preliminari
6.6.4.2.	PROVE DI CARICO IN CORSO D'OPERA SUGLI ANCORAGGI
6.7.	OPERE IN SOTTERRANEO
6.7.1.	PRESCRIZIONI GENERALI
6.7.2. 6.7.3.	CARATTERIZZAZIONE GEOLOGICA CARATTERIZZAZIONE E MODELLAZIONE GEOTECNICA
6.7.4.	CRITERI DI PROGETTO
6.7.5.	ANALISI PROGETTUALI E VERIFICHE DI SICUREZZA
6.7.6.	CONTROLLO E MONITORAGGIO
6.8. 6.8.1. 6.8.2.	OPERE DI MATERIALI SCIOLTI E FRONTI DI SCAVO CRITERI GENERALI DI PROGETTO VERIFICHE DI SICUREZZA (SLU)
6.8.3.	VERIFICHE DI ESERCIZIO (SLE)
6.8.4.	ASPETTI COSTRUTTIVI
6.8.5.	CONTROLLI E MONITORAGGIO
6.8.6.	FRONTI DI SCAVO
6.8.6.1	INDAGINI GEOTECNICHE E CARATTERIZZAZIONE GEOTECNICA
6.8.6.2	CRITERI GENERALI DI PROGETTO E VERIFICHE DI SICUREZZA
6.9. 6.9.1. 6.9.2.	MIGLIORAMENTO E RINFORZO DEI TERRENI E DEGLI AMMASSI ROCCIOS SCELTA DEL TIPO DI INTERVENTO E CRITERI GENERALI DI PROGETTO MONITORAGGIO
	CONSOLIDAMENTO GEOTECNICO DI OPERE ESISTENTI
6.10. 6.10.1. 6.10.2. 6.10.3. 6.10.4.	CONSOLIDAMENTO GEOTECNICO DI OPERE ESISTENTI CRITERI GENERALI DI PROGETTO INDAGINI GEOTECNICHE E CARATTERIZZAZIONE GEOTECNICA TIPI DI CONSOLIDAMENTO GEOTECNICO CONTROLLI E MONITORAGGIO
6.10.1. 6.10.2. 6.10.3.	CRITERI GENERALI DI PROGETTO INDAGINI GEOTECNICHE E CARATTERIZZAZIONE GEOTECNICA TIPI DI CONSOLIDAMENTO GEOTECNICO
6.10.1. 6.10.2. 6.10.3. 6.10.4.	CRITERI GENERALI DI PROGETTO INDAGINI GEOTECNICHE E CARATTERIZZAZIONE GEOTECNICA TIPI DI CONSOLIDAMENTO GEOTECNICO CONTROLLI E MONITORAGGIO DISCARICHE CONTROLLATE DI RIFIUTI E DEPOSITI DI INERTI
6.10.1. 6.10.2. 6.10.3. 6.10.4. 6.11.	CRITERI GENERALI DI PROGETTO INDAGINI GEOTECNICHE E CARATTERIZZAZIONE GEOTECNICA TIPI DI CONSOLIDAMENTO GEOTECNICO CONTROLLI E MONITORAGGIO DISCARICHE CONTROLLATE DI RIFIUTI E DEPOSITI DI INERTI DISCARICHE CONTROLLATE
6.10.1. 6.10.2. 6.10.3. 6.10.4. 6.11. 6.11.1.	CRITERI GENERALI DI PROGETTO INDAGINI GEOTECNICHE E CARATTERIZZAZIONE GEOTECNICA TIPI DI CONSOLIDAMENTO GEOTECNICO CONTROLLI E MONITORAGGIO DISCARICHE CONTROLLATE DI RIFIUTI E DEPOSITI DI INERTI DISCARICHE CONTROLLATE CRITERI DI PROGETTO
6.10.1. 6.10.2. 6.10.3. 6.10.4. 6.11. 6.11.1. 6.11.1.	CRITERI GENERALI DI PROGETTO INDAGINI GEOTECNICHE E CARATTERIZZAZIONE GEOTECNICA TIPI DI CONSOLIDAMENTO GEOTECNICO CONTROLLI E MONITORAGGIO DISCARICHE CONTROLLATE DI RIFIUTI E DEPOSITI DI INERTI DISCARICHE CONTROLLATE CRITERI DI PROGETTO CARATTERIZZAZIONE DEL SITO
6.10.1. 6.10.2. 6.10.3. 6.10.4. 6.11. 6.11.1. 6.11.1. 6.11.1.2 6.11.1.3	CRITERI GENERALI DI PROGETTO INDAGINI GEOTECNICHE E CARATTERIZZAZIONE GEOTECNICA TIPI DI CONSOLIDAMENTO GEOTECNICO CONTROLLI E MONITORAGGIO DISCARICHE CONTROLLATE DI RIFIUTI E DEPOSITI DI INERTI DISCARICHE CONTROLLATE CRITERI DI PROGETTO CARATTERIZZAZIONE DEL SITO MODALITÀ COSTRUTTIVE E DI CONTROLLO DEI DISPOSITIVI DI BARRIERA
6.10.1. 6.10.2. 6.10.3. 6.10.4. 6.11. 6.11.1. 6.11.1. 6.11.1.3 6.11.1.4	CRITERI GENERALI DI PROGETTO INDAGINI GEOTECNICHE E CARATTERIZZAZIONE GEOTECNICA TIPI DI CONSOLIDAMENTO GEOTECNICO CONTROLLI E MONITORAGGIO DISCARICHE CONTROLLATE DI RIFIUTI E DEPOSITI DI INERTI DISCARICHE CONTROLLATE CRITERI DI PROGETTO CARATTERIZZAZIONE DEL SITO MODALITÀ COSTRUTTIVE E DI CONTROLLO DEI DISPOSITIVI DI BARRIERA VERIFICHE DI SICUREZZA
6.10.1. 6.10.2. 6.10.3. 6.10.4. 6.11. 6.11.1. 6.11.1. 6.11.1.4 6.11.1.3	CRITERI GENERALI DI PROGETTO INDAGINI GEOTECNICHE E CARATTERIZZAZIONE GEOTECNICA TIPI DI CONSOLIDAMENTO GEOTECNICO CONTROLLI E MONITORAGGIO DISCARICHE CONTROLLATE DI RIFIUTI E DEPOSITI DI INERTI DISCARICHE CONTROLLATE CRITERI DI PROGETTO CARATTERIZZAZIONE DEL SITO MODALITÀ COSTRUTTIVE E DI CONTROLLO DEI DISPOSITIVI DI BARRIERA VERIFICHE DI SICUREZZA MONITORAGGIO
6.10.1. 6.10.2. 6.10.3. 6.10.4. 6.11. 6.11.1. 6.11.1. 6.11.1.3 6.11.1.4 6.11.1.5 6.11.2.	CRITERI GENERALI DI PROGETTO INDAGINI GEOTECNICHE E CARATTERIZZAZIONE GEOTECNICA TIPI DI CONSOLIDAMENTO GEOTECNICO CONTROLLI E MONITORAGGIO DISCARICHE CONTROLLATE DI RIFIUTI E DEPOSITI DI INERTI DISCARICHE CONTROLLATE CRITERI DI PROGETTO CARATTERIZZAZIONE DEL SITO MODALITÀ COSTRUTTIVE E DI CONTROLLO DEI DISPOSITIVI DI BARRIERA VERIFICHE DI SICUREZZA MONITORAGGIO DEPOSITI DI INERTI

7.4.6

7.4.6.1


DETTAGLI COSTRUTTIVI

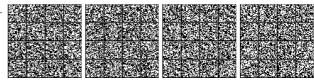
LIMITAZIONI GEOMETRICHE

CAPITOLO 7 - PROGETTAZIONE PER AZIONI SISMICHE

7.0.	GENERALITÀ
7.1.	REQUISITI DELLE COSTRUZIONI NEI CONFRONTI DEGLI STATI LIMITE
7.2 .	CRITERI GENERALI DI PROGETTAZIONE E MODELLAZIONE
7.2.1.	CARATTERISTICHE GENERALI DELLE COSTRUZIONI
7.2.2.	CRITERI GENERALI DI PROGETTAZIONE DEI SISTEMI STRUTTURALI
7.2.3.	CRITERI DI PROGETTAZIONE DI ELEMENTI STRUTTURALI "SECONDARI" ED ELEMENTI COSTRUTTIVI NON STRUTTURALI
7.2.4.	CRITERI DI PROGETTAZIONE DEGLI IMPIANTI
7.2.5. 7.2.6.	REQUISITI STRUTTURALI DEGLI ELEMENTI DI FONDAZIONE CRITERI DI MODELLAZIONE DELLA STRUTTURA E DELL'AZIONE SISMICA
7.3.	METODI DI ANALISI E CRITERI DI VERIFICA
7.3.1.	ANALISI LINEARE O NON LINEARE
7.3.2.	ANALISI DINAMICA O STATICA
7.3.3. 7.3.3.1	ANALISI LINEARE DINAMICA O STATICA ANALISI LINEARE DINAMICA
7.3.3.1	
7.3.3.3	ANALISI LINEARE STATICA Valutazione degli spostamenti della struttura
7.3.4.	ANALISI NON LINEARE DINAMICA O STATICA
7.3.4.1	Analisi non lineare dinamica
7.3.4.2	Analisi non lineare statica
7.3.5.	RISPOSTA ALLE DIVERSE COMPONENTI DELL'AZIONE SISMICA ED ALLA VARIABILITÀ SPAZIALE DEL MOTO
7.3.6.	RISPETTO DEI REQUISITI NEI CONFRONTI DEGLI STATI LIMITE
7.3.6.1	ELEMENTI STRUTTURALI (ST)
7.3.6.2	ELEMENTI NON STRUTTURALI (NS)
7.3.6.3	IMPIANTI (IM)
7.4. 7.4.1.	COSTRUZIONI DI CALCESTRUZZO GENERALITÀ
7.4.2.	CARATTERISTICHE DEI MATERIALI
7.4.2.1	Conglomerato
7.4.2.2	Acciaio
7.4.3.	TIPOLOGIE STRUTTURALI E FATTORI DI COMPORTAMENTO
7.4.3.1	TIPOLOGIE STRUTTURALI
7.4.3.2 7.4.4	FATTORI DI COMPORTAMENTO DIMENSIONAMENTO E VERIFICA DEGLI ELEMENTI STRUTTURALI PRIMARI E SECONDARI
7.4.4.1	Travi
7.4.4.1.1	Verifiche di resistenza (RES)
7.4.4.1.2	Verifiche di duttilità (DUT)
7.4.4.2	PILASTRI
7.4.4.2.1	Verifiche di resistenza (RES)
7.4.4.2.2	Verifiche di duttilità (DUT)
7.4.4.3	NODI TRAVE-PILASTRO
7.4.4.3.1	Verifiche di resistenza (RES)
7.4.4.4	DIAFRAMMI ORIZZONTALI
7.4.4.4.1	Verifiche di resistenza (RES)
7.4.4.5	Pareti
7.4.4.5.1	Verifiche di resistenza (RES)
7.4.4.5.2	Verifiche di duttilità (DUT)
7.4.4.6	TRAVI DI ACCOPPIAMENTO DEI SISTEMI A PARETI
7.4.5	COSTRUZIONI CON STRUTTURA PREFABBRICATA
7.4.5.1	TIPOLOGIE STRUTTURALI E FATTORI DI COMPORTAMENTO
7.4.5.2	Collegamenti
7.4.5.2.1	Indicazioni progettuali
7.4.5.2.2	Valutazione della resistenza
7.4.5.3	Elementi strutturali

7.7.5.3

F 4 C 1 1	Total
7.4.6.1.1	Travi
7.4.6.1.2	Pilastri
7.4.6.1.3	Nodi trave-pilastro
7.4.6.1.4	Pareti
7.4.6.2	LIMITAZIONI DI ARMATURA
7.4.6.2.1	Travi
7.4.6.2.2	Pilastri
7.4.6.2.3	Nodi trave-pilastro
7.4.6.2.4	Pareti
7.4.6.2.5	Travi di accoppiamento
7.5.	COSTRUZIONI DI ACCIAIO
7.5.1.	CARATTERISTICHE DEI MATERIALI
7.5.2.	TIPOLOGIE STRUTTURALI E FATTORI DI COMPORTAMENTO
7.5.2.1	TIPOLOGIE STRUTTURALI
7.5.2.2	FATTORI DI COMPORTAMENTO
7.5.3.	REGOLE DI PROGETTO GENERALI PER ELEMENTI STRUTTURALI DISSIPATIVI
7.5.3.1	VERIFICHE DI RESISTENZA (RES)7.5,3.2 VERIFICHE DI DUTTILITA' (DUT)
7.5.4.	REGOLE DI PROGETTO SPECIFICHE PER STRUTTURE INTELAIATE
7.5.4.1	Travi
7.5.4.2	COLONNE
7.5.4.3	COLLEGAMENTI TRAVE-COLONNA
7.5.4.4	PANNELLI D'ANIMA DEI COLLEGAMENTI TRAVE-COLONNA
7.5.4.5	COLLEGAMENTI COLONNA-FONDAZIONE
7.5.5.	REGOLE DI PROGETTO SPECIFICHE PER STRUTTURE CON CONTROVENTI CONCENTRICI
7.5.6	REGOLE DI PROGETTO SPECIFICHE PER STRUTTURE CON CONTROVENTI ECCENTRICI
7.6.	COSTRUZIONI COMPOSTE DI ACCIAIO-CALCESTRUZZO
7.6.1.	CARATTERISTICHE DEI MATERIALI
7.6.1.1	CALCESTRUZZO
7.6.1.2	ACCIAIO PER C.A.
7.6.1.3	ACCIAIO STRUTTURALE
7.6.2.	TIPOLOGIE STRUTTURALI E FATTORI DI COMPORTAMENTO
7.6.2.1	TIPOLOGIE STRUTTURALI
7.6.2.2	FATTORI DI COMPORTAMENTO
7.6.3.	RIGIDEZZA DELLA SEZIONE TRASVERSALE COMPOSTA
7.6.4.	CRITERI DI PROGETTO E DETTAGLI PER STRUTTURE DISSIPATIVE
7.6.4.1	CRITERI DI PROGETTO PER STRUTTURE DISSIPATIVE
7.6.4.2	VERIFICHE DI RESISTENZA (RES)
7.6.4.3	VERIFICHE DI DUTTILITA' (DUT)
7.6.4.4	DETTAGLI COSTRUTTIVI
7.6.5	REGOLE SPECIFICHE PER LE MEMBRATURE
7.6.5.1	TRAVI CON SOLETTA COLLABORANTE
7.6.5.2	MEMBRATURE COMPOSTE PARZIALMENTE RIVESTITE DI CALCESTRUZZO
7.6.5.3	COLONNE COMPOSTE COMPLETAMENTE RIVESTITE DI CALCESTRUZZO
7.6.5.4	COLONNE COMPOSTE RIEMPITE DI CALCESTRUZZO
7.6.6.	REGOLE SPECIFICHE PER STRUTTURE INTELAIATE
7.6.6.1	ANALISI STRUTTURALE
7.6.6.2	TRAVI E COLONNE
7.6.6.3	COLLEGAMENTI TRAVE-COLONNA
7.6.6.4	COLLEGAMENTI COLONNA-FONDAZIONE
7.6.6.5	CONDIZIONE PER TRASCURARE IL CARATTERE COMPOSTO DELLE TRAVI CON SOLETTA
7.6.7.	REGOLE SPECIFICHE PER STRUTTURE CON CONTROVENTI CONCENTRICI
7.6.8.	REGOLE SPECIFICHE PER STRUTTURE CON CONTROVENTI ECCENTRICI
7.7.	COSTRUZIONI DI LEGNO
7.7.1.	ASPETTI CONCETTUALI DELLA PROGETTAZIONE
7.7.2.	MATERIALI E PROPRIETÀ DELLE ZONE DISSIPATIVE
7.7.3.	TIPOLOGIE STRUTTURALI E FATTORI DI COMPORTAMENTO
7.7.3.1 7.7.4.	Precisazioni Analisi strutturale
7.7.4. 7.7.5.	DISPOSIZIONI COSTRUTTIVE
7.7.5.1	Generalità
7.7.5.2	DISPOSIZIONI COSTRUTTIVE PER I COLLEGAMENTI


DISPOSIZIONI COSTRUTTIVE PER GLI IMPALCATI

7.9.5.4.2

7.7.6. 7.7.7.	VERIFICHE DI SICUREZZA REGOLE DI DETTAGLIO
7.7.7.1	DISPOSIZIONI COSTRUTTIVE PER I COLLEGAMENTI
7.7.7.2	DISPOSIZIONI COSTRUTTIVE PER GLI IMPALCATI
7.7.7.2	DISFOSIZIONI COSTRUTTIVE FER GLI IMPALCATI
7.8.	COSTRUZIONI DI MURATURA
7.8.1.	REGOLE GENERALI
7.8.1.1	Premessa
7.8.1.2	Materiali
7.8.1.3	MODALITÀ COSTRUTTIVE E FATTORI DI COMPORTAMENTO
7.8.1.4	CRITERI DI PROGETTO E REQUISITI GEOMETRICI
7.8.1.5	METODI DI ANALISI
7.8.1.5.1	Generalità
7.8.1.5.2	Analisi lineare statica
7.8.1.5.3	Analisi dinamica modale
7.8.1.5.4	Analisi statica non lineare
7.8.1.5.5	Analisi dinamica non lineare
7.8.1.6	Verifiche di sicurezza
7.8.1.7	Principi di progettazione in capacità
7.8.1.8	FONDAZIONI
7.8.1.9	COSTRUZIONI SEMPLICI
7.8.2.	COSTRUZIONI DI MURATURA ORDINARIA
7.8.2.1	CRITERI DI PROGETTO
7.8.2.2	VERIFICHE DI SICUREZZA
7.8.2.2.1	Pressoflessione nel piano
7.8.2.2.2	Taglio
7.8.2.2.3	Pressoflessione fuori piano
7.8.2.2.4	Travi in muratura
7.8.3.	COSTRUZIONI DI MURATURA ARMATA
7.8.3.1	CRITERI DI PROGETTO
7.8.3.2	VERIFICHE DI SICUREZZA
7.8.3.2.1	Pressoflessione nel piano
7.8.3.2.2	Taglio
7.8.3.2.3	Pressoflessione fuori piano
7.8.4.	COSTRUZIONI DI MURATURA CONFINATA
7.8.5.	STRUTTURE MISTE
7.8.6.	REGOLE DI DETTAGLIO
7.8.6.1	COSTRUZIONI DI MURATURA ORDINARIA
7.8.6.2	COSTRUZIONI DI MURATURA ARMATA
7.8.6.3	COSTRUZIONI DI MURATURA CONFINATA
7.9.	PONTI
7.9.1.	CAMPO DI APPLICAZIONE
7.9.2	CRITERI GENERALI DI PROGETTAZIONE
7.9.2.1	VALORI DEL FATTORE DI COMPORTAMENTO
7.9.3.	MODELLO STRUTTURALE
7.9.3.1	INTERAZIONE TERRENO-STRUTTURA E ANALISI DI RISPOSTA SISMICA LOCALE
7.9.4.	ANALISI STRUTTURALE
7.9.4.1	ANALISI STATICA LINEARE
7.9.5.	DIMENSIONAMENTO E VERIFICA DEGLI ELEMENTI STRUTTURALI
7.9.5.1	Pile
7.9.5.1.1	Verifiche di resistenza (RES)
7.9.5.1.2	Verifiche di duttilità (DUT)
7.9.5.2	Impalcato
7.9.5.2.1	VERIFICHE DI RESISTENZA (RES)
7.9.5.3	APPARECCHI DI APPOGGIO E ZONE DI SOVRAPPOSIZIONE
7.9.5.3.1	Apparecchi d'appoggio o di vincolo fissi
7.9.5.2	Apparecchi d'appoggio mobili
7.9.5.3.3	Dispositivi di fine corsa
7.9.5.3.4	Zone di sovrapposizione
7.9.5.4	SPALLE
7.9.5.4.1	Collegamento mediante apparecchi d'appoggio mobili

Collegamento mediante apparecchi d'appoggio fissi

7.9.6.

7.9.6.1	Pile
7.9.6.1.1	Armature per il confinamento del nucleo di calcestruzzo
7.9.6.1.2	Armature per contrastare l'instabilità delle barre verticali compresse
7.9.6.1.3	Dettagli costruttivi per le zone dissipative
7.9.6.2	IMPALCATO, FONDAZIONI E SPALLE
7.40	COCTRUZIONI CON ICCI AMENTO E /O DICCIDAZIONE
7.10.	COSTRUZIONI CON ISOLAMENTO E/O DISSIPAZIONE
7.10.1.	SCOPO
7.10.2. 7.10.3.	REQUISITI GENERALI E CRITERI PER IL LORO SODDISFACIMENTO CARATTERISTICHE E CRITERI DI ACCETTAZIONE DEI DISPOSITIVI
7.10.3. 7.10.4.	INDICAZIONI PROGETTUALI
7.10.4.1	INDICAZIONI RIGUARDANTI I DISPOSITIVI
7.10.4.2	CONTROLLO DI MOVIMENTI INDESIDERATI
7.10.4.3	CONTROLLO DEGLI SPOSTAMENTI SISMICI DIFFERENZIALI DEL TERRENO
7.10.4.4	CONTROLLO DEGLI SPOSTAMENTI RELATIVI AL TERRENO E ALLE COSTRUZIONI CIRCOSTANTI
7.10.5.	MODELLAZIONE E ANALISI STRUTTURALE
7.10.5.1	PROPRIETÀ DEL SISTEMA DI ISOLAMENTO
7.10.5.2	MODELLAZIONE
7.10.5.3	Analisi
7.10.5.3.1	Analisi lineare statica
7.10.5.3.2	Analisi lineare dinamica
7.10.6.	VERIFICHE
7.10.6.1	VERIFICHE DEGLI STATI LIMITE DI ESERCIZIO
7.10.6.2	VERIFICHE DEGLI STATI LIMITE ULTIMI
7.10.6.2.1	Verifiche dello SLV
7.10.6.2.2	Verifiche dello SLC
7.10.7. 7.10.8.	ASPETTI COSTRUTTIVI, MANUTENZIONE, SOSTITUIBILITÀ ACCORGIMENTI SPECIFICI IN FASE DI COLLAUDO
1.10.0.	ACCORDING TO LOW IN TACK DI COLLACDO
7.11.	OPERE E SISTEMI GEOTECNICI
7.11.1.	REQUISITI NEI CONFRONTI DEGLI STATI LIMITE
7.11.2.	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI
7.11.2. 7.11.3.	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI RISPOSTA SISMICA E STABILITÀ DEL SITO
7.11.2. 7.11.3. 7.11.3.1	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI RISPOSTA SISMICA E STABILITÀ DEL SITO RISPOSTA SISMICA LOCALE
7.11.2. 7.11.3. 7.11.3.1 7.11.3.2	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI RISPOSTA SISMICA E STABILITÀ DEL SITO RISPOSTA SISMICA LOCALE FATTORI DI AMPLIFICAZIONE STRATIGRAFICA
7.11.2. 7.11.3. 7.11.3.1 7.11.3.2 7.11.3.3	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI RISPOSTA SISMICA E STABILITÀ DEL SITO RISPOSTA SISMICA LOCALE FATTORI DI AMPLIFICAZIONE STRATIGRAFICA FATTORI DI AMPLIFICAZIONE TOPOGRAFICA
7.11.2. 7.11.3. 7.11.3.1 7.11.3.2 7.11.3.3 7.11.3.4	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI RISPOSTA SISMICA E STABILITÀ DEL SITO RISPOSTA SISMICA LOCALE FATTORI DI AMPLIFICAZIONE STRATIGRAFICA FATTORI DI AMPLIFICAZIONE TOPOGRAFICA STABILITÀ NEI CONFRONTI DELLA LIQUEFAZIONE
7.11.2. 7.11.3. 7.11.3.1 7.11.3.2 7.11.3.3 7.11.3.4 7.11.3.4.1	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI RISPOSTA SISMICA E STABILITÀ DEL SITO RISPOSTA SISMICA LOCALE FATTORI DI AMPLIFICAZIONE STRATIGRAFICA FATTORI DI AMPLIFICAZIONE TOPOGRAFICA STABILITÀ NEI CONFRONTI DELLA LIQUEFAZIONE Generalità
7.11.2. 7.11.3. 7.11.3.1 7.11.3.2 7.11.3.3 7.11.3.4 7.11.3.4.1 7.11.3.4.2	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI RISPOSTA SISMICA E STABILITÀ DEL SITO RISPOSTA SISMICA LOCALE FATTORI DI AMPLIFICAZIONE STRATIGRAFICA FATTORI DI AMPLIFICAZIONE TOPOGRAFICA STABILITÀ NEI CONFRONTI DELLA LIQUEFAZIONE Generalità Esclusione della verifica a liquefazione
7.11.2. 7.11.3. 7.11.3.1 7.11.3.2 7.11.3.3 7.11.3.4 7.11.3.4.1 7.11.3.4.2 7.11.3.4.3	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI RISPOSTA SISMICA E STABILITÀ DEL SITO RISPOSTA SISMICA LOCALE FATTORI DI AMPLIFICAZIONE STRATIGRAFICA FATTORI DI AMPLIFICAZIONE TOPOGRAFICA STABILITÀ NEI CONFRONTI DELLA LIQUEFAZIONE Generalità Esclusione della verifica a liquefazione Metodologie di analisi
7.11.2. 7.11.3. 7.11.3.1 7.11.3.2 7.11.3.3 7.11.3.4 7.11.3.4.1 7.11.3.4.2 7.11.3.4.3 7.11.3.5	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI RISPOSTA SISMICA E STABILITÀ DEL SITO RISPOSTA SISMICA LOCALE FATTORI DI AMPLIFICAZIONE STRATIGRAFICA FATTORI DI AMPLIFICAZIONE TOPOGRAFICA STABILITÀ NEI CONFRONTI DELLA LIQUEFAZIONE Generalità Esclusione della verifica a liquefazione Metodologie di analisi STABILITÀ DEI PENDII
7.11.2. 7.11.3. 7.11.3.1 7.11.3.2 7.11.3.3 7.11.3.4 7.11.3.4.1 7.11.3.4.2 7.11.3.4.3 7.11.3.5 7.11.3.5	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI RISPOSTA SISMICA E STABILITÀ DEL SITO RISPOSTA SISMICA LOCALE FATTORI DI AMPLIFICAZIONE STRATIGRAFICA FATTORI DI AMPLIFICAZIONE TOPOGRAFICA STABILITÀ NEI CONFRONTI DELLA LIQUEFAZIONE Generalità Esclusione della verifica a liquefazione Metodologie di analisi STABILITÀ DEI PENDII Azione sismica
7.11.2. 7.11.3. 7.11.3.1 7.11.3.2 7.11.3.3 7.11.3.4 7.11.3.4.1 7.11.3.4.2 7.11.3.4.3 7.11.3.5 7.11.3.5.1 7.11.3.5.1	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI RISPOSTA SISMICA E STABILITÀ DEL SITO RISPOSTA SISMICA LOCALE FATTORI DI AMPLIFICAZIONE STRATIGRAFICA FATTORI DI AMPLIFICAZIONE TOPOGRAFICA STABILITÀ NEI CONFRONTI DELLA LIQUEFAZIONE Generalità Esclusione della verifica a liquefazione Metodologie di analisi STABILITÀ DEI PENDII Azione sismica Metodi di analisi
7.11.2. 7.11.3. 7.11.3.1 7.11.3.2 7.11.3.3 7.11.3.4 7.11.3.4.1 7.11.3.4.2 7.11.3.4.3 7.11.3.5 7.11.3.5 7.11.3.5.1 7.11.3.5.2 7.11.4.	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI RISPOSTA SISMICA E STABILITÀ DEL SITO RISPOSTA SISMICA LOCALE FATTORI DI AMPLIFICAZIONE STRATIGRAFICA FATTORI DI AMPLIFICAZIONE TOPOGRAFICA STABILITÀ NEI CONFRONTI DELLA LIQUEFAZIONE Generalità Esclusione della verifica a liquefazione Metodologie di analisi STABILITÀ DEI PENDII Azione sismica Metodi di analisi FRONTI DI SCAVO E RILEVATI
7.11.2. 7.11.3. 7.11.3.1 7.11.3.2 7.11.3.3 7.11.3.4 7.11.3.4.1 7.11.3.4.2 7.11.3.4.3 7.11.3.5 7.11.3.5.1 7.11.3.5.1	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI RISPOSTA SISMICA E STABILITÀ DEL SITO RISPOSTA SISMICA LOCALE FATTORI DI AMPLIFICAZIONE STRATIGRAFICA FATTORI DI AMPLIFICAZIONE TOPOGRAFICA STABILITÀ NEI CONFRONTI DELLA LIQUEFAZIONE Generalità Esclusione della verifica a liquefazione Metodologie di analisi STABILITÀ DEI PENDII Azione sismica Metodi di analisi
7.11.2. 7.11.3. 7.11.3.1 7.11.3.2 7.11.3.3 7.11.3.4 7.11.3.4.1 7.11.3.4.2 7.11.3.4.3 7.11.3.5 7.11.3.5.1 7.11.3.5.2 7.11.4. 7.11.5.	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI RISPOSTA SISMICA E STABILITÀ DEL SITO RISPOSTA SISMICA LOCALE FATTORI DI AMPLIFICAZIONE STRATIGRAFICA FATTORI DI AMPLIFICAZIONE TOPOGRAFICA STABILITÀ NEI CONFRONTI DELLA LIQUEFAZIONE Generalità Esclusione della verifica a liquefazione Metodologie di analisi STABILITÀ DEI PENDII Azione sismica Metodi di analisi FRONTI DI SCAVO E RILEVATI FONDAZIONI
7.11.2. 7.11.3. 7.11.3.1 7.11.3.2 7.11.3.3 7.11.3.4 7.11.3.4.1 7.11.3.4.2 7.11.3.4.3 7.11.3.5 7.11.3.5.1 7.11.3.5.1 7.11.3.5.2 7.11.4. 7.11.5.	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI RISPOSTA SISMICA E STABILITÀ DEL SITO RISPOSTA SISMICA LOCALE FATTORI DI AMPLIFICAZIONE STRATIGRAFICA FATTORI DI AMPLIFICAZIONE TOPOGRAFICA STABILITÀ NEI CONFRONTI DELLA LIQUEFAZIONE Generalità Esclusione della verifica a liquefazione Metodologie di analisi STABILITÀ DEI PENDII Azione sismica Metodi di analisi FRONTI DI SCAVO E RILEVATI FONDAZIONI REGOLE GENERALI DI PROGETTAZIONE
7.11.2. 7.11.3. 7.11.3.1 7.11.3.2 7.11.3.3 7.11.3.4 7.11.3.4.1 7.11.3.4.2 7.11.3.4.3 7.11.3.5 7.11.3.5.1 7.11.3.5.2 7.11.4. 7.11.5. 7.11.5.1 7.11.5.2	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI RISPOSTA SISMICA E STABILITÀ DEL SITO RISPOSTA SISMICA LOCALE FATTORI DI AMPLIFICAZIONE STRATIGRAFICA FATTORI DI AMPLIFICAZIONE TOPOGRAFICA STABILITÀ NEI CONFRONTI DELLA LIQUEFAZIONE Generalità Esclusione della verifica a liquefazione Metodologie di analisi STABILITÀ DEI PENDII Azione sismica Metodi di analisi FRONTI DI SCAVO E RILEVATI FONDAZIONI REGOLE GENERALI DI PROGETTAZIONE INDAGINI E MODELLO GEOTECNICO VERIFICHE DELLO STATO LIMITE ULTIMO (SLU) E DELLO STATO LIMITE DI DANNO (SLD)
7.11.2. 7.11.3. 7.11.3.1 7.11.3.2 7.11.3.3 7.11.3.4 7.11.3.4.7 7.11.3.4.2 7.11.3.4.3 7.11.3.5 7.11.3.5.1 7.11.3.5.2 7.11.4. 7.11.5.1 7.11.5.2 7.11.5.3	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI RISPOSTA SISMICA E STABILITÀ DEL SITO RISPOSTA SISMICA LOCALE FATTORI DI AMPLIFICAZIONE STRATIGRAFICA FATTORI DI AMPLIFICAZIONE TOPOGRAFICA STABILITÀ NEI CONFRONTI DELLA LIQUEFAZIONE Generalità Esclusione della verifica a liquefazione Metodologie di analisi STABILITÀ DEI PENDII Azione sismica Metodi di analisi FRONTI DI SCAVO E RILEVATI FONDAZIONI REGOLE GENERALI DI PROGETTAZIONE INDAGINI E MODELLO GEOTECNICO
7.11.2. 7.11.3. 7.11.3.1 7.11.3.2 7.11.3.3 7.11.3.4 7.11.3.4.7 7.11.3.4.2 7.11.3.4.3 7.11.3.5 7.11.3.5.1 7.11.3.5.1 7.11.3.5.2 7.11.4. 7.11.5.1 7.11.5.2 7.11.5.3 7.11.5.3	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI RISPOSTA SISMICA E STABILITÀ DEL SITO RISPOSTA SISMICA LOCALE FATTORI DI AMPLIFICAZIONE STRATIGRAFICA FATTORI DI AMPLIFICAZIONE TOPOGRAFICA STABILITÀ NEI CONFRONTI DELLA LIQUEFAZIONE Generalità Esclusione della verifica a liquefazione Metodologie di analisi STABILITÀ DEI PENDII Azione sismica Metodi di analisi FRONTI DI SCAVO E RILEVATI FONDAZIONI REGOLE GENERALI DI PROGETTAZIONE INDAGINI E MODELLO GEOTECNICO VERIFICHE DELLO STATO LIMITE ULTIMO (SLU) E DELLO STATO LIMITE DI DANNO (SLD) Fondazioni superficiali
7.11.2. 7.11.3. 7.11.3.2 7.11.3.3 7.11.3.4 7.11.3.4.1 7.11.3.4.2 7.11.3.4.3 7.11.3.5 7.11.3.5.1 7.11.3.5.1 7.11.3.5.2 7.11.4. 7.11.5.1 7.11.5.2 7.11.5.3 7.11.5.3.1 7.11.5.3.2	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI RISPOSTA SISMICA E STABILITÀ DEL SITO RISPOSTA SISMICA LOCALE FATTORI DI AMPLIFICAZIONE STRATIGRAFICA FATTORI DI AMPLIFICAZIONE TOPOGRAFICA STABILITÀ NEI CONFRONTI DELLA LIQUEFAZIONE Generalità Esclusione della verifica a liquefazione Metodologie di analisi STABILITÀ DEI PENDII Azione sismica Metodi di analisi FRONTI DI SCAVO E RILEVATI FONDAZIONI REGOLE GENERALI DI PROGETTAZIONE INDAGINI E MODELLO GEOTECNICO VERIFICHE DELLO STATO LIMITE ULTIMO (SLU) E DELLO STATO LIMITE DI DANNO (SLD) Fondazioni superficiali Fondazioni su pali
7.11.2. 7.11.3. 7.11.3.2 7.11.3.3 7.11.3.4 7.11.3.4.1 7.11.3.4.2 7.11.3.4.3 7.11.3.5.1 7.11.3.5.2 7.11.4. 7.11.5.1 7.11.5.2 7.11.5.3 7.11.5.3.1 7.11.5.3.2 7.11.6.	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI RISPOSTA SISMICA E STABILITÀ DEL SITO RISPOSTA SISMICA LOCALE FATTORI DI AMPLIFICAZIONE STRATIGRAFICA FATTORI DI AMPLIFICAZIONE TOPOGRAFICA STABILITÀ NEI CONFRONTI DELLA LIQUEFAZIONE Generalità Esclusione della verifica a liquefazione Metodologie di analisi STABILITÀ DEI PENDII Azione sismica Metodi di analisi FRONTI DI SCAVO E RILEVATI FONDAZIONI REGOLE GENERALI DI PROGETTAZIONE INDAGINI E MODELLO GEOTECNICO VERIFICHE DELLO STATO LIMITE ULTIMO (SLU) E DELLO STATO LIMITE DI DANNO (SLD) Fondazioni su pali OPERE DI SOSTEGNO
7.11.2. 7.11.3. 7.11.3.2 7.11.3.3 7.11.3.4 7.11.3.4.1 7.11.3.4.2 7.11.3.4.3 7.11.3.5.1 7.11.3.5.2 7.11.4. 7.11.5.1 7.11.5.2 7.11.5.3 7.11.5.3.1 7.11.5.3.2 7.11.6.	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI RISPOSTA SISMICA E STABILITÀ DEL SITO RISPOSTA SISMICA LOCALE FATTORI DI AMPLIFICAZIONE STRATIGRAFICA FATTORI DI AMPLIFICAZIONE TOPOGRAFICA STABILITÀ NEI CONFRONTI DELLA LIQUEFAZIONE Generalità Esclusione della verifica a liquefazione Metodologie di analisi STABILITÀ DEI PENDII Azione sismica Metodi di analisi FRONTI DI SCAVO E RILEVATI FONDAZIONI REGOLE GENERALI DI PROGETTAZIONE INDAGINI E MODELLO GEOTECNICO VERIFICHE DELLO STATO LIMITE ULTIMO (SLU) E DELLO STATO LIMITE DI DANNO (SLD) Fondazioni superficiali Fondazioni su pali OPERE DI SOSTEGNO REQUISITI GENERALI
7.11.2. 7.11.3. 7.11.3.1 7.11.3.2 7.11.3.3 7.11.3.4 7.11.3.4.1 7.11.3.4.2 7.11.3.5.1 7.11.3.5.1 7.11.3.5.2 7.11.4. 7.11.5.1 7.11.5.2 7.11.5.3 7.11.5.3.1 7.11.5.3.2 7.11.6. 7.11.6.1 7.11.6.2	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI RISPOSTA SISMICA E STABILITÀ DEL SITO RISPOSTA SISMICA LOCALE FATTORI DI AMPLIFICAZIONE STRATIGRAFICA FATTORI DI AMPLIFICAZIONE TOPOGRAFICA STABILITÀ NEI CONFRONTI DELLA LIQUEFAZIONE Generalità Esclusione della verifica a liquefazione Metodologie di analisi STABILITÀ DEI PENDII Azione sismica Metodi di analisi FRONTI DI SCAVO E RILEVATI FONDAZIONI REGOLE GENERALI DI PROGETTAZIONE INDAGINI E MODELLO GEOTECNICO VERIFICHE DELLO STATO LIMITE ULTIMO (SLU) E DELLO STATO LIMITE DI DANNO (SLD) Fondazioni superficiali Fondazioni su pali OPERE DI SOSTEGNO REQUISITI GENERALI MURI DI SOSTEGNO
7.11.2. 7.11.3. 7.11.3.1 7.11.3.2 7.11.3.3 7.11.3.4 7.11.3.4.1 7.11.3.4.2 7.11.3.5 7.11.3.5 7.11.3.5.1 7.11.3.5.2 7.11.4. 7.11.5. 7.11.5.1 7.11.5.2 7.11.5.3 7.11.5.3.1 7.11.5.3.2 7.11.6. 7.11.6.2 7.11.6.2	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI RISPOSTA SISMICA E STABILITÀ DEL SITO RISPOSTA SISMICA LOCALE FATTORI DI AMPLIFICAZIONE STRATIGRAFICA FATTORI DI AMPLIFICAZIONE TOPOGRAFICA STABILITÀ NEI CONFRONTI DELLA LIQUEFAZIONE Generalità Esclusione della verifica a liquefazione Metodologie di analisi STABILITÀ DEI PENDII Azione sismica Metodi di analisi FRONTI DI SCAVO E RILEVATI FONDAZIONI REGOLE GENERALI DI PROGETTAZIONE INDAGINI E MODELLO GEOTECNICO VERIFICHE DELLO STATO LIMITE ULTIMO (SLU) E DELLO STATO LIMITE DI DANNO (SLD) Fondazioni superficiali Fondazioni su pali OPERE DI SOSTEGNO REQUISITI GENERALI MURI DI SOSTEGNO Metodi di analisi Verifiche di sicurezza PARATIE
7.11.2. 7.11.3. 7.11.3.1 7.11.3.2 7.11.3.3 7.11.3.4 7.11.3.4.1 7.11.3.4.2 7.11.3.5 7.11.3.5 7.11.3.5.1 7.11.3.5.2 7.11.4. 7.11.5. 7.11.5.1 7.11.5.2 7.11.5.3 7.11.5.3.1 7.11.5.3.2 7.11.6.1 7.11.6.2 7.11.6.2 7.11.6.2	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI RISPOSTA SISMICA E STABILITÀ DEL SITO RISPOSTA SISMICA LOCALE FATTORI DI AMPLIFICAZIONE STRATIGRAFICA FATTORI DI AMPLIFICAZIONE TOPOGRAFICA STABILITÀ NEI CONFRONTI DELLA LIQUEFAZIONE Generalità Esclusione della verifica a liquefazione Metodologie di analisi STABILITÀ DEI PENDII Azione sismica Metodi di analisi FRONTI DI SCAVO E RILEVATI FONDAZIONI REGOLE GENERALI DI PROGETTAZIONE INDAGINI E MODELLO GEOTECNICO VERIFICHE DELLO STATO LIMITE ULTIMO (SLU) E DELLO STATO LIMITE DI DANNO (SLD) Fondazioni superficiali Fondazioni su pali OPERE DI SOSTEGNO REQUISITI GENERALI MURI DI SOSTEGNO Metodi di analisi Verifiche di sicurezza
7.11.2. 7.11.3. 7.11.3.1 7.11.3.2 7.11.3.3 7.11.3.4 7.11.3.4.1 7.11.3.4.2 7.11.3.5 7.11.3.5 7.11.3.5.1 7.11.3.5.2 7.11.4. 7.11.5. 7.11.5.1 7.11.5.2 7.11.5.3 7.11.5.3.1 7.11.5.3.2 7.11.6.1 7.11.6.2 7.11.6.2 7.11.6.2 7.11.6.2 7.11.6.3	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI RISPOSTA SISMICA E STABILITÀ DEL SITO RISPOSTA SISMICA LOCALE FATTORI DI AMPLIFICAZIONE STRATIGRAFICA FATTORI DI AMPLIFICAZIONE TOPOGRAFICA STABILITÀ NEI CONFRONTI DELLA LIQUEFAZIONE Generalità Esclusione della verifica a liquefazione Metodologie di analisi STABILITÀ DEI PENDII Azione sismica Metodi di analisi FRONTI DI SCAVO E RILEVATI FONDAZIONI REGOLE GENERALI DI PROGETTAZIONE INDAGINI E MODELLO GEOTECNICO VERIFICHE DELLO STATO LIMITE ULTIMO (SLU) E DELLO STATO LIMITE DI DANNO (SLD) Fondazioni superficiali Fondazioni su pali OPERE DI SOSTEGNO REQUISITI GENERALI MURI DI SOSTEGNO Metodi di analisi Verifiche di sicurezza PARATIE
7.11.2. 7.11.3. 7.11.3.1 7.11.3.2 7.11.3.3 7.11.3.4 7.11.3.4.1 7.11.3.4.2 7.11.3.5 7.11.3.5 7.11.3.5.1 7.11.3.5.2 7.11.4. 7.11.5. 7.11.5.3 7.11.5.3.1 7.11.5.3.2 7.11.6.1 7.11.6.2 7.11.6.2 7.11.6.2 7.11.6.3 7.11.6.3.1	CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI RISPOSTA SISMICA E STABILITÀ DEL SITO RISPOSTA SISMICA LOCALE FATTORI DI AMPLIFICAZIONE STRATIGRAFICA FATTORI DI AMPLIFICAZIONE TOPOGRAFICA STABILITÀ NEI CONFRONTI DELLA LIQUEFAZIONE Generalità Esclusione della verifica a liquefazione Metodologie di analisi STABILITÀ DEI PENDII Azione sismica Metodi di analisi FRONTI DI SCAVO E RILEVATI FONDAZIONI REGOLE GENERALI DI PROGETTAZIONE INDAGINI E MODELLO GEOTECNICO VERIFICHE DELLO STATO LIMITE ULTIMO (SLU) E DELLO STATO LIMITE DI DANNO (SLD) Fondazioni superficiali Fondazioni su pali OPERE DI SOSTEGNO REQUISITI GENERALI MURI DI SOSTEGNO Metodi di analisi Verifiche di sicurezza PARATIE Metodi pseudo-statici

DETTAGLI COSTRUTTIVI PER ELEMENTI DI CALCESTRUZZO ARMATO

CAPITOLO 8 - COSTRUZIONI ESISTENTI

5.1.	VGGETTV
8.2.	CRITERI GENERALI
8.3.	VALUTAZIONE DELLA SICUREZZA
8.4.	CLASSIFICAZIONE DEGLI INTERVENTI
8.4.1.	RIPARAZIONE O INTERVENTO LOCALE
8.4.2.	INTERVENTO DI MIGLIORAMENTO
8.4.3.	INTERVENTO DI ADEGUAMENTO
8.5.	DEFINIZIONE DEL MODELLO DI RIFERIMENTO PER LE ANALISI
8.5.1.	ANALISI STORICO-CRITICA
8.5.2.	RILIEVO
8.5.3.	CARATTERIZZAZIONE MECCANICA DEI MATERIALI
8.5.4.	LIVELLI DI CONOSCENZA E FATTORI DI CONFIDENZA
8.5.5.	AZIONI
8.6.	MATERIALI
8.7.	PROGETTAZIONE DEGLI INTERVENTI IN PRESENZA DI AZIONI SISMICHE
8.7.1.	COSTRUZIONI IN MURATURA
8.7.2.	COSTRUZIONI IN CALCESTRUZZO ARMATO O IN ACCIAIO
8.7.3.	COSTRUZIONI MISTE
8.7.4.	CRITERI E TIPI D'INTERVENTO
075	ELABODATI DEL DOCCETTO DELL'INITEDVENTO

CAPITOLO 9 - COLLAUDO STATICO

- 9.1. PRESCRIZIONI GENERALI
- 9.2 **PROVE DI CARICO**
- STRUTTURE PREFABBRICATE
 PONTI STRADALI
- 9.2.1 9.2.2 9.2.3 **PONTI FERROVIARI**

CAPITOLO 10 - REDAZIONE DEI PROGETTI STRUTTURALI ESECUTIVI E DELLE RELAZIONI DI CALCOLO

10.1. CARATTERISTICHE GENERALI

10.2. ANALISI E VERIFICHE SVOLTE CON L'AUSILIO DI CODICI DI CALCOLO

10.2.1. RELAZIONE DI CALCOLO

Tipo di analisi svolta Origine e Caratteristiche dei Codici di Calcolo Modalità di presentazione dei risultati. Informazioni generali sull'elaborazione. Giudizio motivato di accettabilità dei risultati.

10.2.2. VALUTAZIONE INDIPENDENTE DEL CALCOLO

CAPITOLO 11 - MATERIALI E PRODOTTI AD USO STRUTTURALE

11.1.	GENERALITÀ
11.2. 11.2.1. 11.2.2. 11.2.3.	CALCESTRUZZO SPECIFICHE PER IL CALCESTRUZZO CONTROLLI DI QUALITÀ DEL CALCESTRUZZO VALUTAZIONE PRELIMINARE
11.2.4.	PRELIEVO E PROVA DEI CAMPIONI
11.2.5.	CONTROLLO DI ACCETTAZIONE
11.2.5.1	CONTROLLO DI TIPO A
11.2.5.2	CONTROLLO DI TIPO B
11.2.5.3	PRESCRIZIONI COMUNI PER ENTRAMBI I CRITERI DI CONTROLLO
11.2.6.	CONTROLLO DELLA RESISTENZA DEL CALCESTRUZZO IN OPERA PROVE COMPLEMENTARI
11.2.7. 11.2.8.	PRESCRIZIONI RELATIVE AL CALCESTRUZZO CONFEZIONATO CON PROCESSO INDUSTRIALIZZATO
11.2.9.	COMPONENTI DEL CALCESTRUZZO
11.2.9.1	LEGANTI
11.2.9.2	AGGREGATI
11.2.9.3	AGGIUNTE
11.2.9.4	ADDITIVI
11.2.9.5	ACQUA DI IMPASTO
11.2.9.6	MISCELE PRECONFEZIONATE DI COMPONENTI PER CALCESTRUZZO
11.2.10.	CARATTERISTICHE DEL CALCESTRUZZO
11.2.10.1	RESISTENZA A COMPRESSIONE
11.2.10.2	RESISTENZA A TRAZIONE
11.2.10.3	MODULO ELASTICO
11.2.10.4	COEFFICIENTE DI POISSON
11.2.10.5	COEFFICIENTE DI DILATAZIONE TERMICA
11.2.10.6	RITIRO
11.2.10.7	VISCOSITÀ
11.2.11.	DURABILITÀ
11.2.12.	CALCESTRUZZO FIBRORINFORZATO (FRC)
11.3.	ACCIAIO
11.3.1.	PRESCRIZIONI COMUNI A TUTTE LE TIPOLOGIE DI ACCIAIO
11.3.1.1	CONTROLLI
11.3.1.2	CONTROLLI DI PRODUZIONE IN STABILIMENTO E PROCEDURE DI QUALIFICAZIONE
11.3.1.3	MANTENIMENTO E RINNOVO DELLA QUALIFICAZIONE
11.3.1.4	IDENTIFICAZIONE E RINTRACCIABILITÀ DEI PRODOTTI QUALIFICATI
11.3.1.5	FORNITURE E DOCUMENTAZIONE DI ACCOMPAGNAMENTO
11.3.1.6	Prove di qualificazione e verifiche periodiche della qualità
11.3.1.7	CENTRI DI TRASFORMAZIONE
11.3.2.	ACCIAIO PER CEMENTO ARMATO
11.3.2.1	ACCIAIO PER CEMENTO ARMATO B450C
11.3.2.2	ACCIAIO PER CEMENTO ARMATO B450A
11.3.2.3	ACCERTAMENTO DELLE PROPRIETÀ MECCANICHE
11.3.2.4	CARATTERISTICHE DIMENSIONALI E DI IMPIEGO
11.3.2.5	RETI E TRALICCI ELETTROSALDATI
11.3.2.5.1	Identificazione delle reti e dei tralicci elettrosaldati
11.3.2.6	SALDABILITÀ
11.3.2.7	TOLLERANZE DIMENSIONALI
11.3.2.8	ALTRI TIPI DI ACCIAI
11.3.2.8.1	Acciai inossidabili
11.3.2.8.2	Acciai zincati
11.3.2.9	GIUNZIONI MECCANICHE
11.3.2.10	PROCEDURE DI CONTROLLO PER ACCIAI DA CEMENTO ARMATO NORMALE – BARRE E ROTOLI
11.3.2.10.1	Controlli sistematici in stabilimento
	Gonoralità

11.3.2.10.1.2 Prove di qualificazione

11.3.2.10.1.3	Procedura di valutazione
11.3.2.10.1.4	Prove periodiche di verifica della qualità
11.3.2.10.2	Controlli su singole colate o lotti di produzione
11.3.2.10.3	Controlli nei centri di trasformazione
11.3.2.10.4	Prove di aderenza
11.3.2.11	PROCEDURE DI CONTROLLO PER ACCIAI DA CEMENTO ARMATO ORDINARIO – RETI E TRALICCI ELETTROSALDATI
11.3.2.11.1	Controlli sistematici in stabilimento
	Prove di qualificazione
	Prove di verifica della qualità
	Controlli su singoli lotti di produzione
11.3.2.11.2	•
11.3.2.12 11.3.3.	CONTROLLI DI ACCETTAZIONE IN CANTIERE ACCIAIO PER CALCESTRUZZO ARMATO PRECOMPRESSO
11.3.3.1	CARATTERISTICHE DIMENSIONALI E DI IMPIEGO
11.3.3.2	CARATTERISTICHE DEI PRODOTTI
11.3.3.3	CADUTE DI TENSIONE PER RILASSAMENTO
11.3.3.4	CENTRI DI TRASFORMAZIONE PROGRESIANO DEI CONTROLLO DEI CO
11.3.3.5	PROCEDURE DI CONTROLLO PER ACCIAI DA CEMENTO ARMATO PRECOMPRESSO
11.3.3.5.1	Prescrizioni comuni – Modalità di prelievo
11.3.3.5.2	Controlli sistematici in stabilimento
11.3.3.5.2.1	Prove di qualificazione
11.3.3.5.2.2	Prove di verifica della qualità
11.3.3.5.2.3	Determinazione delle proprietà e tolleranze
11.3.3.5.2.4	Controlli su singoli lotti di produzione
11.3.3.5.3	Controlli nei centri di trasformazione
11.3.3.5.4	Controlli di accettazione in cantiere
11.3.3.5.5	Prodotti inguainati o inguainati e cerati.
11.3.3.5.6	Prodotti zincati.
11.3.3.5.7	Certificati di prova rilasciati dal laboratorio di cui all'art. 59 del DPR 380/2001.
11.3.4.	ACCIAIO PER STRUTTURE METALLICHE E PER STRUTTURE COMPOSTE
11.3.4.1	GENERALITÀ
11.3.4.2	ACCIAI LAMINATI
11.3.4.2 11.3.4.2.1	ACCIAI LAMINATI Controlli sui prodotti laminati
11.3.4.2.1	Controlli sui prodotti laminati
11.3.4.2.1 11.3.4.2.2	Controlli sui prodotti laminati Fornitura dei prodotti laminati
11.3.4.2.1 11.3.4.2.2 11.3.4.3	Controlli sui prodotti laminati Fornitura dei prodotti laminati ACCIAIO PER GETTI
11.3.4.2.1 11.3.4.2.2 11.3.4.3 11.3.4.4	Controlli sui prodotti laminati Fornitura dei prodotti laminati ACCIAIO PER GETTI ACCIAIO PER STRUTTURE SALDATE
11.3.4.2.1 11.3.4.2.2 11.3.4.3 11.3.4.4 11.3.4.5	Controlli sui prodotti laminati Fornitura dei prodotti laminati ACCIAIO PER GETTI ACCIAIO PER STRUTTURE SALDATE PROCESSO DI SALDATURA BULLONI E CHIODI
11.3.4.2.1 11.3.4.2.2 11.3.4.3 11.3.4.4 11.3.4.5 11.3.4.6	Controlli sui prodotti laminati Fornitura dei prodotti laminati ACCIAIO PER GETTI ACCIAIO PER STRUTTURE SALDATE PROCESSO DI SALDATURA BULLONI E CHIODI Bulloni "non a serraggio controllato"
11.3.4.2.1 11.3.4.2.2 11.3.4.3 11.3.4.4 11.3.4.5 11.3.4.6 11.3.4.6.1	Controlli sui prodotti laminati Fornitura dei prodotti laminati ACCIAIO PER GETTI ACCIAIO PER STRUTTURE SALDATE PROCESSO DI SALDATURA BULLONI E CHIODI Bulloni "non a serraggio controllato" Bulloni "a serraggio controllato"
11.3.4.2.1 11.3.4.2.2 11.3.4.3 11.3.4.4 11.3.4.5 11.3.4.6 11.3.4.6.1 11.3.4.6.2	Controlli sui prodotti laminati Fornitura dei prodotti laminati ACCIAIO PER GETTI ACCIAIO PER STRUTTURE SALDATE PROCESSO DI SALDATURA BULLONI E CHIODI Bulloni "non a serraggio controllato"
11.3.4.2.1 11.3.4.2.2 11.3.4.3 11.3.4.4 11.3.4.5 11.3.4.6 11.3.4.6.1 11.3.4.6.2 11.3.4.6.3 11.3.4.6.3	Controlli sui prodotti laminati Fornitura dei prodotti laminati ACCIAIO PER GETTI ACCIAIO PER STRUTTURE SALDATE PROCESSO DI SALDATURA BULLONI E CHIODI Bulloni "non a serraggio controllato" Bulloni "a serraggio controllato" Elementi di collegamento in acciaio inossidabile Chiodi
11.3.4.2.1 11.3.4.2.2 11.3.4.3 11.3.4.4 11.3.4.5 11.3.4.6 11.3.4.6.1 11.3.4.6.2 11.3.4.6.3 11.3.4.6.3	Controlli sui prodotti laminati Fornitura dei prodotti laminati ACCIAIO PER GETTI ACCIAIO PER STRUTTURE SALDATE PROCESSO DI SALDATURA BULLONI E CHIODI Bulloni "non a serraggio controllato" Bulloni "a serraggio controllato" Elementi di collegamento in acciaio inossidabile Chiodi CONNETTORI A PIOLO
11.3.4.2.1 11.3.4.2.2 11.3.4.3 11.3.4.4 11.3.4.5 11.3.4.6 11.3.4.6.1 11.3.4.6.2 11.3.4.6.3 11.3.4.6.3 11.3.4.6.4 11.3.4.7 11.3.4.8	Controlli sui prodotti laminati Fornitura dei prodotti laminati ACCIAIO PER GETTI ACCIAIO PER STRUTTURE SALDATE PROCESSO DI SALDATURA BULLONI E CHIODI Bulloni "non a serraggio controllato" Bulloni "a serraggio controllato" Elementi di collegamento in acciaio inossidabile Chiodi CONNETTORI A PIOLO ACCIAI INOSSIDABILI
11.3.4.2.1 11.3.4.2.2 11.3.4.3 11.3.4.4 11.3.4.5 11.3.4.6 11.3.4.6.1 11.3.4.6.2 11.3.4.6.3 11.3.4.6.4 11.3.4.7 11.3.4.8 11.3.4.9	Controlli sui prodotti laminati Fornitura dei prodotti laminati ACCIAIO PER GETTI ACCIAIO PER STRUTTURE SALDATE PROCESSO DI SALDATURA BULLONI E CHIODI Bulloni "non a serraggio controllato" Bulloni "a serraggio controllato" Elementi di collegamento in acciaio inossidabile Chiodi CONNETTORI A PIOLO ACCIAI INOSSIDABILI ACCIAI DA CARPENTERIA PER STRUTTURE SOGGETTE AD AZIONI SISMICHE
11.3.4.2.1 11.3.4.2.2 11.3.4.3 11.3.4.4 11.3.4.5 11.3.4.6 11.3.4.6.1 11.3.4.6.2 11.3.4.6.3 11.3.4.6.4 11.3.4.7 11.3.4.8 11.3.4.9 11.3.4.10	Controlli sui prodotti laminati Fornitura dei prodotti laminati ACCIAIO PER GETTI ACCIAIO PER STRUTTURE SALDATE PROCESSO DI SALDATURA BULLONI E CHIODI Bulloni "non a serraggio controllato" Bulloni "a serraggio controllato" Elementi di collegamento in acciaio inossidabile Chiodi CONNETTORI A PIOLO ACCIAI INOSSIDABILI ACCIAI DA CARPENTERIA PER STRUTTURE SOGGETTE AD AZIONI SISMICHE CENTRI DI TRASFORMAZIONE E CENTRI DI PRODUZIONE DI ELEMENTI SERIALI IN ACCIAIO
11.3.4.2.1 11.3.4.2.2 11.3.4.3 11.3.4.4 11.3.4.5 11.3.4.6 11.3.4.6.1 11.3.4.6.2 11.3.4.6.3 11.3.4.6.4 11.3.4.7 11.3.4.8 11.3.4.9 11.3.4.10 11.3.4.11	Controlli sui prodotti laminati Fornitura dei prodotti laminati ACCIAIO PER GETTI ACCIAIO PER STRUTTURE SALDATE PROCESSO DI SALDATURA BULLONI E CHIODI Bulloni "non a serraggio controllato" Bulloni "a serraggio controllato" Elementi di collegamento in acciaio inossidabile Chiodi CONNETTORI A PIOLO ACCIAI INOSSIDABILI ACCIAI DA CARPENTERIA PER STRUTTURE SOGGETTE AD AZIONI SISMICHE CENTRI DI TRASFORMAZIONE E CENTRI DI PRODUZIONE DI ELEMENTI SERIALI IN ACCIAIO PROCEDURE DI CONTROLLO SU ACCIAI DA CARPENTERIA
11.3.4.2.1 11.3.4.2.2 11.3.4.3 11.3.4.4 11.3.4.5 11.3.4.6 11.3.4.6.1 11.3.4.6.2 11.3.4.6.3 11.3.4.6.3 11.3.4.6.4 11.3.4.7 11.3.4.8 11.3.4.9 11.3.4.10 11.3.4.11 11.3.4.11,1	Controlli sui prodotti laminati Fornitura dei prodotti laminati ACCIAIO PER GETTI ACCIAIO PER STRUTTURE SALDATE PROCESSO DI SALDATURA BULLONI E CHIODI Bulloni "non a serraggio controllato" Bulloni "a serraggio controllato" Elementi di collegamento in acciaio inossidabile Chiodi CONNETTORI A PIOLO ACCIAI INOSSIDABILI ACCIAI DA CARPENTERIA PER STRUTTURE SOGGETTE AD AZIONI SISMICHE CENTRI DI TRASFORMAZIONE E CENTRI DI PRODUZIONE DI ELEMENTI SERIALI IN ACCIAIO PROCEDURE DI CONTROLLO SU ACCIAI DA CARPENTERIA Controlli in stabilimento di produzione
11.3.4.2.1 11.3.4.2.2 11.3.4.3 11.3.4.4 11.3.4.5 11.3.4.6 11.3.4.6.1 11.3.4.6.2 11.3.4.6.3 11.3.4.6.3 11.3.4.6.4 11.3.4.7 11.3.4.8 11.3.4.9 11.3.4.10 11.3.4.11 11.3.4.11.1	Controlli sui prodotti laminati Fornitura dei prodotti laminati ACCIAIO PER GETTI ACCIAIO PER STRUTTURE SALDATE PROCESSO DI SALDATURA BULLONI E CHIODI Bulloni "non a serraggio controllato" Bulloni "a serraggio controllato" Elementi di collegamento in acciaio inossidabile Chiodi CONNETTORI A PIOLO ACCIAI INOSSIDABILI ACCIAI DA CARPENTERIA PER STRUTTURE SOGGETTE AD AZIONI SISMICHE CENTRI DI TRASFORMAZIONE E CENTRI DI PRODUZIONE DI ELEMENTI SERIALI IN ACCIAIO PROCEDURE DI CONTROLLO SU ACCIAI DA CARPENTERIA Controlli in stabilimento di produzione Suddivisione dei prodotti
11.3.4.2.1 11.3.4.2.2 11.3.4.3 11.3.4.4 11.3.4.5 11.3.4.6 11.3.4.6.1 11.3.4.6.2 11.3.4.6.3 11.3.4.6.3 11.3.4.6.4 11.3.4.7 11.3.4.8 11.3.4.9 11.3.4.10 11.3.4.11 11.3.4.11.1 11.3.4.11.1	Controlli sui prodotti laminati Fornitura dei prodotti laminati ACCIAIO PER GETTI ACCIAIO PER STRUTTURE SALDATE PROCESSO DI SALDATURA BULLONI E CHIODI Bulloni "non a serraggio controllato" Bulloni "a serraggio controllato" Elementi di collegamento in acciaio inossidabile Chiodi CONNETTORI A PIOLO ACCIAI INOSSIDABILI ACCIAI DA CARPENTERIA PER STRUTTURE SOGGETTE AD AZIONI SISMICHE CENTRI DI TRASFORMAZIONE E CENTRI DI PRODUZIONE DI ELEMENTI SERIALI IN ACCIAIO PROCEDURE DI CONTROLLO SU ACCIAI DA CARPENTERIA Controlli in stabilimento di produzione Suddivisione dei prodotti Prove di qualificazione
11.3.4.2.1 11.3.4.2.2 11.3.4.3 11.3.4.4 11.3.4.5 11.3.4.6 11.3.4.6.1 11.3.4.6.2 11.3.4.6.3 11.3.4.6.3 11.3.4.6.4 11.3.4.7 11.3.4.8 11.3.4.9 11.3.4.10 11.3.4.11 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1	Controlli sui prodotti laminati Fornitura dei prodotti laminati ACCIAIO PER GETTI ACCIAIO PER STRUTTURE SALDATE PROCESSO DI SALDATURA BULLONI E CHIODI Bulloni "non a serraggio controllato" Bulloni "a serraggio controllato" Elementi di collegamento in acciaio inossidabile Chiodi CONNETTORI A PIOLO ACCIAI INOSSIDABILI ACCIAI DA CARPENTERIA PER STRUTTURE SOGGETTE AD AZIONI SISMICHE CENTRI DI TRASFORMAZIONE E CENTRI DI PRODUZIONE DI ELEMENTI SERIALI IN ACCIAIO PROCEDURE DI CONTROLLO SU ACCIAI DA CARPENTERIA Controlli in stabilimento di produzione Suddivisione dei prodotti Prove di qualificazione Controllo continuo della qualità della produzione
11.3.4.2.1 11.3.4.2.2 11.3.4.3 11.3.4.4 11.3.4.5 11.3.4.6 11.3.4.6.1 11.3.4.6.2 11.3.4.6.3 11.3.4.6.3 11.3.4.6.4 11.3.4.7 11.3.4.8 11.3.4.9 11.3.4.10 11.3.4.11 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1	Controlli sui prodotti laminati Fornitura dei prodotti laminati ACCIAIO PER GETTI ACCIAIO PER STRUTTURE SALDATE PROCESSO DI SALDATURA BULLONI E CHIODI Bulloni "non a serraggio controllato" Bulloni "a serraggio controllato" Elementi di collegamento in acciaio inossidabile Chiodi CONNETTORI A PIOLO ACCIAI INOSSIDABILI ACCIAI DA CARPENTERIA PER STRUTTURE SOGGETTE AD AZIONI SISMICHE CENTRI DI TRASFORMAZIONE E CENTRI DI PRODUZIONE DI ELEMENTI SERIALI IN ACCIAIO PROCEDURE DI CONTROLLO SU ACCIAI DA CARPENTERIA Controlli in stabilimento di produzione Suddivisione dei prodotti Prove di qualificazione Controllo continuo della qualità della produzione Verifica periodica della qualità
11.3.4.2.1 11.3.4.2.2 11.3.4.3 11.3.4.4 11.3.4.5 11.3.4.6 11.3.4.6.1 11.3.4.6.2 11.3.4.6.3 11.3.4.6.3 11.3.4.6.4 11.3.4.7 11.3.4.8 11.3.4.9 11.3.4.10 11.3.4.11 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1.1 11.3.4.11.1.1	Controlli sui prodotti laminati Fornitura dei prodotti laminati ACCIAIO PER GETTI ACCIAIO PER STRUTTURE SALDATE PROCESSO DI SALDATURA BULLONI E CHIODI Bulloni "non a serraggio controllato" Bulloni "a serraggio controllato" Elementi di collegamento in acciaio inossidabile Chiodi CONNETTORI A PIOLO ACCIAI INOSSIDABILI ACCIAI DA CARPENTERIA PER STRUTTURE SOGGETTE AD AZIONI SISMICHE CENTRI DI TRASFORMAZIONE E CENTRI DI PRODUZIONE DI ELEMENTI SERIALI IN ACCIAIO PROCEDURE DI CONTROLLO SU ACCIAI DA CARPENTERIA Controlli in stabilimento di produzione Suddivisione dei prodotti Prove di qualificazione Controllo continuo della qualità della produzione Verifica periodica della qualità Controlli su singole colate
11.3.4.2.1 11.3.4.2.2 11.3.4.3 11.3.4.4 11.3.4.5 11.3.4.6 11.3.4.6.1 11.3.4.6.2 11.3.4.6.3 11.3.4.6.3 11.3.4.6.4 11.3.4.7 11.3.4.8 11.3.4.9 11.3.4.10 11.3.4.11 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1.2 11.3.4.11.1.3 11.3.4.11.1.3 11.3.4.11.1.3	Controlli sui prodotti laminati Fornitura dei prodotti laminati ACCIAIO PER GETTI ACCIAIO PER STRUTTURE SALDATE PROCESSO DI SALDATURA BULLONI E CHIODI Bulloni "non a serraggio controllato" Bulloni "a serraggio controllato" Bulloni "a serraggio controllato" Elementi di collegamento in acciaio inossidabile Chiodi CONNETTORI A PIOLO ACCIAI INOSSIDABILI ACCIAI DA CARPENTERIA PER STRUTTURE SOGGETTE AD AZIONI SISMICHE CENTRI DI TRASFORMAZIONE E CENTRI DI PRODUZIONE DI ELEMENTI SERIALI IN ACCIAIO PROCEDURE DI CONTROLLO SU ACCIAI DA CARPENTERIA Controlli in stabilimento di produzione Suddivisione dei prodotti Prove di qualificazione Controllo continuo della qualità della produzione Verifica periodica della qualità Controlli su singole colate Controlli nei centri di trasformazione e nei centri di produzione di elementi tipologici in acciaio
11.3.4.2.1 11.3.4.2.2 11.3.4.3 11.3.4.4 11.3.4.5 11.3.4.6 11.3.4.6.1 11.3.4.6.2 11.3.4.6.3 11.3.4.6.3 11.3.4.6.4 11.3.4.7 11.3.4.8 11.3.4.9 11.3.4.10 11.3.4.11 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1.2 11.3.4.11.1.3 11.3.4.11.1.5 11.3.4.11.1.5 11.3.4.11.2 11.3.4.11.2	Controlli sui prodotti laminati Fornitura dei prodotti laminati ACCIAIO PER GETTI ACCIAIO PER STRUTTURE SALDATE PROCESSO DI SALDATURA BULLONI E CHIODI Bulloni "non a serraggio controllato" Bulloni "a serraggio controllato" Elementi di collegamento in acciaio inossidabile Chiodi CONNETTORI A PIOLO ACCIAI INOSSIDABILI ACCIAI DA CARPENTERIA PER STRUTTURE SOGGETTE AD AZIONI SISMICHE CENTRI DI TRASFORMAZIONE E CENTRI DI PRODUZIONE DI ELEMENTI SERIALI IN ACCIAIO PROCEDURE DI CONTROLLO SU ACCIAI DA CARPENTERIA Controlli in stabilimento di produzione Suddivisione dei prodotti Prove di qualificazione Controllo continuo della qualità della produzione Verifica periodica della qualità Controlli su singole colate Controlli nei centri di trasformazione e nei centri di produzione di elementi tipologici in acciaio Centri di produzione di lamiere grecate e profilati formati a freddo
11.3.4.2.1 11.3.4.2.2 11.3.4.3 11.3.4.4 11.3.4.5 11.3.4.6 11.3.4.6.1 11.3.4.6.2 11.3.4.6.3 11.3.4.6.3 11.3.4.6.4 11.3.4.7 11.3.4.8 11.3.4.9 11.3.4.10 11.3.4.11 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1.2 11.3.4.11.1.3 11.3.4.11.1.5 11.3.4.11.2 11.3.4.11.2 11.3.4.11.2	Controlli sui prodotti laminati Fornitura dei prodotti laminati ACCIAIO PER GETTI ACCIAIO PER STRUTTURE SALDATE PROCESSO DI SALDATURA BULLONI E CHIODI Bulloni "non a serraggio controllato" Bulloni "a serraggio controllato" Elementi di collegamento in acciaio inossidabile Chiodi CONNETTORI A PIOLO ACCIAI INOSSIDABILI ACCIAI DA CARPENTERIA PER STRUTTURE SOGGETTE AD AZIONI SISMICHE CENTRI DI TRASFORMAZIONE E CENTRI DI PRODUZIONE DI ELEMENTI SERIALI IN ACCIAIO PROCEDURE DI CONTROLLO SU ACCIAI DA CARPENTERIA Controlli in stabilimento di produzione Suddivisione dei prodotti Prove di qualificazione Controllo continuo della qualità della produzione Verifica periodica della qualità Controlli is singole colate Controlli in ei centri di trasformazione e nei centri di produzione di elementi tipologici in acciaio Centri di produzione di lamiere grecate e profilati formati a freddo Centri di produzione di componenti strutturali
11.3.4.2.1 11.3.4.2.2 11.3.4.3 11.3.4.4 11.3.4.5 11.3.4.6 11.3.4.6.1 11.3.4.6.2 11.3.4.6.3 11.3.4.6.3 11.3.4.6.4 11.3.4.7 11.3.4.8 11.3.4.9 11.3.4.10 11.3.4.11 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.2 11.3.4.11.2 11.3.4.11.2 11.3.4.11.2	Controlli sui prodotti laminati Fornitura dei prodotti laminati ACCIAIO PER GETTI ACCIAIO PER STRUTTURE SALDATE PROCESSO DI SALDATURA BULLONI E CHIDDI Bulloni "non a serraggio controllato" Bulloni "a serraggio controllato" Bulloni "a serraggio controllato" Elementi di collegamento in acciaio inossidabile Chiodi CONNETTORI A PIOLO ACCIAI INOSSIDABILI ACCIAI DA CARPENTERIA PER STRUTTURE SOGGETTE AD AZIONI SISMICHE CENTRI DI TRASFORMAZIONE E CENTRI DI PRODUZIONE DI ELEMENTI SERIALI IN ACCIAIO PROCEDURE DI CONTROLLO SU ACCIAI DA CARPENTERIA Controlli in stabilimento di produzione Suddivisione dei prodotti Prove di qualificazione Controllo continuo della qualità della produzione Verifica periodica della qualità Controlli su singole colate Controlli in ei centri di trasformazione e nei centri di produzione di elementi tipologici in acciaio Centri di produzione di lamiere grecate e profilati formati a freddo Centri di produzione di componenti strutturali Officine per la produzione di carpenterie metalliche
11.3.4.2.1 11.3.4.2.2 11.3.4.3 11.3.4.4 11.3.4.5 11.3.4.6 11.3.4.6.1 11.3.4.6.2 11.3.4.6.3 11.3.4.6.3 11.3.4.6.4 11.3.4.7 11.3.4.8 11.3.4.9 11.3.4.10 11.3.4.11 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1.2 11.3.4.11.1.3 11.3.4.11.1.2 11.3.4.11.2 11.3.4.11.2 11.3.4.11.2 11.3.4.11.2 11.3.4.11.2 11.3.4.11.2 11.3.4.11.2	Controlli sui prodotti laminati Fornitura dei prodotti laminati ACCIAIO PER GETTI ACCIAIO PER STRUTTURE SALDATE PROCESSO DI SALDATURA BULLONI E CHIODI Bulloni "non a serraggio controllato" Bulloni "a serraggio controllato" Elementi di collegamento in acciaio inossidabile Chiodi CONNETTORI A PIOLO ACCIAI INOSSIDABILI ACCIAI DA CARPENTERIA PER STRUTTURE SOGGETTE AD AZIONI SISMICHE CENTRI DI TRASFORMAZIONE E CENTRI DI PRODUZIONE DI ELEMENTI SERIALI IN ACCIAIO PROCEDURE DI CONTROLLO SU ACCIAI DA CARPENTERIA Controlli in stabilimento di produzione Suddivisione dei prodotti Prove di qualificazione Controllo continuo della qualità della produzione Verifica periodica della qualità Controlli in ei centri di trasformazione e nei centri di produzione di elementi tipologici in acciaio Centri di produzione di lamiere grecate e profilati formati a freddo Centri di produzione di componenti strutturali Officine per la produzione di carpenterie metalliche Officine per la produzione di bulloni e chiodi
11.3.4.2.1 11.3.4.2.2 11.3.4.3 11.3.4.4 11.3.4.5 11.3.4.6 11.3.4.6.1 11.3.4.6.2 11.3.4.6.3 11.3.4.6.3 11.3.4.6.4 11.3.4.7 11.3.4.8 11.3.4.9 11.3.4.10 11.3.4.11 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.1 11.3.4.11.2 11.3.4.11.2 11.3.4.11.2 11.3.4.11.2	Controlli sui prodotti laminati Fornitura dei prodotti laminati ACCIAIO PER GETTI ACCIAIO PER STRUTTURE SALDATE PROCESSO DI SALDATURA BULLONI E CHIDDI Bulloni "non a serraggio controllato" Bulloni "a serraggio controllato" Bulloni "a serraggio controllato" Elementi di collegamento in acciaio inossidabile Chiodi CONNETTORI A PIOLO ACCIAI INOSSIDABILI ACCIAI DA CARPENTERIA PER STRUTTURE SOGGETTE AD AZIONI SISMICHE CENTRI DI TRASFORMAZIONE E CENTRI DI PRODUZIONE DI ELEMENTI SERIALI IN ACCIAIO PROCEDURE DI CONTROLLO SU ACCIAI DA CARPENTERIA Controlli in stabilimento di produzione Suddivisione dei prodotti Prove di qualificazione Controllo continuo della qualità della produzione Verifica periodica della qualità Controlli su singole colate Controlli in ei centri di trasformazione e nei centri di produzione di elementi tipologici in acciaio Centri di produzione di lamiere grecate e profilati formati a freddo Centri di produzione di componenti strutturali Officine per la produzione di carpenterie metalliche

ANCORANTI PER USO STRUTTURALE E GIUNTI DI DILATAZIONE ANCORANTI PER USO STRUTTURALE GIUNTI DI DILATAZIONE STRADALE 11.4.

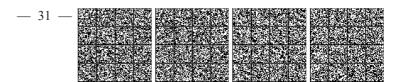
11.4.1. 11.4.2.

11.5. 11.5.1. 11.5.2.	SISTEMI DI PRECOMPRESSIONE A CAVI POST-TESI E TIRANTI DI ANCORAGGIO SISTEMI DI PRECOMPRESSIONE A CAVI POST TESI TIRANTI DI ANCORAGGIO PER USO GEOTECNICO
11.6.	APPOGGI STRUTTURALI
11.7. 11.7.1	MATERIALI E PRODOTTI A BASE DI LEGNO Generalità
11.7.1.1	PROPRIETÀ DEI MATERIALI
11.7.2	LEGNO MASSICCIO
11.7.3	LEGNO STRUTTURALE CON GIUNTI A DITA
11.7.4.	LEGNO LAMELLARE INCOLLATO E LEGNO MASSICCIO INCOLLATO
11.7.5	PANNELLI A BASE DI LEGNO ALTRI PRODOTTI DERIVATI DAL LEGNO PER USO STRUTTURALE
11.7.6 11.7.7	ADESIVI
11.7.7.1	ADESIVI PER ELEMENTI INCOLLATI IN STABILIMENTO
11.7.7.2	ADESIVI PER GIUNTI REALIZZATI IN CANTIERE
11.7.8	ELEMENTI MECCANICI DI COLLEGAMENTO
11.7.9	DURABILITÀ DEL LEGNO E DERIVATI
11.7.9.1	GENERALITÀ
11.7.9.2	REQUISITI DI DURABILITÀ NATURALE DEI MATERIALI A BASE DI LEGNO
11.7.10 11.7.10.1	PROCEDURE DI IDENTIFICAZIONE, QUALIFICAZIONE E ACCETTAZIONE DISPOSIZIONI GENERALI
11.7.10.1	Identificazione e rintracciabilità dei prodotti qualificati
11.7.10.1.1	Forniture, documentazione di accompagnamento, controlli di accettazione in cantiere
11.7.10.2	Controllo di accettazione in cantiere
11.8.	COMPONENTI PREFABBRICATI IN C.A. E C.A.P.
11.8.1. 11.8.2.	GENERALITÀ REQUISITI MINIMI DEGLI STABILIMENTI E DEGLI IMPIANTI DI PRODUZIONE
11.8.3.	CONTROLLO DI PRODUZIONE
11.8.3.1	CONTROLLO SUI MATERIALI PER ELEMENTI DI SERIE
11.8.3.2	CONTROLLO DI PRODUZIONE IN SERIE CONTROLLATA
11.8.3.3	PROVE INIZIALI DI TIPO PER ELEMENTI IN SERIE CONTROLLATA
11.8.3.4	MARCHIATURA
11.8.4.	PROCEDURE DI QUALIFICAZIONE
11.8.4.1	QUALIFICAZIONE DELLO STABILIMENTO
11.8.4.2	QUALIFICAZIONE DELLA PRODUZIONE IN SERIE DICHIARATA
11.8.4.3	QUALIFICAZIONE DELLA PRODUZIONE IN SERIE CONTROLLATA
11.8.4.4	SOSPENSIONI E REVOCHE
11.8.5. 11.8.6.	DOCUMENTI DI ACCOMPAGNAMENTO DISPOSITIVI MECCANICI DI COLLEGAMENTO
44.0	DIODOGITIVA ANTIGIONAGO E DI CONTROLLO DELLE MADRAZIONA
11.9. 11.9.1.	DISPOSITIVI ANTISISMICI E DI CONTROLLO DELLE VIBRAZIONI TIPOLOGIE DI DISPOSITIVI
11.9.1.	PROCEDURA DI QUALIFICAZIONE
11.9.3.	PROCEDURA DI ACCETTAZIONE
11.9.4.	DISPOSITIVI A COMPORTAMENTO LINEARE
11.9.4.1	PROVE DI ACCETTAZIONE SUI DISPOSITIVI
11.9.5.	DISPOSITIVI A COMPORTAMENTO NON LINEARE
11.9.5.1	Prove di accettazione sui dispositivi DISPOSITIVI A COMPORTAMENTO VISCOSO
11.9.6. 11.9.6.1	PROVE DI ACCETTAZIONE SUI DISPOSITIVI
11.9.0.1 11.9.7.	ISOLATORI ELASTOMERICI
11.9.7.1	Prove di accettazione sui dispositivi
11.9.8.	ISOLATORI A SCORRIMENTO
11.9.8.1	PROVE DI ACCETTAZIONE SUI DISPOSITIVI
11.9.9.	DISPOSITIVI A VINCOLO RIGIDO DEL TIPO A "FUSIBILE"
11.9.9.1	Prove di accettazione sui dispositivi
11.9.10. 11.9.10.1	DISPOSITIVI (DINAMICI) DI VINCOLO PROVVISORIO PROVE DI ACCETTAZIONE SUI DISPOSITIVI
11.7.10.1	I ROVE DI ACCELIAZIONE SUI DISPOSITIVI
11.10.	MURATURA PORTANTE
11.10.1.	ELEMENTI PER MURATURA
11.10.1.1	PROVE DI ACCETTAZIONE

Resistenza a compressione degli elementi resistenti artificiali o naturali

11.10.2.	MALTE PER MURATURA
11.10.2.1	MALTE A PRESTAZIONE GARANTITA
11.10.2.2	MALTE A COMPOSIZIONE PRESCRITTA
11.10.2.3	MALTE PRODOTTE IN CANTIERE
11.10.2.4	PROVE DI ACCETTAZIONE
11.10.3.	DETERMINAZIONE DEI PARAMETRI MECCANICI DELLA MURATURA
11.10.3.1	RESISTENZA A COMPRESSIONE
11.10.3.1.1	Determinazione sperimentale della resistenza a compressione
11.10.3.1.2	Stima della resistenza a compressione
11.10.3.2	RESISTENZA CARATTERISTICA A TAGLIO IN ASSENZA DI TENSIONI NORMALI
11.10.3.2.1	Determinazione sperimentale della resistenza a taglio
11.10.3.2.2	Stima della resistenza a taglio
11.10.3.3	RESISTENZA CARATTERISTICA A TAGLIO
11.10.3.4	MODULI DI ELASTICITÀ SECANTI

CAPITOLO 12 - RIFERIMENTI TECNICI



CAPITOLO 1.

OGGETTO

PREMESSA

Le presenti Norme tecniche per le costruzioni sono emesse ai sensi delle leggi 5 novembre 1971, n. 1086, e 2 febbraio 1974, n. 64, così come riunite nel Testo Unico per l'Edilizia di cui al DPR 6 giugno 2001, n. 380, e dell'art. 5 del DL 28 maggio 2004, n. 136, convertito in legge, con modificazioni, dall'art. 1 della legge 27 luglio 2004, n. 186 e ss. mm. ii..

1.1 OGGETTO

Le presenti Norme tecniche per le costruzioni definiscono i principi per il progetto, l'esecuzione e il collaudo delle costruzioni, nei riguardi delle prestazioni loro richieste in termini di requisiti essenziali di resistenza meccanica e stabilità, anche in caso di

Esse forniscono quindi i criteri generali di sicurezza, precisano le azioni che devono essere utilizzate nel progetto, definiscono le caratteristiche dei materiali e dei prodotti e, più in generale, trattano gli aspetti attinenti alla sicurezza strutturale delle opere.

Circa le indicazioni applicative per l'ottenimento delle prescritte prestazioni, per quanto non espressamente specificato nel presente documento, ci si può riferire a normative di comprovata validità e ad altri documenti tecnici elencati nel Cap. 12. In particolare quelle fornite dagli Eurocodici con le relative Appendici Nazionali costituiscono indicazioni di comprovata validità e forniscono il sistematico supporto applicativo delle presenti norme.

CAPITOLO 2.

SICUREZZA E PRESTAZIONI ATTESE

2.1. PRINCIPI FONDAMENTALI

Le opere e le componenti strutturali devono essere progettate, eseguite, collaudate e soggette a manutenzione in modo tale da consentirne la prevista utilizzazione, in forma economicamente sostenibile e con il livello di sicurezza previsto dalle presenti norme

La sicurezza e le prestazioni di un'opera o di una parte di essa devono essere valutate in relazione agli stati limite che si possono verificare durante la vita nominale di progetto, di cui al § 2.4. Si definisce stato limite una condizione superata la quale l'opera non soddisfa più le esigenze elencate nelle presenti norme.

In particolare, secondo quanto stabilito nei capitoli specifici, le opere e le varie tipologie strutturali devono possedere i seguenti requisiti:

- sicurezza nei confronti di stati limite ultimi (SLU): capacità di evitare crolli, perdite di equilibrio e dissesti gravi, totali o parziali, che possano compromettere l'incolumità delle persone oppure comportare la perdita di beni, oppure provocare gravi danni ambientali e sociali, oppure mettere fuori servizio l'opera;
- sicurezza nei confronti di stati limite di esercizio (SLE): capacità di garantire le prestazioni previste per le condizioni di esercizio;
- sicurezza antincendio: capacità di garantire le prestazioni strutturali previste in caso d'incendio, per un periodo richiesto;
- durabilità: capacità della costruzione di mantenere, nell'arco della vita nominale di progetto, i livelli prestazionali per i quali è stata progettata, tenuto conto delle caratteristiche ambientali in cui si trova e del livello previsto di manutenzione;
- robustezza: capacità di evitare danni sproporzionati rispetto all'entità di possibili cause innescanti eccezionali quali esplosioni e urti.

Il superamento di uno stato limite ultimo ha carattere irreversibile

Il superamento di uno stato limite di esercizio può avere carattere reversibile o irreversibile.

Per le opere esistenti è possibile fare riferimento a livelli di sicurezza diversi da quelli delle nuove opere ed è anche possibile considerare solo gli stati limite ultimi. Maggiori dettagli sono dati al Capitolo 8.

I materiali ed i prodotti, per poter essere utilizzati nelle opere previste dalle presenti norme, devono essere sottoposti a procedure e prove sperimentali di accettazione. Le prove e le procedure di accettazione sono definite nelle parti specifiche delle presenti norme riguardanti i materiali.

La fornitura di componenti, sistemi o prodotti, impiegati per fini strutturali, deve essere accompagnata da un manuale di installazione e di manutenzione da allegare alla documentazione dell'opera. I componenti, i sistemi e i prodotti edili od impiantistici, non facenti parte del complesso strutturale, ma che svolgono funzione statica autonoma, devono essere progettati ed installati nel rispetto dei livelli di sicurezza e delle prestazioni di seguito prescritti.

Le azioni da prendere in conto devono essere assunte in accordo con quanto stabilito nei relativi capitoli delle presenti norme. In mancanza di specifiche indicazioni, si dovrà fare ricorso ad opportune indagini, eventualmente anche sperimentali, o a documenti, normativi e non, di comprovata validità.

2.2. REQUISITI DELLE OPERE STRUTTURALI

2.2.1. STATI LIMITE ULTIMI (SLU)

I principali Stati Limite Ultimi sono elencati nel seguito:

- a) perdita di equilibrio della struttura o di una sua parte, considerati come corpi rigidi;
- b) spostamenti o deformazioni eccessive;
- c) raggiungimento della massima capacità di parti di strutture, collegamenti, fondazioni;
- d) raggiungimento della massima capacità della struttura nel suo insieme;
- e) raggiungimento di una condizione di cinematismo irreversibile;
- f) raggiungimento di meccanismi di collasso nei terreni;
- g) rottura di membrature e collegamenti per fatica;
- h) rottura di membrature e collegamenti per altri effetti dipendenti dal tempo;
- i) instabilità di parti della struttura o del suo insieme;

Altri stati limite ultimi sono considerati in relazione alle specificità delle singole opere; in presenza di azioni sismiche, gli Stati Limite Ultimi comprendono gli Stati Limite di salvaguardia della Vita (SLV) e gli Stati Limite di prevenzione del Collasso (SLC), come precisato nel § 3.2.1.

2.2.2. STATI LIMITE DI ESERCIZIO (SLE)

I principali Stati Limite di Esercizio sono elencati nel seguito:

 a) danneggiamenti locali (ad es. eccessiva fessurazione del calcestruzzo) che possano ridurre la durabilità della struttura, la sua efficienza o il suo aspetto;

- b) spostamenti e deformazioni che possano limitare l'uso della costruzione, la sua efficienza e il suo aspetto;
- c) spostamenti e deformazioni che possano compromettere l'efficienza e l'aspetto di elementi non strutturali, impianti, macchinari;
- d) vibrazioni che possano compromettere l'uso della costruzione;
- e) danni per fatica che possano compromettere la durabilità;
- f) corrosione e/o degrado dei materiali in funzione del tempo e dell'ambiente di esposizione che possano compromettere la durabilità.

Altri stati limite sono considerati in relazione alle specificità delle singole opere; in presenza di azioni sismiche, gli Stati Limite di Esercizio comprendono gli Stati Limite di Operatività (SLO) e gli Stati Limite di Danno (SLD), come precisato nel § 3.2.1.

2.2.3. SICUREZZA ANTINCENDIO

Quando necessario, i rischi derivanti dagli incendi devono essere limitati progettando e realizzando le costruzioni in modo tale da garantire la resistenza e la stabilità degli elementi portanti, nonché da limitare la propagazione del fuoco e dei fumi.

2.2.4. DURABILITA'

Un adeguato livello di durabilità può essere garantito progettando la costruzione, e la specifica manutenzione, in modo tale che il degrado della struttura, che si dovesse verificare durante la sua vita nominale di progetto, non riduca le prestazioni della costruzione al di sotto del livello previsto.

Tale requisito può essere soddisfatto attraverso l'adozione di appropriati provvedimenti stabiliti tenendo conto delle previste condizioni ambientali e di manutenzione ed in base alle peculiarità del singolo progetto, tra cui:

- a) scelta opportuna dei materiali;
- b) dimensionamento opportuno delle strutture;
- c) scelta opportuna dei dettagli costruttivi;
- d) adozione di tipologie costruttive e strutturali che consentano, ove possibile, l'ispezionabilità delle parti strutturali;
- e) pianificazione di misure di protezione e manutenzione; oppure, quando queste non siano previste o possibili, progettazione rivolta a garantire che il deterioramento della costruzione o dei materiali che la compongono non ne causi il collasso;
- f) impiego di prodotti e componenti chiaramente identificati in termini di caratteristiche meccanico-fisico-chimiche, indispensabili alla valutazione della sicurezza, e dotati di idonea qualificazione, così come specificato al Capitolo 11;
- g) applicazione di sostanze o ricoprimenti protettivi dei materiali, soprattutto nei punti non più visibili o difficilmente ispezionabili ad opera completata;
- h) adozione di sistemi di controllo, passivi o attivi, adatti alle azioni e ai fenomeni ai quali l'opera può essere sottoposta.

Le condizioni ambientali devono essere identificate in fase di progetto in modo da valutarne la rilevanza nei confronti della durabilità.

2.2.5. ROBUSTEZZA

Un adeguato livello di robustezza, in relazione all'uso previsto della costruzione ed alle conseguenze di un suo eventuale collasso, può essere garantito facendo ricorso ad una o più tra le seguenti strategie di progettazione:

- a) progettazione della struttura in grado di resistere ad azioni eccezionali di carattere convenzionale, combinando valori nominali delle azioni eccezionali alle altre azioni esplicite di progetto;
- b) prevenzione degli effetti indotti dalle azioni eccezionali alle quali la struttura può essere soggetta o riduzione della loro intensità;
- c) adozione di una forma e tipologia strutturale poco sensibile alle azioni eccezionali considerate;
- d) adozione di una forma e tipologia strutturale tale da tollerare il danneggiamento localizzato causato da un'azione di carattere eccezionale:
- e) realizzazione di strutture quanto più ridondanti, resistenti e/o duttili è possibile;
- f) adozione di sistemi di controllo, passivi o attivi, adatti alle azioni e ai fenomeni ai quali l'opera può essere sottoposta.

2.2.6. VERIFICHE

Le opere strutturali devono essere verificate, salvo diversa indicazione riportata nelle specifiche parti delle presenti norme:

- a) per gli stati limite ultimi che possono presentarsi;
- b) per gli stati limite di esercizio definiti in relazione alle prestazioni attese;
- c) quando necessario, nei confronti degli effetti derivanti dalle azioni termiche connesse con lo sviluppo di un incendio.

Le verifiche delle opere strutturali devono essere contenute nei documenti di progetto, con riferimento alle prescritte caratteristiche meccaniche dei materiali e alla caratterizzazione geotecnica del terreno, dedotta – ove specificato dalle presenti norme - in base a specifiche indagini. Laddove necessario, la struttura deve essere verificata nelle fasi intermedie, tenuto conto del processo costruttivo previsto; le verifiche per queste situazioni transitorie sono generalmente condotte nei confronti dei soli stati limite ultimi.

Per le opere per le quali nel corso dei lavori si manifestino situazioni significativamente difformi da quelle di progetto occorre effettuare le relative necessarie verifiche.

2.3. VALUTAZIONE DELLA SICUREZZA

Nel seguito sono riportati i criteri del metodo semiprobabilistico agli stati limite basato sull'impiego dei coefficienti parziali, applicabili nella generalità dei casi; tale metodo è detto di primo livello. Per opere di particolare importanza si possono adottare metodi di livello superiore, tratti da documentazione tecnica di comprovata validità di cui al Capitolo 12.

Nel metodo agli stati limite, la sicurezza strutturale nei confronti degli stati limite ultimi deve essere verificata confrontando la capacità di progetto R_d , in termini di resistenza, duttilità e/o spostamento della struttura o della membratura strutturale, funzione delle caratteristiche meccaniche dei materiali che la compongono (X_d) e dei valori nominali delle grandezze geometriche interessate (a_d), con il corrispondente valore di progetto della domanda E_d , funzione dei valori di progetto delle azioni (F_d) e dei valori nominali delle grandezze geometriche della struttura interessate.

La verifica della sicurezza nei riguardi degli stati limite ultimi (SLU) è espressa dall'equazione formale:

$$R_d \ge E_d$$
 [2.2.1

Il valore di progetto della resistenza di un dato materiale X_d è, a sua volta, funzione del valore caratteristico della resistenza, definito come frattile 5 % della distribuzione statistica della grandezza, attraverso l'espressione: $X_d = X_k/\gamma_M$, essendo γ_M il fattore parziale associato alla resistenza del materiale.

Il valore di progetto di ciascuna delle azioni agenti sulla struttura F_d è ottenuto dal suo valore caratteristico F_k , inteso come frattile 95% della distribuzione statistica o come valore caratterizzato da un assegnato periodo di ritorno, attraverso l'espressione: $F_d = \gamma_F F_k$ essendo γ_F il fattore parziale relativo alle azioni. Nel caso di concomitanza di più azioni variabili di origine diversa si definisce un valore di combinazione $\psi_0 \in F_k$, ove $\psi_0 \le 1$ è un opportuno coefficiente di combinazione, che tiene conto della ridotta probabilità che più azioni di diversa origine si realizzino simultaneamente con il loro valore caratteristico.

Per grandezze caratterizzate da distribuzioni con coefficienti di variazione minori di 0,10, oppure per grandezze che non riguardino univocamente resistenze o azioni, si possono considerare i valori nominali, coincidenti con i valori medi.

I valori caratteristici dei parametri fisico-meccanici dei materiali sono definiti nel Capitolo 11. Per la sicurezza delle opere e dei sistemi geotecnici, i valori caratteristici dei parametri fisico-meccanici dei terreni sono definiti nel § 6.2.2.

La capacità di garantire le prestazioni previste per le condizioni di esercizio (SLE) deve essere verificata confrontando il valore limite di progetto associato a ciascun aspetto di funzionalità esaminato (C_d), con il corrispondente valore di progetto dell'effetto delle azioni (E_d), attraverso la seguente espressione formale:

$$C_d \ge E_d$$
 [2.2.2]

2.4. VITA NOMINALE DI PROGETTO, CLASSI D'USO E PERIODO DI RIFERIMENTO

2.4.1. VITA NOMINALE DI PROGETTO

La vita nominale di progetto V_N di un'opera è convenzionalmente definita come il numero di anni nel quale è previsto che l'opera, purché soggetta alla necessaria manutenzione, mantenga specifici livelli prestazionali.

I valori minimi di V_N da adottare per i diversi tipi di costruzione sono riportati nella Tab. 2.4.I. Tali valori possono essere anche impiegati per definire le azioni dipendenti dal tempo.

 $\textbf{Tab. 2.4.I} - \textit{Valori minimi della Vita nominale } V_N \textit{ di progetto per i diversi tipi di costruzioni}$

	TIPI DI COSTRUZIONI					
1	Costruzioni temporanee e provvisorie	10				
2	Costruzioni con livelli di prestazioni ordinari	50				
3	Costruzioni con livelli di prestazioni elevati	100				

Non sono da considerarsi temporanee le costruzioni o parti di esse che possono essere smantellate con l'intento di essere riutilizzate. Per un'opera di nuova realizzazione la cui fase di costruzione sia prevista in sede di progetto di durata pari a P_N , la vita nominale relativa a tale fase di costruzione, ai fini della valutazione delle azioni sismiche, dovrà essere assunta non inferiore a P_N e comunque non inferiore a 5 anni.

Le verifiche sismiche di opere di tipo 1 o in fase di costruzione possono omettersi quando il progetto preveda che tale condizione permanga per meno di 2 anni.

2.4.2. CLASSI D'USO

Con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi d'uso così definite:

- Classe I: Costruzioni con presenza solo occasionale di persone, edifici agricoli.
- Classe II: Costruzioni il cui uso preveda normali affollamenti, senza contenuti pericolosi per l'ambiente e senza funzioni pubbliche e sociali essenziali. Industrie con attività non pericolose per l'ambiente. Ponti, opere infrastrutturali, reti viarie non ricadenti in Classe d'uso III o in Classe d'uso IV, reti ferroviarie la cui interruzione non provochi situazioni di emergenza. Dighe il cui collasso non provochi conseguenze rilevanti.
- Classe III: Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.
- Classe IV: Costruzioni con funzioni pubbliche o strategiche importanti, anche con riferimento alla gestione della protezione civile in caso di calamità. Industrie con attività particolarmente pericolose per l'ambiente. Reti viarie di tipo A o B, di cui al DM 5/11/2001, n. 6792, "Norme funzionali e geometriche per la costruzione delle strade", e di tipo C quando appartenenti ad itinerari di collegamento tra capoluoghi di provincia non altresì serviti da strade di tipo A o B. Ponti e reti ferroviarie di importanza critica per il mantenimento delle vie di comunicazione, particolarmente dopo un evento sismico. Dighe connesse al funzionamento di acquedotti e a impianti di produzione di energia elettrica.

2.4.3. PERIODO DI RIFERIMENTO PER L'AZIONE SISMICA

Le azioni sismiche sulle costruzioni vengono valutate in relazione ad un periodo di riferimento V_R che si ricava, per ciascun tipo di costruzione, moltiplicandone la vita nominale di progetto V_N per il coefficiente d'uso C_{II} :

$$V_R = V_N \cdot C_U \tag{2.4.1}$$

Il valore del coefficiente d'uso C_U è definito, al variare della classe d'uso, come mostrato in Tab. 2.4.II.

Tab. 2.4.II – Valori del coefficiente d'uso C₁₁

CT A CCT POTICO			***	IV
CLASSE D'USO	1	11	111	IV
COEFFICIENTE C _U	0,7	1,0	1,5	2,0

Per le costruzioni a servizio di attività a rischio di incidente rilevante si adotteranno valori di C_U anche superiori a 2, in relazione alle conseguenze sull'ambiente e sulla pubblica incolumità determinate dal raggiungimento degli stati limite.

2.5. AZIONI SULLE COSTRUZIONI

2.5.1. CLASSIFICAZIONE DELLE AZIONI

Si definisce azione ogni causa o insieme di cause capace di indurre stati limite in una struttura.

2.5.1.1 CLASSIFICAZIONE DELLE AZIONI IN BASE AL MODO DI ESPLICARSI

a) dirette:

forze concentrate, carichi distribuiti, fissi o mobili;

b) indirette:

spostamenti impressi, variazioni di temperatura e di umidità, ritiro, precompressione, cedimenti di vincoli, ecc.


- c) degrado:
 - endogeno: alterazione naturale del materiale di cui è composta l'opera strutturale;
 - esogeno: alterazione delle caratteristiche dei materiali costituenti l'opera strutturale, a seguito di agenti esterni.

2.5.1.2 CLASSIFICAZIONE DELLE AZIONI SECONDO LA RISPOSTA STRUTTURALE

- a) statiche: azioni applicate alla struttura che non provocano accelerazioni significative della stessa o di alcune sue parti;
- b) pseudo statiche: azioni dinamiche rappresentabili mediante un'azione statica equivalente;
- c) dinamiche: azioni che causano significative accelerazioni della struttura o dei suoi componenti.

2.5.1.3 CLASSIFICAZIONE DELLE AZIONI SECONDO LA VARIAZIONE DELLA LORO INTENSITÀ NEL TEMPO

a) permanenti (G): azioni che agiscono durante tutta la vita nominale di progetto della costruzione, la cui variazione di intensità nel tempo è molto lenta e di modesta entità:

- peso proprio di tutti gli elementi strutturali; peso proprio del terreno, quando pertinente; forze indotte dal terreno (esclusi gli effetti di carichi variabili applicati al terreno); forze risultanti dalla pressione dell'acqua (quando si configurino costanti nel tempo) (G₁);
- peso proprio di tutti gli elementi non strutturali (G₂);
- spostamenti e deformazioni impressi, incluso il ritiro;
- presollecitazione (P).
- b) variabili (Q): azioni che agiscono con valori istantanei che possono risultare sensibilmente diversi fra loro nel corso della vita nominale della struttura:
 - sovraccarichi:
 - azioni del vento;
 - azioni della neve
 - azioni della temperatura.

Le azioni variabili sono dette di lunga durata se agiscono con un'intensità significativa, anche non continuativamente, per un tempo non trascurabile rispetto alla vita nominale della struttura. Sono dette di breve durata se agiscono per un periodo di tempo breve rispetto alla vita nominale della struttura. A seconda del sito ove sorge la costruzione, una medesima azione climatica può essere di lunga o di breve durata.

- c) eccezionali (A): azioni che si verificano solo eccezionalmente nel corso della vita nominale della struttura;
 - incendi:
 - esplosioni;
 - urti ed impatti;
- d) sismiche (E): azioni derivanti dai terremoti.

Quando rilevante, nella valutazione dell'effetto delle azioni è necessario tenere conto del comportamento dipendente dal tempo dei materiali, come per la viscosità.

2.5.2. CARATTERIZZAZIONE DELLE AZIONI ELEMENTARI

Il valore di progetto di ciascuna delle azioni agenti sulla struttura F_d è ottenuto dal suo valore caratteristico F_k , come indicato nel \$2.3.

In accordo con le definizioni del $\S 2.3$, il valore caratteristico G_k di azioni permanenti caratterizzate da distribuzioni con coefficienti di variazione minori di 0.10 si può assumere coincidente con il valore medio.

Nel caso di azioni variabili caratterizzate da distribuzioni dei valori estremi dipendenti dal tempo, si assume come valore caratteristico quello caratterizzato da un assegnato periodo di ritorno. Per le azioni ambientali (neve, vento, temperatura) il periodo di ritorno è posto uguale a 50 anni, corrispondente ad una probabilità di eccedenza del 2% su base annua; per le azioni da traffico sui ponti stradali il periodo di ritorno è convenzionalmente assunto pari a 1000 anni. Nella definizione delle combinazioni delle azioni, i termini Q_{kj} rappresentano le azioni variabili di diversa natura che possono agire contemporaneamente: Q_{k1} rappresenta l'azione variabile di base e Q_{k2}, Q_{k3}, ... le azioni variabili d'accompagnamento, che possono agire contemporaneamente a quella di base.

Con riferimento alla durata relativa ai livelli di intensità di un'azione variabile, si definiscono:

- valore quasi permanente ψ_{2j} ·Q_{kj}: il valore istantaneo superato oltre il 50% del tempo nel periodo di riferimento. Indicativamente, esso può assumersi uguale alla media della distribuzione temporale dell'intensità;
- valore frequente ψ_{1j} ' Q_{kj} ' il valore superato per un periodo totale di tempo che rappresenti una piccola frazione del periodo di riferimento. Indicativamente, esso può assumersi uguale al frattile 95% della distribuzione temporale dell'intensità;
- valore di combinazione ψ_{0j} · Q_{kj} : il valore tale che la probabilità di superamento degli effetti causati dalla concomitanza con altre azioni sia circa la stessa di quella associata al valore caratteristico di una singola azione.

Nel caso in cui la caratterizzazione probabilistica dell'azione considerata non sia disponibile, ad essa può essere attribuito il valore nominale. Nel seguito sono indicati con pedice k i valori caratteristici; senza pedice k i valori nominali.

La Tab. 2.5.I riporta i coefficienti di combinazione da adottarsi per gli edifici civili e industriali di tipo corrente.

Tab. 2.5.I – Valori dei coefficienti di combinazione

Categoria/Azione variabile	ψ_{0j}	ψ_{1j}	ψ_{2j}
Categoria A - Ambienti ad uso residenziale	0,7	0,5	0,3
Categoria B - Uffici	0,7	0,5	0,3
Categoria C - Ambienti suscettibili di affollamento	0,7	0,7	0,6
Categoria D - Ambienti ad uso commerciale	0,7	0,7	0,6
Categoria E – Aree per immagazzinamento, uso commerciale e uso industriale Biblioteche, archivi, magazzini e ambienti ad uso industriale	1,0	0,9	0,8
Categoria F - Rimesse , parcheggi ed aree per il traffico di veicoli (per autoveicoli di peso $\leq 30~\rm kN)$	0,7	0,7	0,6

Categoria G – Rimesse, parcheggi ed aree per il traffico di veicoli (per autoveicoli di peso > 30 kN)	0,7	0,5	0,3
Categoria H - Coperture accessibili per sola manutenzione	0,0	0,0	0,0
Categoria I – Coperture praticabili	da valutarsi caso per		
Categoria K – Coperture per usi speciali (impianti, eliporti,)	caso		
Vento	0,6	0,2	0,0
Neve (a quota ≤ 1000 m s.l.m.)	0,5	0,2	0,0
Neve (a quota > 1000 m s.l.m.)	0,7	0,5	0,2
Variazioni termiche	0,6	0,5	0,0

2.5.3. COMBINAZIONI DELLE AZIONI

Ai fini delle verifiche degli stati limite, si definiscono le seguenti combinazioni delle azioni.

- Combinazione fondamentale, generalmente impiegata per gli stati limite ultimi (SLU):

$$\gamma_{G1} \cdot G_1 + \gamma_{G2} \cdot G_2 + \gamma_P \cdot P + \gamma_{Q1} \cdot Q_{k1} + \gamma_{Q2} \cdot \psi_{02} \cdot Q_{k2} + \gamma_{Q3} \cdot \psi_{03} \cdot Q_{k3} + \dots$$
 [2.5.1]

- Combinazione caratteristica, cosiddetta rara, generalmente impiegata per gli stati limite di esercizio (SLE) irreversibili:

$$G_1 + G_2 + P + Q_{k1} + \psi_{02} \cdot Q_{k2} + \psi_{03} \cdot Q_{k3} + \dots$$
 [2.5.2]

- Combinazione frequente, generalmente impiegata per gli stati limite di esercizio (SLE) reversibili:

$$G_1 + G_2 + P + \psi_{11} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 [2.5]

- Combinazione quasi permanente (SLE), generalmente impiegata per gli effetti a lungo termine:

$$G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \psi_{23} \cdot Q_{k3} + \dots$$
 [2.5.4]

- Combinazione sismica, impiegata per gli stati limite ultimi e di esercizio connessi all'azione sismica E: $E + G_1 + G_2 + P + \psi_{21} \cdot O_{k1} + \psi_{22} \cdot O_{k2} + \dots$ [2.5.5]

$$E + G_1 + G_2 + P + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 [2.5.5]

 $- \ Combinazione \ eccezionale, impiegata \ per \ gli \ stati \ limite \ ultimi \ connessi \ alle \ azioni \ eccezionali \ A:$

$$G_1 + G_2 + P + A_d + \psi_{21} \cdot Q_{k1} + \psi_{22} \cdot Q_{k2} + \dots$$
 [2.5.6]

Gli effetti dell'azione sismica saranno valutati tenendo conto delle masse associate ai seguenti carichi gravitazionali:

$$G_1 + G_2 + \sum_{i} \psi_{2i} Q_{kj}$$
. [2.5.7]

Nelle combinazioni si intende che vengano omessi i carichi Q_{kj} che danno un contributo favorevole ai fini delle verifiche e, se del caso, i carichi G_2 .

Altre combinazioni sono da considerare in funzione di specifici aspetti (p. es. fatica, ecc.).

Nelle formule sopra riportate il simbolo "+" vuol dire "combinato con".

I valori dei coefficienti $\psi_{0j'}$ ψ_{1j} e ψ_{2j} sono dati nella Tab. 2.5.I oppure nella Tab. 5.1.VI per i ponti stradali e nella Tab. 5.2.VII per i ponti ferroviari. I valori dei coefficienti parziali di sicurezza γ_{Gi} e γ_{Qj} sono dati nel § 2.6.1.

2.6. AZIONI NELLE VERIFICHE AGLI STATI LIMITE

Le verifiche agli stati limite devono essere eseguite per tutte le più gravose condizioni di carico che possono agire sulla struttura, valutando gli effetti delle combinazioni definite nel § 2.5.3.

2.6.1. STATI LIMITE ULTIMI

Nelle verifiche agli stati limite ultimi si distinguono:

- lo stato limite di equilibrio come corpo rigido:

– lo stato limite di resistenza della struttura compresi gli elementi di fondazione:

- lo stato limite di resistenza del terreno:

Fatte salve tutte le prescrizioni fornite nei capitoli successivi delle presenti norme, la Tab. 2.6.I riporta i valori dei coefficienti parziali γ_F da assumersi per la determinazione degli effetti delle azioni nelle verifiche agli stati limite ultimi.

Per le verifiche nei confronti dello stato limite ultimo di equilibrio come corpo rigido (EQU) si utilizzano i coefficienti γ_F riportati nella colonna EQU della Tabella 2.6.I.

Per la progettazione di componenti strutturali che non coinvolgano azioni di tipo geotecnico, le verifiche nei confronti degli stati limite ultimi strutturali (STR) si eseguono adottando i coefficienti γ_F riportati nella colonna A1 della Tabella 2.6.I.

Per la progettazione di elementi strutturali che coinvolgano azioni di tipo geotecnico (plinti, platee, pali, muri di sostegno, ...) le verifiche nei confronti degli stati limite ultimi strutturali (STR) e geotecnici (GEO) si eseguono adottando due possibili approcci progettuali, fra loro alternativi.

Nell'*Approccio* 1, le verifiche si conducono con due diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (γ_F), per la resistenza dei materiali (γ_M) e, eventualmente, per la resistenza globale del sistema (γ_R). Nella *Combinazione* 1 dell'*Approccio* 1, per le azioni si impiegano i coefficienti γ_F riportati nella colonna A1 della Tabella 2.6.I. Nella *Combinazione* 2 dell'*Approccio* 1, si impiegano invece i coefficienti γ_F riportati nella colonna A2. In tutti i casi, sia nei confronti del dimensionamento strutturale, sia per quello geotecnico, si deve utilizzare la combinazione più gravosa fra le due precedenti.

Nell'*Approccio* 2 si impiega un'unica combinazione dei gruppi di coefficienti parziali definiti per le Azioni (γ_F), per la resistenza dei materiali (γ_M) e, eventualmente, per la resistenza globale (γ_R). In tale approccio, per le azioni si impiegano i coefficienti γ_F riportati nella colonna A1.

I coefficienti $\gamma_M e \gamma_R$ sono definiti nei capitoli successivi.

Tab. 2.6.I – Coefficienti parziali per le azioni o per l'effetto delle azioni nelle verifiche SLU

		Coefficiente	EQU	A1	A2
		$\gamma_{\scriptscriptstyle F}$			
Control in a sum on the C	Favorevoli	.,	0,9	1,0	1,0
Carichi permanenti G1	Sfavorevoli	γ_{G1}	1,1	1,3	1,0
Control in a superior of the control in the control	Favorevoli	2/	0,8	0,8	0,8
Carichi permanenti non strutturali G ₂ ⁽¹⁾	Sfavorevoli	γ_{G2}	1,5	1,5	1,3
A 131.0	Favorevoli	γ_{Qi}	0,0	0,0	0,0
Azioni variabili Q	Sfavorevoli		1,5	1,5	1,3

⁽i) Nel caso in cui l'intensità dei carichi permanenti non strutturali o di una parte di essi (ad es. carichi permanenti portati) sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti parziali validi per le azioni permanenti.

Nella Tab. 2.6.I il significato dei simboli è il seguente:

 γ_{G1} coefficiente parziale dei carichi permanenti G_1 ;

 $\gamma_{G2} \quad coefficiente \ parziale \ dei \ carichi \ permanenti \ non \ strutturali \ G2;$

 γ_{Oi} coefficiente parziale delle azioni variabili Q.

Nel caso in cui l'azione sia costituita dalla spinta del terreno, per la scelta dei coefficienti parziali di sicurezza valgono le indicazioni riportate nel Capitolo 6.

Il coefficiente parziale della precompressione si assume pari a γ_P = 1,0.

Altri valori di coefficienti parziali sono riportati nei capitoli successivi con riferimento a particolari azioni specifiche.

2.6.2. STATI LIMITE DI ESERCIZIO

Le verifiche agli stati limite di esercizio riguardano le voci riportate al § 2.2.2.

Nel Capitolo 4, per le condizioni non sismiche, e nel Capitolo 7, per le condizioni sismiche, sono date specifiche indicazioni sulle verifiche in questione, con riferimento ai diversi materiali strutturali.

CAPITOLO 3.

AZIONI SULLE COSTRUZIONI

3.1. OPERE CIVILI E INDUSTRIALI

3.1.1. GENERALITÀ

Nel presente paragrafo vengono definiti i carichi, nominali e/o caratteristici, relativi a costruzioni per uso civile o industriale. La descrizione e la definizione dei carichi devono essere espressamente indicate negli elaborati progettuali.

I carichi sono in genere da considerare come applicati staticamente, salvo casi particolari in cui gli effetti dinamici devono essere debitamente valutati. Oltre che nella situazione definitiva d'uso, si devono considerare le azioni agenti in tutte le fasi esecutive della costruzione.

3.1.2. PESI PROPRI DEI MATERIALI STRUTTURALI

Le azioni permanenti gravitazionali associate ai pesi propri dei materiali strutturali sono derivate dalle dimensioni geometriche e dai pesi dell'unità di volume dei materiali con cui sono realizzate le parti strutturali della costruzione. Per i materiali più comuni possono essere assunti i valori dei pesi dell'unità di volume riportati nella Tab. 3.1.I.

Tab. 3.1.I - Pesi dell'unità di volume dei principali materiali

MATERIALI	PESO UNITÀ DI VOLUME [kN/m³]					
Calcestruzzi cementizi e malte						
Calcestruzzo ordinario	24,0					
Calcestruzzo armato (e/o precompresso)	25,0					
Calcestruzzi "leggeri": da determinarsi caso per caso	14,0 ÷ 20,0					
Calcestruzzi "pesanti": da determinarsi caso per caso	28,0 ÷ 50,0					
Malta di calce	18,0					
Malta di cemento	21,0					
Calce in polvere	10,0					
Cemento in polvere	14,0					
Sabbia	17,0					
Metalli e leghe						
Acciaio	78,5					
Ghisa	72,5					
Alluminio	27,0					
Materiale lapideo						
Tufo vulcanico	17,0					
Calcare compatto	26,0					
Calcare tenero	22,0					
Gesso	13,0					
Granito	27,0					
Laterizio (pieno)	18,0					
Legnami						
Conifere e pioppo	4,0 ÷ 6,0					
Latifoglie (escluso pioppo)	6,0 ÷ 8,0					
Sostanze varie						
Acqua dolce (chiara)	9,81					
Acqua di mare (chiara)	10,1					
Carta	10,0					
Vetro	25,0					

Per materiali strutturali non compresi nella Tab. 3.1.I si potrà far riferimento a specifiche indagini sperimentali o a normative o documenti di comprovata validità, trattando i valori nominali come valori caratteristici.

3.1.3. CARICHI PERMANENTI NON STRUTTURALI

Sono considerati carichi permanenti non strutturali i carichi presenti sulla costruzione durante il suo normale esercizio, quali quelli relativi a tamponature esterne, divisori interni, massetti, isolamenti, pavimenti e rivestimenti del piano di calpestio, intonaci, controsoffitti, impianti ed altro, ancorché in qualche caso sia necessario considerare situazioni transitorie in cui essi non siano presenti.

Le azioni permanenti gravitazionali associate ai pesi propri dei materiali non strutturali sono derivate dalle dimensioni geometriche e dai pesi dell'unità di volume dei materiali con cui sono realizzate le parti non strutturali della costruzione. I pesi dell'unità di volume dei materiali non strutturali possono essere ricavati dalla Tab. 3.1.I, oppure da specifiche indagini sperimentali o da normative o da documenti di comprovata validità, trattando i valori nominali come valori caratteristici.

In linea di massima, in presenza di orizzontamenti anche con orditura unidirezionale ma con capacità di ripartizione trasversale, i carichi permanenti non strutturali potranno assumersi, per le verifiche d'insieme, come uniformemente ripartiti. In caso contrario, occorre valutarne le effettive distribuzioni.

I tramezzi e gli impianti leggeri degli edifici per abitazioni e per uffici potranno assumersi, in genere, come carichi equivalenti distribuiti, purché i solai abbiano adeguata capacità di ripartizione trasversale.

Per gli orizzontamenti degli edifici per abitazioni e per uffici, il peso proprio di elementi divisori interni potrà essere ragguagliato ad un carico permanente uniformemente distribuito g_2 , purché vengano adottate le misure costruttive atte ad assicurare una adeguata ripartizione del carico. Il carico uniformemente distribuito g_2 potrà essere correlato al peso proprio per unità di lunghezza G_2 delle partizioni nel modo seguente:

Gli elementi divisori interni con peso proprio maggiore di 5,00~kN/m devono essere considerati in fase di progettazione, tenendo conto del loro effettivo posizionamento sul solaio.

3.1.4. SOVRACCARICHI

I sovraccarichi, o carichi imposti, comprendono i carichi legati alla destinazione d'uso dell'opera; i modelli di tali azioni possono essere costituiti da:

- carichi verticali uniformemente distribuiti q_k - carichi verticali concentrati Q_k - carichi orizzontali lineari H_{ν}

I valori nominali e/o caratteristici di $q_{k'}$ Q_k ed H_k sono riportati nella Tab. 3.1.II. Tali valori sono comprensivi degli effetti dinamici ordinari, purché non vi sia rischio di rilevanti amplificazioni dinamiche della risposta delle strutture.

Tab. 3.1.II - Valori dei sovraccarichi per le diverse categorie d'uso delle costruzioni

Cat.	Ambienti	q _k [kN/m²]	Q _k [kN]	H _k [kN/m]
	Ambienti ad uso residenziale			
A	Aree per attività domestiche e residenziali; sono compresi in questa categoria i locali di abitazione e relativi servizi, gli alberghi (ad esclusione delle aree soggette ad affollamento), camere di degenza di ospedali	2,00	2,00	1,00
	Scale comuni, balconi, ballatoi	4,00	4,00	2,00
	Uffici			
В	Cat. B1 Uffici non aperti al pubblico	2,00	2,00	1,00
Б	Cat. B2 Uffici aperti al pubblico	3,00	2,00	1,00
	Scale comuni, balconi e ballatoi	4,00	4,00	2,00
	Ambienti suscettibili di affollamento			
	Cat. C1 Aree con tavoli, quali scuole, caffè, ristoranti, sale per banchetti, lettura e ricevimento	3,00	3,00	1,00
	Cat. C2 Aree con posti a sedere fissi, quali chiese, teatri, cinema, sale per conferenze e attesa, aule universitarie e aule magne	4,00	4,00	2,00
С	Cat. C3 Ambienti privi di ostacoli al movimento delle persone, quali musei, sale per esposizioni, aree d'accesso a uffici, ad alberghi e ospedali, ad atri di stazioni ferroviarie	5,00	5,00	3,00
	Cat. C4. Aree con possibile svolgimento di attività fisiche, quali sale da ballo, palestre, palcoscenici.	5,00	5,00	3,00
	Cat. C5. Aree suscettibili di grandi affollamenti, quali edifici per eventi pubblici, sale da concerto, palazzetti per lo sport e relative tribune, gradinate e piattaforme ferroviarie.	5,00	5,00	3,00
			tegoria d'uso se	rvita, con le
	Scale comuni, balconi e ballatoi	se	guenti limitazio	mi

Cat.	Ambienti	q _k [kN/m²]	Q _k [kN]	H _k [kN/m]			
	Ambienti ad uso commerciale						
	Cat. D1 Negozi	4,00	4,00	2,00			
D	Cat. D2 Centri commerciali, mercati, grandi magaz- zini	5,00	5,00	2,00			
	Scale comuni, balconi e ballatoi	Secondo	o categoria d'uso	servita			
	Aree per immagazzinamento e uso commerciale ed uso industriale						
E	Cat. E1 Aree per accumulo di merci e relative aree d'accesso, quali biblioteche, archivi, magazzini, depositi, laboratori manifatturieri	≥ 6,00	7,00	1,00*			
	Cat. E2 Ambienti ad uso industriale	da valutarsi caso per caso					
	Rimesse e aree per traffico di veicoli (esclusi i ponti)						
F-G	Cat. F Rimesse, aree per traffico, parcheggio e sosta di veicoli leggeri (peso a pieno carico fino a 30 kN)	2,50	2 x 10,00	1,00**			
r-G	Cat. G Aree per traffico e parcheggio di veicoli me- di (peso a pieno carico compreso fra 30 kN e 160	da valutarsi caso per caso e comunque					
	kN), quali rampe d'accesso, zone di carico e scarico merci.	5,00	non minori di 2 x 50,00	1,00**			
	Coperture						
	Cat. H Coperture accessibili per sola manutenzione e riparazione	0,50	1,20	1,00			
H-I-K	Cat. I Coperture praticabili di ambienti di categoria d'uso compresa fra A e D	secondo categorie di appartenenza					
	Cat. K Coperture per usi speciali, quali impianti, eliporti.	da valutarsi caso per caso					

^{*} non comprende le azioni orizzontali eventualmente esercitate dai materiali immagazzinati

I valori riportati nella Tab. 3.1.II sono riferiti a condizioni di uso corrente delle rispettive categorie. Altri regolamenti potranno imporre valori superiori, in relazione ad esigenze specifiche.

In presenza di carichi atipici (quali macchinari, serbatoi, depositi interni, impianti, ecc.) le intensità devono essere valutate caso per caso, in funzione dei massimi prevedibili: tali valori dovranno essere indicati esplicitamente nelle documentazioni di progetto e di collaudo statico.

3.1.4.1 SOVRACCARICHI VERTICALI UNIFORMEMENTE DISTRIBUITI

Analogamente ai carichi permanenti non strutturali definiti al § 3.1.3 ed in linea di massima, in presenza di orizzontamenti anche con orditura unidirezionale ma con capacità di ripartizione trasversale, i sovraccarichi potranno assumersi, per la verifica d'insieme, come uniformemente ripartiti. In caso contrario, occorre valutarne le effettive distribuzioni.

Per le categorie d'uso A, B, C, D, H e I, i sovraccarichi verticali distribuiti che agiscono su un singolo elemento strutturale facente parte di un orizzontamento (ad esempio una trave), possono essere ridotti in base all'estensione dell'area di influenza A $[m^2]$ di competenza dell'elemento stesso. Il coefficiente riduttivo α_A è dato da

$$\alpha_{A} = \frac{5}{7} \psi_{0} + \frac{10}{A} \le 1,0$$
 [3.1.1]

essendo ψ0 il coefficiente di combinazione (Tab. 2.5.I). Per le categorie C e D, αA non può essere minore di 0,6.

Analogamente, per le sole categorie d'uso da A a D, le componenti di sollecitazione indotte dai sovraccarichi agenti su membrature verticali, tra i quali pilastri o setti, facenti parte di edifici multipiano con più di 2 piani, possono essere ridotti in funzione del numero di piani caricati n, essendo il coefficiente riduttivo α_n dato da

$$\alpha_{n} = \frac{2 + (n - 2)\psi_{0}}{n}$$
 [3.1.2]

I due coefficienti riduttivi α_A e α_n non possono essere combinati.

3.1.4.2 SOVRACCARICHI VERTICALI CONCENTRATI

I sovraccarichi verticali concentrati Q_k riportati nella Tab. 3.1.II formano oggetto di verifiche locali distinte e non si applicano contemporaneamente ai carichi verticali ripartiti utilizzati nelle verifiche dell'edificio nel suo insieme; essi devono essere applicati su impronte di carico appropriate all'utilizzo ed alla forma dell'orizzontamento; in assenza di precise indicazioni può essere considerata una forma dell'impronta di carico quadrata pari a 50×50 mm, salvo che per le rimesse, i parcheggi e le aree di transito (categorie F e G). Per le costruzioni di categoria F, i carichi si applicano su due impronte di 100×100 mm, distanti assialmente 1,80 m. Per le costruzioni di categoria G, i carichi si applicano su due impronte di 200×200 mm, distanti assialmente 1,80 m.

^{**} per i soli parapetti o partizioni nelle zone pedonali. Le azioni sulle barriere esercitate dagli automezzi dovranno essere

3.1.4.3 SOVRACCARICHI ORIZZONTALI LINEARI

I sovraccarichi orizzontali lineari H_k riportati nella Tab. 3.1.II devono essere utilizzati per verifiche locali e non si combinano con i carichi utilizzati nelle verifiche dell'edificio nel suo insieme.

I sovraccarichi orizzontali lineari devono essere applicati alle pareti alla quota di 1,20 m dal rispettivo piano di calpestio; devono essere applicati ai parapetti o ai mancorrenti alla quota del bordo superiore.

Le verifiche locali riguardano, in relazione alle condizioni d'uso, gli elementi verticali bidimensionali quali i tramezzi, le pareti, i tamponamenti esterni, comunque realizzati, con l'esclusione dei divisori mobili (che comunque devono garantire sufficiente stabilità in esercizio).

Il soddisfacimento di questa prescrizione può essere documentato anche per via sperimentale, e comunque mettendo in conto i vincoli che il manufatto possiede e tutte le risorse che il tipo costruttivo consente.

3.2. AZIONE SISMICA

Le azioni sismiche di progetto, in base alle quali valutare il rispetto dei diversi stati limite considerati, si definiscono a partire dalla "pericolosità sismica di base" del sito di costruzione e sono funzione delle caratteristiche morfologiche e stratigrafiche che determinano la risposta sismica locale.

La pericolosità sismica è definita in termini di accelerazione orizzontale massima attesa a_g in condizioni di campo libero su sito di riferimento rigido con superficie topografica orizzontale (di categoria A come definita al § 3.2.2), nonché di ordinate dello spettro di risposta elastico in accelerazione ad essa corrispondente $S_e(T)$, con riferimento a prefissate probabilità di eccedenza P_{V_R} come definite nel § 3.2.1, nel periodo di riferimento V_R , come definito nel § 2.4. In alternativa è ammesso l'uso di accelerogrammi, purché correttamente commisurati alla pericolosità sismica locale dell'area della costruzione.

Ai fini della presente normativa le forme spettrali sono definite, per ciascuna delle probabilità di superamento P_{V_R} nel periodo di riferimento V_R , a partire dai valori dei seguenti parametri su sito di riferimento rigido orizzontale:

- a, accelerazione orizzontale massima al sito;
- F_o valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T_{C}^{*} valore di riferimento per la determinazione del periodo di inizio del tratto a velocità costante dello spettro in accelerazione orizzontale

Per i valori di a_g, F_o e T_C*, necessari per la determinazione delle azioni sismiche, si fa riferimento agli Allegati A e B al Decreto del Ministro delle Infrastrutture 14 gennaio 2008, pubblicato nel S.O. alla Gazzetta Ufficiale del 4 febbraio 2008, n.29, ed eventuali successivi aggiornamenti.

3.2.1. STATI LIMITE E RELATIVE PROBABILITÀ DI SUPERAMENTO

Nei confronti delle azioni sismiche, sia gli Stati limite di esercizio (SLE) che gli Stati limite ultimi (SLU) sono individuati riferendosi alle prestazioni della costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e gli impianti. Gli Stati limite di esercizio (SLE) comprendono:

- Stato Limite di Operatività (SLO): a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e le apparecchiature rilevanti in relazione alla sua funzione, non deve subire danni ed interruzioni d'uso significativi;
- Stato Limite di Danno (SLD): a seguito del terremoto la costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e le apparecchiature rilevanti alla sua funzione, subisce danni tali da non mettere a rischio gli utenti e da non compromettere significativamente la capacità di resistenza e di rigidezza nei confronti delle azioni verticali ed orizzontali, mantenendosi immediatamente utilizzabile pur nell'interruzione d'uso di parte delle apparecchiature.

Gli Stati limite ultimi (SLU) comprendono:

- Stato Limite di salvaguardia della Vita (SLV): a seguito del terremoto la costruzione subisce rotture e crolli dei componenti non strutturali ed impiantistici e significativi danni dei componenti strutturali cui si associa una perdita significativa di rigidezza nei confronti delle azioni orizzontali; la costruzione conserva invece una parte della resistenza e rigidezza per azioni verticali e un margine di sicurezza nei confronti del collasso per azioni sismiche orizzontali;
- Stato Limite di prevenzione del Collasso (SLC): a seguito del terremoto la costruzione subisce gravi rotture e crolli dei componenti non strutturali ed impiantistici e danni molto gravi dei componenti strutturali; la costruzione conserva ancora un margine di sicurezza per azioni verticali ed un esiguo margine di sicurezza nei confronti del collasso per azioni orizzontali.

Le probabilità di superamento nel periodo di riferimento $P_{V_{R'}}$ cui riferirsi per individuare l'azione sismica agente in ciascuno degli stati limite considerati, sono riportate nella Tab. 3.2.I.

 $\textbf{Tab. 3.2.I} - Probabilit\`{a} \ di \ superamento \ P_{V_R} \ in \ funzione \ \ dello \ stato \ limite \ considerato$

Stati Limite	$P_{\mathrm{V_R}}$: Probabilità di superamento nel periodo di riferimento $\mathrm{V_R}$		
Stati limite di esercizio	SLO	81%	
Stati lillitte di esercizio	SLD	63%	
Stati limite ultimi	SLV	10%	
Stati filmite urumi	SLC	5%	

Qualora la protezione nei confronti degli stati limite di esercizio sia di prioritaria importanza, i valori di P_{V_R} forniti in tabella devono essere ridotti in funzione del grado di protezione che si vuole raggiungere.

Per ciascuno stato limite e relativa probabilità di eccedenza P_{V_R} nel periodo di riferimento V_R si ricava il periodo di ritorno T_R del sisma utilizzando la relazione:

$$T_R = -V_R / \ln (1 - P_{V_R}) = -C_U V_N / \ln (1 - P_{V_R})$$
 [3.2.0]

3.2.2 CATEGORIE DI SOTTOSUOLO E CONDIZIONI TOPOGRAFICHE

Categorie di sottosuolo

Ai fini della definizione dell'azione sismica di progetto, l'effetto della risposta sismica locale si valuta mediante specifiche analisi, da eseguire con le modalità indicate nel § 7.11.3. In alternativa, qualora le condizioni stratigrafiche e le proprietà dei terreni siano chiaramente riconducibili alle categorie definite nella Tab. 3.2.II, si può fare riferimento a un approccio semplificato che si basa sulla classificazione del sottosuolo in funzione dei valori della velocità di propagazione delle onde di taglio, V_S . I valori dei parametri meccanici necessari per le analisi di risposta sismica locale o delle velocità V_S per l'approccio semplificato costituiscono parte integrante della caratterizzazione geotecnica dei terreni compresi nel volume significativo, di cui al § 6.2.2.

I valori di V_s sono ottenuti mediante specifiche prove oppure, con giustificata motivazione e limitatamente all'approccio semplificato, sono valutati tramite relazioni empiriche di comprovata affidabilità con i risultati di altre prove in sito, quali ad esempio le prove penetrometriche dinamiche per i terreni a grana grossa e le prove penetrometriche statiche.

La classificazione del sottosuolo si effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio, $V_{S,eq}$ (in m/s), definita dall'espressione:

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$
 [3.2.1]

con:

h_i spessore dell'i-esimo strato;

 $V_{S,i}$ velocità delle onde di taglio nell'i-esimo strato;

N numero di strati;

H profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da Vs non inferiore a 800 m/s.

Per le fondazioni superficiali, la profondità del substrato è riferita al piano di imposta delle stesse, mentre per le fondazioni su pali è riferita alla testa dei pali. Nel caso di opere di sostegno di terreni naturali, la profondità è riferita alla testa dell'opera. Per muri di sostegno di terrapieni, la profondità è riferita al piano di imposta della fondazione.

Per depositi con profondità H del substrato superiore a 30 m, la velocità equivalente delle onde di taglio $V_{S,eq}$ è definita dal parametro $V_{S,30}$, ottenuto ponendo H=30 m nella precedente espressione e considerando le proprietà degli strati di terreno fino a tale profondità.

Le categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato sono definite in Tab. 3.2.II.

Tab. 3.2.II – Categorie di sottosuolo che permettono l'utilizzo dell'approccio semplificato.

Categoria	Caratteristiche della superficie topografica				
A	Ammassi rocciosi affioranti o terreni molto rigidi caratterizzati da valori di velocità delle onde di taglio superiori a 800 m/s, eventualmente comprendenti in superficie terreni di caratteristiche meccaniche più scadenti con spessore massimo pari a 3 m.				
В	Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consi- stenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.				
С	Depositi di terreni a grana grossa mediamente addensati o terreni a grana fina mediamente consi- stenti con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento del- le proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 180 m/s e 360 m/s.				
D	Depositi di terreni a grana grossa scarsamente addensati o di terreni a grana fina scarsamente consistenti, con profondità del substrato superiori a 30 m, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 100 e 180 m/s.				
E	Terreni con caratteristiche e valori di velocità equivalente riconducibili a quelle definite per le categorie C o D, con profondità del substrato non superiore a 30 m.				

Per queste cinque categorie di sottosuolo, le azioni sismiche sono definibili come descritto al § 3.2.3 delle presenti norme. Per qualsiasi condizione di sottosuolo non classificabile nelle categorie precedenti, è necessario predisporre specifiche analisi di risposta locale per la definizione delle azioni sismiche.

Condizioni topografiche

Per condizioni topografiche complesse è necessario predisporre specifiche analisi di risposta sismica locale. Per configurazioni superficiali semplici si può adottare la seguente classificazione (Tab. 3.2.III):

Tab. 3.2.III – Categorie topografiche

Categoria	Caratteristiche della superficie topografica			
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°			
T2	Pendii con inclinazione media i > 15°			
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media 15° ≤ i ≤ 30°			
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°			

Le suesposte categorie topografiche si riferiscono a configurazioni geometriche prevalentemente bidimensionali, creste o dorsali allungate, e devono essere considerate nella definizione dell'azione sismica se di altezza maggiore di 30 m.

3.2.3. VALUTAZIONE DELL'AZIONE SISMICA

3.2.3.1 DESCRIZIONE DEL MOTO SISMICO IN SUPERFICIE E SUL PIANO DI FONDAZIONE

Ai fini delle presenti norme l'azione sismica è caratterizzata da 3 componenti traslazionali, due orizzontali contrassegnate da X ed Y ed una verticale contrassegnata da Z, da considerare tra di loro indipendenti. Salvo quanto specificato nel § 7.11 per le opere e i sistemi geotecnici, la componente verticale verrà considerata ove espressamente specificato (Capitolo 7) e purché il sito nel quale sorge la costruzione sia caratterizzato da un'accelerazione al suolo, così come definita nel seguente §3.2.3.2, pari ad $a_g \ge 0.15g$.

Le componenti possono essere descritte, in funzione del tipo di analisi adottata, mediante una delle seguenti rappresentazioni:

- accelerazione massima in superficie;
- accelerazione massima e relativo spettro di risposta in superficie;
- storia temporale del moto del terreno.

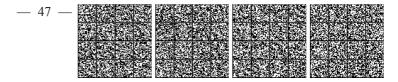
Sulla base di apposite analisi di risposta sismica locale si può poi passare dai valori in superficie ai valori sui piani di riferimento definiti nel § 3.2.2; in assenza di tali analisi l'azione in superficie può essere assunta come agente su tali piani.

Le due componenti ortogonali indipendenti che descrivono il moto orizzontale sono caratterizzate dallo stesso spettro di risposta o dalle due componenti accelerometriche orizzontali del moto sismico.

La componente che descrive il moto verticale è caratterizzata dal suo spettro di risposta o dalla componente accelerometrica verticale. In mancanza di documentata informazione specifica, in via semplificata l'accelerazione massima e lo spettro di risposta della componente verticale attesa in superficie possono essere determinati sulla base dell'accelerazione massima e dello spettro di risposta delle due componenti orizzontali. La componente accelerometrica verticale può essere correlata alle componenti accelerometriche orizzontali del moto sismico.

Quale che sia la probabilità di superamento P_{V_R} nel periodo di riferimento V_R , la definizione degli spettri di risposta elastici, degli spettri di risposta di progetto e delle storie temporali del moto del terreno è fornita ai paragrafi successivi.

3.2.3.2 SPETTRO DI RISPOSTA ELASTICO IN ACCELERAZIONE


Lo spettro di risposta elastico in accelerazione è espresso da una forma spettrale (spettro normalizzato) riferita ad uno smorzamento convenzionale del 5%, moltiplicata per il valore della accelerazione orizzontale massima a_g su sito di riferimento rigido orizzontale. Sia la forma spettrale che il valore di a_g variano al variare della probabilità di superamento nel periodo di riferimento $P_{V_{\nu}}$ (vedi § 2.4 e § 3.2.1).

Gli spettri così definiti possono essere utilizzati per strutture con periodo fondamentale minore o uguale a 4,0 s. Per strutture con periodi fondamentali superiori lo spettro deve essere definito da apposite analisi oppure l'azione sismica deve essere descritta mediante storie temporali del moto del terreno.

3.2.3.2.1 Spettro di risposta elastico in accelerazione delle componenti orizzontali

Lo spettro di risposta elastico in accelerazione della componente orizzontale del moto sismico, $S_{e'}$ è definito dalle espressioni seguenti:

$$0 \le T \le T_B \qquad \qquad S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right]$$
 [3.2.2]

$$\begin{split} T_B &\leq T < T_C & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \\ T_C &\leq T < T_D & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C}{T}\right) \\ T_D &\leq T & S_e \ (T) = a_g \cdot S \cdot \eta \cdot F_o \cdot \left(\frac{T_C \cdot T_D}{T^2}\right) \end{split}$$

nelle quali:

Tè il periodo proprio di vibrazione;

S è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche mediante la relazione seguente

$$S = S_S \cdot S_T \qquad [3.2.3]$$

essendo S_S il coefficiente di amplificazione stratigrafica (vedi Tab. 3.2.IV) e S_T il coefficiente di amplificazione topografica (vedi Tab. 3.2.V);

η è il fattore che altera lo spettro elastico per coefficienti di smorzamento viscosi convenzionali ξ diversi dal 5%, mediante la relazione

$$\eta = \sqrt{10/(5+\xi)} \ge 0.55$$
, [3.2.4]

 $dove \; \xi \; (espresso \; in \; percentuale) \; \grave{e} \; valutato \; sulla \; base \; dei \; materiali, \; della \; tipologia \; strutturale \; e \; del \; terreno \; di \; fondazione;$

- F_o è il fattore che quantifica l'amplificazione spettrale massima, su sito di riferimento rigido orizzontale, ed ha valore minimo pari a 2,2;
- T_C è il periodo corrispondente all'inizio del tratto a velocità costante dello spettro, dato dalla relazione

$$T_{c} = C_{c} \cdot T_{c}^{*}$$
, [3.2.5]

dove: T_C^* è definito al § 3.2 e C_C è un coefficiente funzione della categoria di sottosuolo (vedi Tab. 3.2.IV);

 $T_{B}\ \ \dot{e}\ il\ periodo\ corrispondente\ all'inizio\ del tratto\ dello\ spettro\ ad\ accelerazione\ costante,\ dato\ dalla\ relazione$

$$T_{\rm B} = T_{\rm C}/3$$
 [3.2.6]

T_D è il periodo corrispondente all'inizio del tratto a spostamento costante dello spettro, espresso in secondi mediante la relazione:

$$T_D = 4.0 \cdot \frac{a_g}{a} + 1.6$$
. [3.2.7]

Per categorie speciali di sottosuolo, per determinati sistemi geotecnici o se si intenda aumentare il grado di accuratezza nella previsione dei fenomeni di amplificazione, le azioni sismiche da considerare nella progettazione possono essere determinate mediante più rigorose analisi di risposta sismica locale. Queste analisi presuppongono un'adeguata conoscenza delle proprietà geotecniche dei terreni e, in particolare, delle relazioni sforzi-deformazioni in campo ciclico, da determinare mediante specifiche indagini e prove.

In mancanza di tali determinazioni, per le componenti orizzontali del moto e per le categorie di sottosuolo di fondazione definite nel § 3.2.2, la forma spettrale su sottosuolo di categoria $\bf A$ è modificata attraverso il coefficiente stratigrafico S_S , il coefficiente topografico S_T e il coefficiente C_C che modifica il valore del periodo T_C .

Amplificazione stratigrafica

Per sottosuolo di categoria **A** i coefficienti S_S e C_C valgono 1.

Per le categorie di sottosuolo **B**, **C**, **D** ed **E** i coefficienti S_S e C_C possono essere calcolati, in funzione dei valori di F_o e T_C^* relativi al sottosuolo di categoria **A**, mediante le espressioni fornite nella Tab. 3.2.IV, nelle quali g = 9.81 m/s² è l'accelerazione di gravità e T_C^* è espresso in secondi.

Tab. 3.2.IV – Espressioni di S_S e di C_C

Categoria sottosuolo	S_{S}	C _C
A	1,00	1,00
В	$1,00 \le 1,40 - 0,40 \cdot F_o \cdot \frac{a_g}{g} \le 1,20$	$1,10\cdot(T_{\rm C}^*)^{-0,20}$
С	$1,00 \le 1,70 - 0,60 \cdot F_o \cdot \frac{a_g}{g} \le 1,50$	$1,05 \cdot (T_C^*)^{-0,33}$
D	$0.90 \le 2.40 - 1.50 \cdot F_o \cdot \frac{a_g}{g} \le 1.80$	$1,25 \cdot (T_C^*)^{-0,50}$
Е	$1,00 \le 2,00 - 1,10 \cdot F_o \cdot \frac{a_g}{g} \le 1,60$	$1,15 \cdot (T_C^*)^{-0,40}$

Amplificazione topografica

Per tener conto delle condizioni topografiche e in assenza di specifiche analisi di risposta sismica locale, si utilizzano i valori del coefficiente topografico S_T riportati nella Tab. 3.2.V, in funzione delle categorie topografiche definite nel § 3.2.2 e dell'ubicazione dell'opera o dell'intervento.

Tab. 3.2.V – Valori massimi del coefficiente di amplificazione topografica S_T

Categoria topografica	Ubicazione dell'opera o dell'intervento	S _T
T1	-	
T2	In corrispondenza della sommità del pendio	1,2
Т3	In corrispondenza della cresta di un rilievo con pendenza media minore o uguale a 30°	1,2
T4	In corrispondenza della cresta di un rilievo con pendenza media maggiore di 30°	1,4

La variazione spaziale del coefficiente di amplificazione topografica è definita da un decremento lineare con l'altezza del pendio o del rilievo, dalla sommità o dalla cresta, dove S_T assume il valore massimo riportato nella Tab. 3.2.V, fino alla base, dove S_T assume valore unitario.

3.2.3.2.2 Spettro di risposta elastico in accelerazione della componente verticale

 $Lo \ spettro \ di \ risposta \ elastico \ in \ accelerazione \ della \ componente \ verticale \ del \ moto \ sismico, S_{ver} \ \grave{e} \ definito \ dalle \ espressioni:$

$$\begin{split} 0 &\leq T < T_B & S_{ve} \ (T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left[\frac{T}{T_B} + \frac{1}{\eta \cdot F_o} \left(1 - \frac{T}{T_B} \right) \right] \\ T_B &\leq T < T_C & S_{ve} \ (T) = a_g \cdot S \cdot \eta \cdot F_v \\ T_C &\leq T < T_D & S_{ve} \ (T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C}{T} \right) \\ T_D &\leq T & S_{ve} \ (T) = a_g \cdot S \cdot \eta \cdot F_v \cdot \left(\frac{T_C \cdot T_D}{T^2} \right) \end{split} \label{eq:secondary} \end{split}$$

nelle quali:

T è il periodo proprio di vibrazione (in direzione verticale);

 F_v è il fattore che quantifica l'amplificazione spettrale massima, in termini di accelerazione orizzontale massima del terreno a_g su sito di riferimento rigido orizzontale, mediante la relazione:

$$F_{v} = 1.35 \cdot F_{o} \cdot \left(\frac{a_{g}}{g}\right)^{0.5}$$
 [3.2.9]

I valori di a_{gr} F_{or} S, η sono definiti nel § 3.2.3.2.1 per le componenti orizzontali del moto sismico; i valori di S_{Sr} T_{B_r} T_C e T_{Dr} salvo più accurate determinazioni, sono riportati nella Tab. 3.2.VI.

Tab. 3.2.VI - Valori dei parametri dello spettro di risposta elastico della componente verticale

Categoria di sottosuolo	S_S	T _B	T _C	T_D
A, B, C, D, E	1,0	0,05 s	0,15 s	1,0 s

Per tener conto delle condizioni topografiche, in assenza di specifiche analisi si utilizzano i valori del coefficiente topografico ST riportati in Tab. 3.2.V.

3.2.3.2.3 Spettro di risposta elastico in spostamento delle componenti orizzontali

Lo spettro di risposta elastico in spostamento delle componenti orizzontali $S_{De}(T)$ si ricava dalla corrispondente risposta in accelerazione $S_{p}(T)$ mediante la seguente espressione:

$$S_{De}(T) = S_e(T) \times \left(\frac{T}{2\pi}\right)^2$$
 [3.2.10]

purché il periodo proprio di vibrazione T non ecceda i valori T_E indicati in Tab. 3.2.VII.

Tab. 3.2.VII – Valori dei parametri T_E e T_F

Categoria sottosuolo	T _E [s]	T _F [s]
A	4,5	10,0
В	5,0	10,0
C, D, E	6,0	10,0

Per periodi di vibrazione eccedenti T_E, le ordinate dello spettro possono essere ottenute dalle formule seguenti:

$$T_{E} < T \le T_{F} \quad S_{De}(T) = 0.025 \cdot a_{g} \cdot S \cdot T_{C} \cdot T_{D} \cdot \left[F_{o} \cdot \eta + \left(1 - F_{o} \cdot \eta\right) \cdot \frac{T - T_{E}}{T_{F} - T_{e}} \right] \quad [3.2.11]$$

dove tutti i simboli sono già stati definiti, ad eccezione di d_g, definito nel § 3.2.3.3.

3.2.3.3 SPOSTAMENTO ORIZZONTALE E VELOCITÀ ORIZZONTALE DEL TERRENO

I valori dello spostamento orizzontale d_e e della velocità orizzontale v_e massimi del terreno sono dati dalle seguenti espressioni:

$$\begin{aligned} \mathbf{d}_{\mathrm{g}} &= 0.025 \cdot \mathbf{a}_{\mathrm{g}} \cdot \mathbf{S} \cdot \mathbf{T}_{\mathrm{C}} \cdot \mathbf{T}_{\mathrm{D}} \\ \mathbf{v}_{\mathrm{g}} &= 0.16 \cdot \mathbf{a}_{\mathrm{g}} \cdot \mathbf{S} \cdot \mathbf{T}_{\mathrm{C}} \end{aligned} \tag{3.2.12}$$

dove a_g , S, T_C , T_D assumono i valori già utilizzati al § 3.2.3.2.1.

3.2.3.4 SPETTRI DI RISPOSTA DI PROGETTO PER LO STATO LIMITE DI OPERATIVITÀ (SLO)

Per lo stato limite di operatività lo spettro di risposta di progetto $S_d(T)$ da utilizzare, sia per le componenti orizzontali che per la componente verticale, è lo spettro di risposta elastico corrispondente, riferito alla probabilità di superamento nel periodo di riferimento P_{V_p} considerata (v. §§ 2.4 e 3.2.1).

3.2.3.5 SPETTRI DI RISPOSTA DI PROGETTO PER GLI STATI LIMITE DI DANNO (SLD), DI SALVAGUARDIA DELLA VITA (SLV) E DI PREVENZIONE DEL COLLASSO (SLC)

Qualora le verifiche agli stati limite di danno, di salvaguardia della vita e di prevenzione al collasso non vengano effettuate tramite l'uso di opportune storie temporali del moto del terreno ed analisi non lineari dinamiche al passo, ai fini del progetto o della verifica delle costruzioni le capacità dissipative delle strutture possono essere considerate attraverso una riduzione delle forze elastiche, che tenga conto in modo semplificato della capacità dissipativa anelastica della struttura, della sua sovraresistenza, dell'incremento del suo periodo proprio di vibrazione a seguito delle plasticizzazioni. In tal caso, lo spettro di risposta di progetto $S_d(T)$ da utilizzare, sia per le componenti orizzontali, sia per la componente verticale, è lo spettro di risposta elastico corrispondente riferito alla probabilità di superamento nel periodo di riferimento P_{V_R} considerata (v. §§ 2.4 e 3.2.1). Per valutare la domanda verrà utilizzato tale spettro, nel caso di analisi non lineare statica ponendo $\eta = 1$, nel caso di analisi lineare, statica o dinamica con le ordinate ridotte sostituendo nelle formule [3.2.2] (per le componenti orizzontali) e nelle formule [3.2.8] (per le componenti verticali) η con 1/q, dove q è il fattore di comportamento definito nel Capitolo 7 (Tabella 7.3.I).

3.2.3.6 IMPIEGO DI STORIE TEMPORALI DEL MOTO DEL TERRENO

Gli stati limite, ultimi e di esercizio, possono essere verificati mediante l'uso di storie temporali del moto del terreno artificiali o naturali. Ciascuna storia temporale descrive una componente, orizzontale o verticale, dell'azione sismica; l'insieme delle tre componenti (due orizzontali, tra loro ortogonali, ed una verticale) costituisce un gruppo di storie temporali del moto del terreno.

La durata delle storie temporali artificiali del moto del terreno deve essere stabilita sulla base della magnitudo e degli altri parametri fisici che determinano la scelta del valore di a_g e di S_S . In assenza di studi specifici, la parte pseudo-stazionaria dell'accelerogramma associato alla storia deve avere durata di 10 s e deve essere preceduta e seguita da tratti di ampiezza crescente da zero e decrescente a zero, in modo che la durata complessiva dell'accelerogramma sia non inferiore a 25 s.

Gli accelerogrammi artificiali devono avere uno spettro di risposta elastico coerente con lo spettro di risposta adottato nella progettazione. La coerenza con lo spettro di risposta elastico è da verificare in base alla media delle ordinate spettrali ottenute con i diversi accelerogrammi, per un coefficiente di smorzamento viscoso equivalente ξ del 5%. L'ordinata spettrale media non deve presentare uno scarto in difetto superiore al 10%, rispetto alla corrispondente componente dello spettro elastico, in alcun punto del maggiore tra gli intervalli $0,15s \div 2,0s \in 0,15s \div 2T$, in cui T è il periodo proprio di vibrazione della struttura in campo elastico, per le verifiche agli stati limite ultimi, e $0,15s \div 1,5$ T, per le verifiche agli stati limite di esercizio. Nel caso di costruzioni con isolamento sismico, il limite superiore dell'intervallo di coerenza è assunto pari a 1,2 T_{is} , essendo T_{is} il periodo equivalente della struttura isolata, valutato per gli spostamenti del sistema d'isolamento prodotti dallo stato limite in esame.

L'uso di storie temporali del moto del terreno artificiali non è ammesso nelle analisi dinamiche di opere e sistemi geotecnici.

L'uso di storie temporali del moto del terreno generate mediante simulazione del meccanismo di sorgente e della propagazione è ammesso a condizione che siano adeguatamente giustificate le ipotesi relative alle caratteristiche sismogenetiche della sorgente e del mezzo di propagazione e che, negli intervalli di periodo sopraindicati, l'ordinata spettrale media non presenti uno scarto in difetto superiore al 20% rispetto alla corrispondente componente dello spettro elastico.

L'uso di storie temporali del moto del terreno naturali o registrate è ammesso a condizione che la loro scelta sia rappresentativa della sismicità del sito e sia adeguatamente giustificata in base alle caratteristiche sismogenetiche della sorgente, alle condizioni del sito di registrazione, alla magnitudo, alla distanza dalla sorgente e alla massima accelerazione orizzontale attesa al sito.

Le storie temporali del moto del terreno registrate devono essere selezionate e scalate in modo tale che i relativi spettri di risposta approssimino gli spettri di risposta elastici nel campo dei periodi propri di vibrazione di interesse per il problema in esame. Nello specifico la compatibilità con lo spettro di risposta elastico deve essere verificata in base alla media delle ordinate spettrali ottenute con i diversi accelerogrammi associati alle storie per un coefficiente di smorzamento viscoso equivalente ξ del 5%. L'ordinata spettrale media non deve presentare uno scarto in difetto superiore al 10% ed uno scarto in eccesso superiore al 30%, rispetto alla corrispondente componente dello spettro elastico in alcun punto dell'intervallo dei periodi propri di vibrazione di interesse per l'opera in esame per i diversi stati limite.

3.2.4. EFFETTI DELLA VARIABILITÀ SPAZIALE DEL MOTO

3.2.4.1 VARIABILITÀ SPAZIALE DEL MOTO

Nei punti di contatto con il terreno di opere con sviluppo planimetrico significativo, il moto sismico può avere caratteristiche differenti, a causa del carattere asincrono del fenomeno di propagazione, delle disomogeneità e delle discontinuità eventualmente presenti, e della diversa risposta locale del terreno.

Degli effetti sopra indicati deve tenersi conto quando essi possono essere significativi e in ogni caso quando le condizioni di sottosuolo siano così variabili lungo lo sviluppo dell'opera da richiedere l'uso di accelerogrammi o di spettri di risposta diversi.

In assenza di modelli fisicamente più accurati e adeguatamente documentati, un criterio di prima approssimazione per tener conto della variabilità spaziale del moto sismico consiste nel sovrapporre agli effetti dinamici, valutati ad esempio con lo spettro di risposta, gli effetti pseudo-statici indotti dagli spostamenti relativi.

Nel dimensionamento delle strutture in elevazione tali effetti possono essere trascurati quando il sistema fondazione-terreno sia sufficientemente rigido da rendere minimi gli spostamenti relativi. Negli edifici ciò avviene, ad esempio, quando si collegano in modo opportuno i plinti di fondazione.

Gli effetti dinamici possono essere valutati adottando un'unica azione sismica, corrispondente alla categoria di sottosuolo che induce le sollecitazioni più severe.

Qualora l'opera sia suddivisa in porzioni, ciascuna fondata su sottosuolo di caratteristiche ragionevolmente omogenee, per ciascuna di esse si adotterà l'appropriata azione sismica.

3.2.4.2 SPOSTAMENTO ASSOLUTO E RELATIVO DEL TERRENO

Il valore dello spostamento assoluto orizzontale massimo del suolo (d_e) può ottenersi utilizzando l'espressione [3.2.12].

Nel caso in cui sia necessario valutare gli effetti della variabilità spaziale del moto richiamati nel paragrafo precedente, il valore dello spostamento relativo tra due punti i e j caratterizzati dalle proprietà stratigrafiche del rispettivo sottosuolo ed il cui moto possa considerarsi indipendente, può essere stimato secondo l'espressione seguente:

$$d_{ij \max} = 1,25 \sqrt{d_{gi}^2 + d_{gj}^2}$$
 [3.2.13]

dove d_{gi} e d_{gi} sono rispettivamente gli spostamenti massimi del suolo nei punti i e j, calcolati con riferimento alle caratteristiche locali del sottosuolo.

Il moto di due punti del terreno può considerarsi indipendente per punti posti a distanze notevoli, in relazione al tipo di sottosuolo; il moto è reso indipendente anche dalla presenza di forti variabilità orografiche tra i punti.

In assenza di forti discontinuità orografiche, lo spostamento relativo tra punti a distanza x (in m) si può valutare con l'espressione:

$$d_{ij}(x) = d_{ij0} + (d_{ijmax} - d_{ij0}) \left[1 - e^{-1.25(x/v_x)^{0.7}}\right]$$
 [3.2.14]

dove v_s è la velocità di propagazione delle onde di taglio in m/s e d_{ij0} è dato dall'espressione

$$d_{ij0} = 1,25 |d_{gi} - d_{gj}|$$
 [3.2.15]

Per punti che ricadano su sottosuoli differenti a distanza inferiore a 20 m, lo spostamento relativo è rappresentato da d_{ij0} ; se i punti ricadono su sottosuolo dello stesso tipo, lo spostamento relativo può essere stimato, anziché con l'espressione [3.2.14], con le espressioni

$$d_{ij}\left(x\right) = \frac{d_{ijmax}}{v_s} \cdot 2,3x \text{ per sottosuolo tipo D,}$$

$$d_{ij}\left(x\right) = \frac{d_{ijmax}}{v_s} \cdot 3,0x \text{ per sottosuolo di tipo diverso da D.}$$
[3.2.16]

Per la determinazione delle sollecitazioni indotte nei ponti dagli spostamenti relativi del terreno, si possono utilizzare criteri riportati in documenti di comprovata validità.

3.3. AZIONI DEL VENTO

Il vento, la cui direzione si considera generalmente orizzontale, esercita sulle costruzioni azioni che variano nel tempo e nello spazio provocando, in generale, effetti dinamici.

Per le costruzioni usuali tali azioni sono convenzionalmente ricondotte alle azioni statiche equivalenti definite al § 3.3.3. Per le costruzioni di forma o tipologia inusuale, oppure di grande altezza o lunghezza, o di rilevante snellezza e leggerezza, o di notevole flessibilità e ridotte capacità dissipative, il vento può dare luogo ad effetti la cui valutazione richiede l'uso di metodologie di calcolo e sperimentali adeguate allo stato dell'arte.

3.3.1. VELOCITÀ BASE DI RIFERIMENTO

La velocità base di riferimento v_b è il valore medio su 10 minuti, a 10 m di altezza sul suolo su un terreno pianeggiante e omogeneo di categoria di esposizione II (vedi Tab. 3.3.II), riferito ad un periodo di ritorno $T_R = 50$ anni.

In mancanza di specifiche ed adeguate indagini statistiche, v_bè data dall'espressione:

$$\mathbf{v}_{b} = \mathbf{v}_{b,0} \cdot \mathbf{c}_{a} \tag{3.3.1}$$

 $V_{b,0}$ è la velocità base di riferimento al livello del mare, assegnata nella Tab. 3.3.I in funzione della zona in cui sorge la costruzione (Fig. 3.3.1);

c_a è il coefficiente di altitudine fornito dalla relazione:

$$c_a = 1$$
 per $a_s \le a_0$

$$c_a = 1 + k_s \left(\frac{a_s}{a_0} - 1\right)$$
 per $a_0 < a_s \le 1500$ m [3.3.1.b]

dove:

 a_0 , k_s sono parametri forniti nella Tab. 3.3.I in funzione della zona in cui sorge la costruzione (Fig. 3.3.1);

 \mathbf{a}_{s} è l'altitudine sul livello del mare del sito ove sorge la costruzione.

Tale zonazione non tiene conto di aspetti specifici e locali che, se necessario, dovranno essere definiti singolarmente.

Tab. 3.3.I -Valori dei parametri $v_{b,0}\text{, }a_0\text{, }k_s$

Zona	Descrizione	v _{b,0} [m/s]	a ₀ [m]	k_s
1	Valle d'Aosta, Piemonte, Lombardia, Trentino Alto Adige, Veneto, Friuli Venezia Giulia (con l'eccezione della pro- vincia di Trieste)	25	1000	0,40
2	Emilia Romagna	25	750	0,45
3	Toscana, Marche, Umbria, Lazio, Abruzzo, Molise, Puglia, Campania, Basilicata, Calabria (esclusa la provincia di Reggio Calabria)	27	500	0,37
4	Sicilia e provincia di Reggio Calabria	28	500	0,36
5	Sardegna (zona a oriente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	750	0,40
6	Sardegna (zona a occidente della retta congiungente Capo Teulada con l'Isola di Maddalena)	28	500	0,36
7	Liguria	28	1000	0,54
8	Provincia di Trieste	30	1500	0,50
9	Isole (con l'eccezione di Sicilia e Sardegna) e mare aperto	31	500	0,32

Per altitudini superiori a 1500 m sul livello del mare, i valori della velocità base di riferimento possono essere ricavati da opportuna documentazione o da indagini statistiche adeguatamente comprovate, riferite alle condizioni locali di clima e di esposizione. Fatte salve tali valutazioni, comunque raccomandate in prossimità di vette e crinali, i valori utilizzati non dovranno essere minori di quelli previsti per 1500 m di altitudine.

Fig. 3.3.1 - Mappa delle zone in cui è suddiviso il territorio italiano

3.3.2. VELOCITÀ DI RIFERIMENTO

La velocità di riferimento v_r è il valore medio su 10 minuti, a 10 m di altezza dal suolo su un terreno pianeggiante e omogeneo di categoria di esposizione II (vedi Tab. 3.3.II), riferito al periodo di ritorno di progetto Tr. Tale velocità è definita dalla relazione:

$$v_r = v_b \cdot c_r \tag{3.3.2}$$

dove

v_b è la velocità base di riferimento, di cui al § 3.3.1;

cr è il coefficiente di ritorno, funzione del periodo di ritorno di progetto Tr.

In mancanza di specifiche e adeguate indagini statistiche, il coefficiente di ritorno è fornito dalla relazione:

$$c_r = 0.75 \sqrt{1 - 0.2 \times ln \left[-ln \left(1 - \frac{1}{T_R} \right) \right]}$$
 [3.3.3]

dove TR è il periodo di ritorno espresso in anni.

Ove non specificato diversamente, si assumerà $T_R = 50$ anni, cui corrisponde $c_r = 1$. Per un'opera di nuova realizzazione in fase di costruzione o per le fasi transitorie relative ad interventi sulle costruzioni esistenti, il periodo di ritorno dell'azione potrà essere ridotto come di seguito specificato:

- per fasi di costruzione o fasi transitorie con durata prevista in sede di progetto non superiore a tre mesi, si assumerà TR ≥
 5 anni;
- per fasi di costruzione o fasi transitorie con durata prevista in sede di progetto compresa fra tre mesi ed un anno, si assumerà TR ≥ 10 anni;

3.3.3. AZIONI STATICHE EQUIVALENTI

Le azioni del vento sono costituite da pressioni e depressioni agenti normalmente alle superfici, sia esterne che interne, degli elementi che compongono la costruzione (§ 3.3.4).

L'azione del vento sui singoli elementi che compongono la costruzione va determinata considerando la combinazione più gravosa delle pressioni agenti sulle due facce di ogni elemento.

Nel caso di costruzioni di grande estensione, si deve inoltre tenere conto delle azioni tangenti esercitate dal vento (§ 3.3.4).

L'azione d'insieme esercitata dal vento su una costruzione è data dalla risultante delle azioni sui singoli elementi, considerando come direzione del vento quella corrispondente ad uno degli assi principali della pianta della costruzione; in casi particolari, come ad esempio per le torri a base quadrata o rettangolare, si deve considerare anche l'ipotesi di vento spirante secondo la direzione di una delle diagonali.

3.3.4. PRESSIONE DEL VENTO

La pressione del vento è data dall'espressione:

$$p = q_r c_e c_p c_d$$
 [3.3.4]

dove

 $q_{\rm r}$ $\,$ è la pressione cinetica di riferimento di cui al § 3.3.6;

c_e è il coefficiente di esposizione di cui al § 3.3.7;

c_p è il coefficiente di pressione di cui al § 3.3.8;

c_d è il coefficiente dinamico di cui al § 3.3.9.

3.3.5. AZIONE TANGENTE DEL VENTO

L'azione tangente per unità di superficie parallela alla direzione del vento è data dall'espressione:

$$p_f = q_r c_e c_f$$
 [3.3.5]

dove

q_r è la pressione cinetica di riferimento di cui al § 3.3.6;

c_e è il coefficiente di esposizione di cui al § 3.3.7;

c_f è il coefficiente d'attrito di cui al § 3.3.8.

3.3.6. PRESSIONE CINETICA DI RIFERIMENTO

La pressione cinetica di riferimento q_r è data dall'espressione:

$$q_r = \frac{1}{2} \rho v_r^2$$
 [3.3.6]

dove

v_r è la velocità di riferimento del vento di cui al § 3.3.2;

ρ è la densità dell'aria assunta convenzionalmente costante e pari a 1,25 kg/m³.

Esprimendo ρ in kg/m³ e v_r in m/s, q_r risulta espresso in N/m².

3.3.7. COEFFICIENTE DI ESPOSIZIONE

Il coefficiente di esposizione c_e dipende dall'altezza z sul suolo del punto considerato, dalla topografia del terreno e dalla categoria di esposizione del sito ove sorge la costruzione. In assenza di analisi specifiche che tengano in conto la direzione di provenienza del vento e l'effettiva scabrezza e topografia del terreno che circonda la costruzione, per altezze sul suolo non maggiori di z = 200 m, esso è dato dalla formula:

$$c_{e}(z) = k_{r}^{2}c_{t} \ln(z/z_{0}) [7 + c_{t} \ln(z/z_{0})] \quad \text{per } z \ge z_{\text{min}}$$

$$c_{e}(z) = c_{e}(z_{\text{min}}) \quad \text{per } z < z_{\text{min}}$$
[3.3.7]

dove

 k_{r} , z_{0} , z_{min} sono assegnati in Tab. 3.3.II in funzione della categoria di esposizione del sito ove sorge la costruzione;

c_t è il coefficiente di topografia.

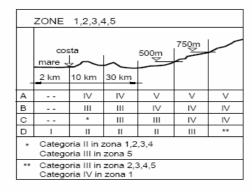
Tab. 3.3.II - Parametri per la definizione del coefficiente di esposizione

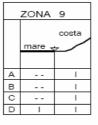
Categoria di esposizione del sito	K _r	z ₀ [m]	z _{min} [m]
I	0,17	0,01	2
II	0,19	0,05	4
III	0,20	0,10	5
IV	0,22	0,30	8
V	0,23	0,70	12

La categoria di esposizione è assegnata nella Fig. 3.3.2 in funzione della posizione geografica del sito ove sorge la costruzione e della classe di rugosità del terreno definita in Tab. 3.3.III. Nelle fasce entro 40 km dalla costa, la categoria di esposizione è indipendente dall'altitudine del sito.

Il coefficiente di topografia c_t è posto generalmente pari a 1, sia per le zone pianeggianti sia per quelle ondulate, collinose e montane. In questo caso, la Fig. 3.3.3 riporta le leggi di variazione di c_e per le diverse categorie di esposizione.

Nel caso di costruzioni ubicate presso la sommità di colline o pendii isolati, il coefficiente di topografia c_t può essere ricavato da dati suffragati da opportuna documentazione.





Tab. 3.3.III - Classi di rugosità del terreno

Classe di rugosità del terreno	Descrizione
A	Aree urbane in cui almeno il 15% della superficie sia coperto da edifici la cui altezza media superi i 15 m
В	Aree urbane (non di classe A), suburbane, industriali e boschive
С	Aree con ostacoli diffusi (alberi, case, muri, recinzioni,); aree con rugosità non riconducibile alle classi A, B, D
D	a) Mare e relativa fascia costiera (entro 2 km dalla costa); b) Lago (con larghezza massima pari ad almeno 1 km) e relativa fascia costiera (entro 1 km dalla costa) c) Aree prive di ostacoli o con al più rari ostacoli isolati (aperta campagna, aeroporti, aree agricole, pascoli, zone paludose o sabbiose, superfici innevate o ghiacciate,)

L'assegnazione della classe di rugosità non dipende dalla conformazione orografica e topografica del terreno. Si può assumere che il sito appartenga alla Classe A o B, purché la costruzione si trovi nell'area relativa per non meno di 1 km e comunque per non meno di 20 volte l'altezza della costruzione, per tutti i settori di provenienza del vento ampi almeno 30°. Si deve assumere che il sito appartenga alla Classe D, qualora la costruzione sorga nelle aree indicate con le lettere a) o b), oppure entro un raggio di 1 km da essa vi sia un settore ampio 30°, dove il 90% del terreno sia del tipo indicato con la lettera c). Laddove sussistano dubbi sulla scelta della classe di rugosità, si deve assegnare la classe più sfavorevole (l'azione del vento è in genere minima in Classe A e massima in Classe D).

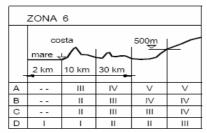


Fig. 3.3.2 - Definizione delle categorie di esposizione

Fig. 3.3.3 - Andamento del coefficiente di esposizione c_e in funzione dell'altezza sul suolo (per c_t = 1)

3.3.8. COEFFICIENTI AERODINAMICI

Il coefficiente di pressione c_P dipende dalla tipologia e dalla geometria della costruzione e dal suo orientamento rispetto alla direzione del vento.

Il coefficiente d'attrito ci dipende dalla scabrezza della superficie sulla quale il vento esercita l'azione tangente.

Entrambi questi coefficienti, definiti coefficienti aerodinamici, possono essere ricavati da dati suffragati da opportuna documentazione o da prove sperimentali in galleria del vento.

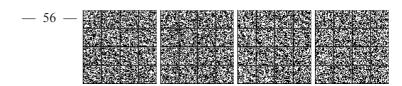
3.3.9. COEFFICIENTE DINAMICO

Il coefficiente dinamico tiene conto degli effetti riduttivi associati alla non contemporaneità delle massime pressioni locali e degli effetti amplificativi dovuti alla risposta dinamica della struttura.

Esso può essere assunto cautelativamente pari ad 1 nelle costruzioni di tipologia ricorrente, quali gli edifici di forma regolare non eccedenti 80 m di altezza ed i capannoni industriali, oppure può essere determinato mediante analisi specifiche o facendo riferimento a dati di comprovata affidabilità.

3.3.10. AVVERTENZE PROGETTUALI

Le azioni del vento sui ponti lunghi, sugli edifici alti e più in generale sulle costruzioni di grandi dimensioni o di forma non simmetrica, possono dare luogo a forze trasversali alla direzione del vento e a momenti torcenti di notevoli intensità. Tali azioni possono essere ulteriormente amplificate dalla risposta dinamica della struttura.


Agli ultimi piani degli edifici alti, le azioni del vento possono causare oscillazioni (soprattutto accelerazioni di piano) le cui conseguenze variano, nei riguardi degli occupanti, dalla non percezione sino al fastidio e, in alcuni casi, all'intollerabilità fisiologica.

Per strutture o elementi strutturali snelli di forma cilindrica, quali ciminiere, torri di telecomunicazioni o singoli elementi di carpenteria si deve tenere conto degli effetti dinamici indotti al distacco alternato dei vortici dal corpo investito dal vento. Tali effetti possono essere particolarmente severi quando la frequenza di distacco dei vortici uguaglia una frequenza propria della struttura, dando luogo a un fenomeno di risonanza. In questa situazione le vibrazioni sono tanto maggiori quanto più la struttura è leggera e poco smorzata. L'occorrenza di fenomeni di risonanza in corrispondenza di velocità del vento relativamente piccole e quindi frequenti richiede particolari attenzioni nei riguardi della fatica.

Per strutture particolarmente deformabili, leggere e poco smorzate, l'interazione del vento con la struttura può dare luogo ad azioni aeroelastiche, i cui effetti modificano le frequenze proprie e/o lo smorzamento della struttura sino a causare fenomeni di instabilità, fra i quali il galoppo, la divergenza torsionale ed il flutter. Il galoppo è tipico di cavi ghiacciati o percorsi da rivoli d'acqua, di elementi di carpenteria e più in generale di elementi strutturali di forma non circolare. La divergenza torsionale è tipica in generale di lastre molto sottili. Il flutter è tipico di ponti sospesi o strallati o di profili alari.

Per strutture o elementi strutturali ravvicinati e di analoga forma, ad esempio edifici alti, serbatoi, torri di refrigerazione, ponti, ciminiere, cavi, elementi di carpenteria e tubi, possono manifestarsi fenomeni di interferenza tali da modificare gli effetti che il vento causerebbe se agisse sulle stesse strutture o elementi strutturali isolati. Tali effetti possono incrementare le azioni statiche, dinamiche e aeroelastiche del vento in modo estremamente severo.

In tutti i casi sopra citati si raccomanda di fare ricorso a dati suffragati da opportuna documentazione, o ricavati per mezzo di metodi analitici, numerici e/o sperimentali adeguatamente comprovati.

3.4. AZIONI DELLA NEVE

3.4.1. CARICO DELLA NEVE SULLE COPERTURE

Il carico provocato dalla neve sulle coperture sarà valutato mediante la seguente espressione:

$$q_s = q_{sk} \cdot \mu_i \cdot C_E \cdot C_t \tag{3.4.1}$$

dove:

 q_{sk} è il valore di riferimento del carico della neve al suolo, di cui al § 3.4.2;

 μ_i è il coefficiente di forma della copertura, di cui al § 3.4.3;

 C_E è il coefficiente di esposizione di cui al § 3.4.4;

C_t è il coefficiente termico di cui al § 3.4.5.

Si assume che il carico della neve agisca in direzione verticale e lo si riferisce alla proiezione orizzontale della superficie della copertura.

3.4.2. VALORE DI RIFERIMENTO DEL CARICO DELLA NEVE AL SUOLO

Il carico della neve al suolo dipende dalle condizioni locali di clima e di esposizione, considerata la variabilità delle precipitazioni nevose da zona a zona.

In mancanza di adeguate indagini statistiche e specifici studi locali, che tengano conto sia dell'altezza del manto nevoso che della sua densità, il carico di riferimento della neve al suolo, per località poste a quota inferiore a 1500 m sul livello del mare, non dovrà essere assunto minore di quello calcolato in base alle espressioni riportate nel seguito, cui corrispondono valori associati ad un periodo di ritorno pari a 50 anni per le varie zone indicate nella Fig. 3.4.1. Tale zonazione non tiene conto di aspetti specifici e locali che, se necessario, devono essere definiti singolarmente.

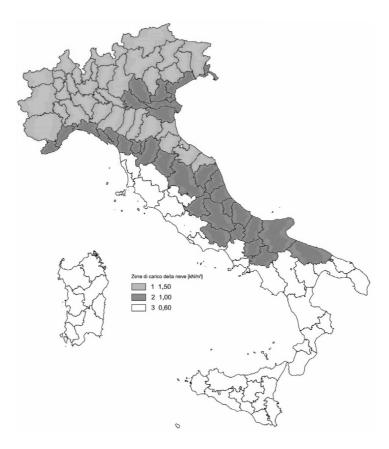


Fig. 3.4.1 – Zone di carico della neve

Nelle espressioni seguenti, l'altitudine di riferimento a_s (espressa in m) è la quota del suolo sul livello del mare nel sito dove è realizzata la costruzione.

Zona I - Alpina

Aosta, Belluno, Bergamo, Biella, Bolzano, Brescia, Como, Cuneo, Lecco, Pordenone, Sondrio, Torino, Trento, Udine, Verbano-Cusio-Ossola, Vercelli, Vicenza:

$$q_{sk} = 1,50 \text{ kN/m}^2 \qquad \qquad a_s \leq 200 \text{ m}$$

$$q_{sk} = 1,39 \left[1 + \left(a_s/728\right)^2\right] \text{ kN/m}^2 \qquad \qquad a_s > 200 \text{ m}$$

Zona I - Mediterranea

Alessandria, Ancona, Asti, Bologna, Cremona, Forlì-Cesena, Lodi, Milano, Modena, Monza Brianza, Novara, Parma, Pavia, Pesaro e Urbino, Piacenza, Ravenna, Reggio Emilia, Rimini, Treviso, Varese:

$$q_{sk} = 1,50 \text{ kN/m}^2 \qquad \qquad a_s \leq 200 \text{ m}$$

$$q_{sk} = 1,35 \left[1 + (a_s/602)^2\right] \text{ kN/m}^2 \qquad \qquad a_s > 200 \text{ m}$$

Zona II

Arezzo, Ascoli Piceno, Avellino, Bari, Barletta-Andria-Trani, Benevento, Campobasso, Chieti, Fermo, Ferrara, Firenze, Foggia, Frosinone, Genova, Gorizia, Imperia, Isernia, L'Aquila, La Spezia, Lucca, Macerata, Mantova, Massa Carrara, Padova, Perugia, Pescara, Pistoia, Prato, Rieti, Rovigo, Savona, Teramo, Trieste, Venezia, Verona:

$$q_{sk} = 1,00 \; kN/m^2 \qquad \qquad a_s \le 200 \; m$$

$$[3.4.4]$$

$$q_{sk} = 0,85 \; [1 + (a_s/481)^2] \; kN/m^2 \qquad \qquad a_s > 200 \; m$$

Zona III

Agrigento, Brindisi, Cagliari, Caltanissetta, Carbonia-Iglesias, Caserta, Catania, Catanzaro, Cosenza, Crotone, Enna, Grosseto, Latina, Lecce, Livorno, Matera, Medio Campidano, Messina, Napoli, Nuoro, Ogliastra, Olbia-Tempio, Oristano, Palermo, Pisa, Potenza, Ragusa, Reggio Calabria, Roma, Salerno, Sassari, Siena, Siracusa, Taranto, Terni, Trapani, Vibo Valentia, Viterbo:

$$q_{sk} = 0.60 \ kN/m^2 \qquad \qquad a_s \le 200 \ m$$

$$[3.4.5]$$

$$q_{sk} = 0.51 \ [1 + (a_s/481)^2] \ kN/m^2 \qquad \qquad a_s > 200 \ m$$

Per altitudini superiori a 1500 m sul livello del mare si deve fare riferimento alle condizioni locali di clima e di esposizione utilizzando comunque valori di carico neve non inferiori a quelli previsti per 1500 m.

Per un'opera di nuova realizzazione in fase di costruzione o per le fasi transitorie relative ad interventi sulle costruzioni esistenti, il periodo di ritorno dell'azione può essere ridotto come di seguito specificato:

- per fasi di costruzione o fasi transitorie con durata prevista in sede di progetto non superiore a tre mesi, si assumerà T_R ≥ 5 anni;
- per fasi di costruzione o fasi transitorie con durata prevista in sede di progetto compresa fra tre mesi d un anno, si assumerà TR ≥ 10 anni.

3.4.3. COEFFICIENTE DI FORMA DELLE COPERTURE


3.4.3.1 GENERALITÀ

I coefficienti di forma delle coperture dipendono dalla forma stessa della copertura e dall'inclinazione sull'orizzontale delle sue parti componenti e dalle condizioni climatiche locali del sito ove sorge la costruzione.

In assenza di dati suffragati da opportuna documentazione, i valori nominali del coefficiente di forma μ_1 delle coperture ad una o a due falde possono essere ricavati dalla Tab. 3.4.II, essendo α , espresso in gradi sessagesimali, l'angolo formato dalla falda con l'orizzontale.

Tab. 3.4.II – Valori del coefficiente di forma

Coefficiente di forma	0°≤ α ≤ 30°	30° < α < 60°	α ≥ 60°
μ1	0,8	$0.8 \cdot \frac{(60 - \alpha)}{30}$	0,0

Si assume che alla neve non sia impedito di scivolare. Se l'estremità più bassa della falda termina con un parapetto, una barriera od altre ostruzioni, allora il coefficiente di forma non potrà essere assunto inferiore a 0.8 indipendentemente dall'angolo α .

Per coperture a più falde, per coperture con forme diverse, così come per coperture contigue a edifici più alti o per accumulo di neve contro parapetti o più in generale per altre situazioni ritenute significative dal progettista si deve fare riferimento a normative o documenti di comprovata validità.

3.4.3.2 COPERTURA AD UNA FALDA

Nel caso delle coperture ad una falda, si deve considerare la condizione di carico riportata in Fig. 3.4.2.

Fig. 3.4.2 - Condizioni di carico per coperture ad una falda

3.4.3.3 COPERTURA A DUE FALDE

Nel caso delle coperture a due falde, si devono considerare le tre condizioni di carico alternative, denominate Caso I, Caso II e Caso III in Fig. 3.4.3.

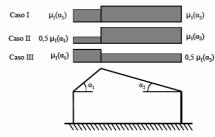


Fig. 3.4.3 - Condizioni di carico per coperture a due falde

3.4.4. COEFFICIENTE DI ESPOSIZIONE

Il coefficiente di esposizione C_E tiene conto delle caratteristiche specifiche dell'area in cui sorge l'opera. Valori consigliati di questo coefficiente sono forniti in Tab. 3.4.I per diverse classi di esposizione. Se non diversamente indicato, si assumerà $C_E = 1$.

Tab. 3.4.I – Valori di C_E per diverse classi di esposizione

Topografia	Descrizione	CE
Battuta dai venti	Aree pianeggianti non ostruite esposte su tutti i lati, senza costruzioni o alberi più alti	0,9
Normale	Aree in cui non è presente una significativa rimozione di neve sulla costruzione prodotta dal vento, a causa del terreno, altre costruzioni o alberi	1,0
Riparata	Aree in cui la costruzione considerata è sensibilmente più bassa del circostante terreno o circondata da costruzioni o alberi più alti	1,1

3.4.5. COEFFICIENTE TERMICO

Il coefficiente termico tiene conto della riduzione del carico della neve, a causa dello scioglimento della stessa, causata dalla perdita di calore della costruzione. Tale coefficiente dipende dalle proprietà di isolamento termico del materiale utilizzato in copertura. In assenza di uno specifico e documentato studio, deve essere posto $C_t = 1$.

3.5. AZIONI DELLA TEMPERATURA

3.5.1. GENERALITÀ

Variazioni giornaliere e stagionali della temperatura esterna, irraggiamento solare e convezione comportano variazioni della distribuzione di temperatura nei singoli elementi strutturali.

La severità delle azioni termiche è in generale influenzata da più fattori, quali le condizioni climatiche del sito, l'esposizione, la massa complessiva della struttura e la eventuale presenza di elementi non strutturali isolanti.

3.5.2. TEMPERATURA DELL'ARIA ESTERNA

La temperatura dell'aria esterna, $T_{est'}$ può assumere il valore T_{max} o T_{min} , definite rispettivamente come temperatura massima estiva e minima invernale dell'aria nel sito della costruzione, con riferimento ad un periodo di ritorno di 50 anni.

Per un'opera di nuova realizzazione in fase di costruzione o per le fasi transitorie relative ad interventi sulle costruzioni esistenti, il periodo di ritorno dell'azione potrà essere ridotto come di seguito specificato:

- per fasi di costruzione o fasi transitorie con durata prevista in sede di progetto non superiore a tre mesi, si assumerà TR ≥ 5 anni:
- per fasi di costruzione o fasi transitorie con durata prevista in sede di progetto compresa fra tre mesi d un anno, si assumerà T_R ≥ 10 anni;

In mancanza di adeguate indagini statistiche basate su dati specifici relativi al sito in esame, T_{max} o T_{min} dovranno essere calcolati in base alle espressioni riportate nel seguito, per le varie zone indicate nella Fig. 3.5.1. Tale zonazione non tiene conto di aspetti specifici e locali che, se necessario, dovranno essere definiti singolarmente.

Fig. 3.5.1 – Zone della temperatura dell'aria esterna.

Nelle espressioni seguenti, T_{max} o T_{min} sono espressi in °C; l'altitudine di riferimento a_s (espressa in m) è la quota del suolo sul livello del mare nel sito dove è realizzata la costruzione.

Zona I

Valle d'Aosta, Piemonte, Lombardia, Trentino-Alto Adige, Veneto, Friuli-Venezia Giulia, Emilia Romagna:

$T_{\min} = -15 - 4 \cdot a_s / 1000$	[3.5.1]
$T_{\text{max}} = 42 - 6 \cdot a_s / 1000$	[3.5.2]

Zona II

Liguria, Toscana, Umbria, Lazio, Sardegna, Campania, Basilicata:

$$T_{min} = -8 - 6 \cdot a_s / 1000$$
 [3.5.3]
 $T_{max} = 42 - 2 \cdot a_s / 1000$ [3.5.4]

Zona III

Marche, Abruzzo, Molise, Puglia:

$$T_{min} = -8 - 7 \cdot a_s / 1000$$
 [3.5.5]
 $T_{max} = 42 - 0.3 \cdot a_s / 1000$ [3.5.6]

Zona IV

Calabria, Sicilia:

$$T_{\min} = -2 - 9 \cdot a_s / 1000$$
 [3.5.7]
 $T_{\max} = 42 - 2 \cdot a_s / 1000$ [3.5.8]

3.5.3. TEMPERATURA DELL'ARIA INTERNA

In mancanza di più precise valutazioni, legate alla tipologia della costruzione ed alla sua destinazione d'uso, la temperatura dell'aria interna, T_{int} , può essere assunta pari a 20 °C.

3.5.4. DISTRIBUZIONE DELLA TEMPERATURA NEGLI ELEMENTI STRUTTURALI

Il campo di temperatura sulla sezione di un elemento strutturale monodimensionale con asse longitudinale x può essere in generale descritto mediante:

- a) la componente uniforme $\Delta T_u = T T_0$ pari alla differenza tra la temperatura media attuale T e quella iniziale alla data della costruzione T_0 ;
- b) le componenti variabili con legge lineare secondo gli assi principali y e z della sezione, ΔT_{My} e ΔT_{Mz} .

Nel caso di strutture soggette ad elevati gradienti termici si dovrà tener conto degli effetti indotti dall'andamento non lineare della temperatura all'interno delle sezioni.

La temperatura media attuale T può essere valutata come media tra la temperatura della superficie esterna $T_{\text{sup,est}}$ e quella della superficie interna dell'elemento considerato, $T_{\text{sup,int}}$.

Le temperature della superficie esterna, $T_{\text{sup,est}}$ e quella della superficie interna $T_{\text{sup,int}}$ dell'elemento considerato vengono valutate a partire dalla temperatura dell'aria esterna, T_{est} e di quella interna, T_{int} tenendo conto del trasferimento di calore per irraggiamento e per convezione all'interfaccia aria-costruzione e della eventuale presenza di materiale isolante (vedi Fig. 3.5.2).

In mancanza di determinazioni più precise, la temperatura iniziale può essere assunta T_0 =15 °C.

Per la valutazione del contributo dell'irraggiamento solare si può fare riferimento alla Tab. 3.5.I.

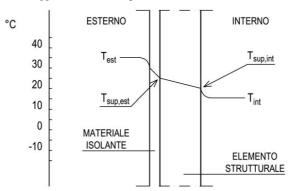


Fig. 3.5.2 - Andamento della temperatura all'interno di un elemento strutturale

Tab. 3.5.I - Contributo dell'irraggiamento solare

Stagione	Natura della superficie	Incremento di Temperatura	
		superfici esposte a Nord-Est	superfici esposte a Sud-Ovest od orizzontali
Estate	Superficie riflettente	0 ℃	18 °C
	Superficie chiara	2 °C	30 °C
	Superficie scura	4 °C	42 °C
Inverno		0 °C	0 °C

3.5.5. AZIONI TERMICHE SUGLI EDIFICI

Nel caso in cui la temperatura non costituisca azione fondamentale per la sicurezza o per la efficienza funzionale della struttura è consentito tener conto, per gli edifici, della sola componente ΔT_u , ricavandola direttamente dalla Tab. 3.5.II.

Nel caso in cui la temperatura costituisca, invece, azione fondamentale per la sicurezza o per la efficienza funzionale della struttura, l'andamento della temperatura T nelle sezioni degli elementi strutturali deve essere valutato più approfonditamente studiando il problema della trasmissione del calore.

 $\textbf{Tab. 3.5.II} - Valori\ di\ \Delta T_{u}\ per\ gli\ edifici$

Tipo di struttura	$\Delta T_{\rm u}$
Strutture in c.a. e c.a.p. esposte	± 15 °C
Strutture in c.a. e c.a.p. protette	± 10 °C
Strutture in acciaio esposte	± 25 °C
Strutture in acciaio protette	± 15 °C

3.5.6. PARTICOLARI PRECAUZIONI NEL PROGETTO DI STRUTTURE SOGGETTE AD AZIONI TERMICHE SPECIALI

Strutture ed elementi strutturali in contatto con liquidi, aeriformi o solidi a temperature diverse, quali ciminiere, tubazioni, sili, serbatoi, torri di raffreddamento, ecc., devono essere progettati tenendo conto delle distribuzioni di temperatura corrispondenti alle specifiche condizioni di servizio.

3.5.7. EFFETTI DELLE AZIONI TERMICHE

Per la valutazione degli effetti delle azioni termiche, si può fare riferimento ai coefficienti di dilatazione termica a temperatura ambiente α_T riportati in Tab. 3.5.III.

Tab. 3.5.III - Coefficienti di dilatazione termica a temperatura ambiente

Materiale	α_{T} [10 ⁻⁶ /°C]
Alluminio	24
Acciaio da carpenteria	12
Calcestruzzo strutturale	10
Strutture miste acciaio-calcestruzzo	12
Calcestruzzo alleggerito	7
Muratura	6 ÷ 10
Legno (parallelo alle fibre)	5
Legno (ortogonale alle fibre)	30 ÷ 70

3.6. AZIONI ECCEZIONALI

Le azioni eccezionali sono quelle che si presentano in occasione di eventi quali incendi, esplosioni ed urti.

E' opportuno che le costruzioni possiedano un grado adeguato di robustezza, in funzione dell'uso previsto della costruzione, individuando gli scenari di rischio e le azioni eccezionali rilevanti ai fini della sua progettazione, secondo quanto indicato al § 2.2.5.

Per le costruzioni in cui sia necessario limitare il rischio d'incendio per la salvaguardia dell'individuo e della collettività, nonché delle proprietà limitrofe e dei beni direttamente esposti al fuoco, devono essere eseguite verifiche specifiche del livello di prestazione strutturale antincendio.

Le strutture devono essere altresì verificate nei confronti delle esplosioni e degli urti per verosimili scenari di rischio o su richiesta del committente.

Le azioni eccezionali considerate nel progetto saranno combinate con le altre azioni mediante la regola di combinazione eccezionale di cui al § 2.5.3.

3.6.1. INCENDIO

3.6.1.1 DEFINIZIONI

Per incendio, si intende la combustione autoalimentata ed incontrollata di materiali combustibili presenti in un compartimento.

Ai fini della presente norma si fa riferimento ad un *incendio convenzionale di progetto* definito attraverso una *curva di incendio* che rappresenta l'andamento, in funzione del tempo, della temperatura media dei gas di combustione nell'intorno della superficie degli elementi strutturali.

La curva di incendio di progetto può essere:

nominale: curva adottata per la classificazione delle costruzioni e per le verifiche di resistenza al fuoco di tipo convenzionale;

naturale: curva determinata in base a modelli d'incendio e a parametri fisici che definiscono le variabili di stato all'interno del compartimento.

La capacità di compartimentazione in caso di incendio è l'attitudine di un elemento costruttivo a conservare, sotto l'azione del fuoco, oltre alla propria stabilità, un sufficiente isolamento termico ed una sufficiente tenuta ai fumi ed ai gas caldi della combustione, nonché tutte le altre prestazioni se richieste.

La capacità portante in caso di incendio è l'attitudine di una struttura, di una parte della struttura o di un elemento strutturale a conservare una sufficiente resistenza meccanica sotto l'azione del fuoco con riferimento alle altre azioni agenti.

La *resistenza al fuoco* riguarda la capacità portante in caso di incendio per una struttura, per una parte della struttura o per un elemento strutturale nonché la capacità di compartimentazione rispetto all'incendio per gli elementi di separazione sia strutturali, come muri e solai, sia non strutturali , come porte e tramezzi.

Per compartimento antincendio si intende una parte della costruzione delimitata da elementi costruttivi idonei a garantire, sotto l'azione del fuoco e per un dato intervallo di tempo, la capacità di compartimentazione.

Per carico di incendio si intende il potenziale termico netto della totalità dei materiali combustibili contenuti in uno spazio, corretto in base ai parametri indicativi della partecipazione alla combustione dei singoli materiali.

Per carico d'incendio specifico si intende il carico di incendio riferito all'unità di superficie lorda.

Per carico di incendio specifico di progetto si intende il carico di incendio specifico corretto in base ai parametri indicatori del rischio di incendio del compartimento e dei fattori relativi alle misure di protezione presenti.

I valori del carico d'incendio specifico di progetto ($q_{f,d}$) sono determinati mediante la relazione:

$$q_{f,d} = q_f \cdot \delta_{q1} \cdot \delta_{q2} \cdot \delta_n \tag{3.6.1}$$

dove:	
qf	è il valore nominale del carico d'incendio [MJ/m²].
$\delta_{q1} \geq 1{,}00$	è un fattore che tiene conto del rischio di incendio in relazione alla superficie del compartimento
δ _{q2} ≥ 0,80	è un fattore che tiene conto del rischio di incendio in relazione al tipo di attività svolta nel compartimento
$\delta_n = \prod_{i=1}^{10} \delta_{ni} \ge 0{,}20$	è un fattore che tiene conto delle differenti misure di protezione dall'incendio (sistemi automatici di estinzione, rivelatori, rete idranti, squadre antincendio, ecc.)

Qualora nel compartimento siano presenti elevate dissimmetrie nella distribuzione dei materiali combustibili il valore nominale q_f del carico d'incendio è calcolato anche con riferimento all'effettiva distribuzione dello stesso. Per distribuzioni molto concentrate del materiale combustibile si può fare riferimento all'incendio localizzato, valutando, in ogni caso, se si hanno le condizioni per lo sviluppo di un incendio generalizzato. Le indicazioni per il calcolo del carico di incendio specifico di progetto sono fornite nel decreto del Ministro dell'Interno 9 marzo 2007 e ss.mm.ii.

Per *incendio localizzato* deve intendersi un focolaio d'incendio che interessa una zona limitata del compartimento antincendio, con sviluppo di calore concentrato in prossimità degli elementi strutturali posti superiormente al focolaio o immediatamente adiacenti.

Nel caso di presenza di elementi strutturali lignei è possibile considerare solo una quota parte del loro contributo alla determinazione del carico di incendio, da definire con riferimento a riconosciute normative o documenti di comprovata validità.

3.6.1.2 RICHIESTE DI PRESTAZIONE

Le prestazioni richieste alle strutture di una costruzione, in funzione degli obiettivi definiti al § 2.2.3, sono individuate in termini di livello nella Tab. 3.5.IV.

Tab. 3.5.IV - Livelli di prestazione in caso di incendi

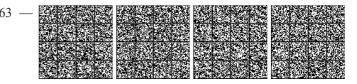
Livello I	Nessun requisito specifico di resistenza al fuoco dove le conseguenze del collas- so delle strutture siano accettabili o dove il rischio di incendio sia trascurabile;
Livello II	Mantenimento dei requisiti di resistenza al fuoco delle strutture per un periodo sufficiente a garantire l'evacuazione degli occupanti in luogo sicuro all'esterno della costruzione;
Livello III	Mantenimento dei requisiti di resistenza al fuoco delle strutture per un periodo congruo con la gestione dell'emergenza;
Livello IV	Requisiti di resistenza al fuoco delle strutture per garantire, dopo la fine dell'incendio, un limitato danneggiamento delle strutture stesse;
Livello V	Requisiti di resistenza al fuoco delle strutture per garantire, dopo la fine dell'incendio, il mantenimento della totale funzionalità delle strutture stesse.

I livelli di prestazione comportano classi di resistenza al fuoco, da stabilire per i diversi tipi di costruzioni. In particolare, per le costruzioni nelle quali si svolgono attività soggette al controllo del Corpo Nazionale dei Vigili del Fuoco, oppure disciplinate da specifiche regole tecniche di prevenzione incendi, i livelli di prestazione e le connesse classi di resistenza al fuoco sono stabiliti dalle disposizioni emanate dal Ministero dell'Interno ai sensi del D. Lgs. 8 marzo 2006, n. 139 e successive modificazioni e integrazioni.

I livelli di prestazione e le connesse classi di resistenza al fuoco sono individuati in relazione alla destinazione d'uso dell'edificio, al tipo e al quantitativo di materiale combustibile in esso presente, alla sua estensione/altezza, al massimo affollamento ipotizzabile e alle misure di protezione antincendio presenti nell'opera.

3.6.1.3 CLASSI DI RESISTENZA AL FUOCO

Le *classi* di resistenza al fuoco sono: 15, 20, 30, 45, 60, 90, 120, 180, 240 e 360; esse esprimono il tempo, in minuti primi, durante il quale la resistenza al fuoco deve essere garantita.


Le classi di resistenza al fuoco sono riferite all'incendio convenzionale rappresentato dalle curve di incendio nominali.

3.6.1.4 CRITERI DI PROGETTAZIONE

La progettazione delle strutture in condizioni di incendio deve garantire il raggiungimento delle prestazioni indicate al § 3.6.1.2. La sicurezza del sistema strutturale in caso di incendio si determina sulla base della resistenza al fuoco dei singoli elementi strutturali, di porzioni di struttura o dell'intero sistema costruttivo.

3.6.1.5 PROCEDURA DI ANALISI DELLA RESISTENZA AL FUOCO

L'analisi della resistenza al fuoco può essere così articolata:

- individuazione dell'incendio di progetto appropriato alla costruzione in esame;
- analisi della evoluzione della temperatura all'interno degli elementi strutturali;
- analisi del comportamento meccanico delle strutture esposte al fuoco;
- verifiche di sicurezza.

3.6.1.5.1 Incendio di progetto

Secondo l'incendio convenzionale di progetto adottato, l'andamento delle temperature viene valutato con riferimento a una delle due seguenti condizioni:

- curva nominale d'incendio, da individuare tra quelle indicate successivamente, per l'intervallo di tempo di esposizione pari alla classe di resistenza al fuoco prevista, senza alcuna fase di raffreddamento,
- curva naturale d'incendio, da individuare tenendo conto dell'intera durata dello stesso, compresa la fase di raffreddamento fino al ritorno alla temperatura ambiente.

Nel caso di incendio di materiali combustibili prevalentemente di natura cellulosica, la curva di incendio nominale di riferimento è la curva di incendio nominale standard definita come segue:

$$\theta_{g} = 20 + 345 \log_{10} (8t + 1) [^{\circ}C]$$
 [3.6.2]

dove θ_g è la temperatura dei gas caldi, espressa in °C, e t è il tempo espresso in minuti primi.

Nel caso di incendi di quantità rilevanti di idrocarburi o altre sostanze con equivalente velocità di rilascio termico, la curva di incendio nominale standard può essere sostituita con la *curva nominale degli idrocarburi* seguente:

$$\theta_g = 1080 (1 - 0.325 \cdot e^{-0.167t} - 0.675 \cdot e^{-2.5t}) + 20 [\degree C]$$
 [3.6.3]

Nel caso di incendi sviluppatisi all'interno del compartimento, ma che coinvolgono strutture poste all'esterno, per queste ultime la curva di incendio nominale standard può essere sostituita con la curva nominale esterna seguente:

$$\theta_g = 660 (1 - 0.687 \cdot e^{-0.32t} - 0.313 \cdot e^{-3.8t}) + 20 [\circ C]$$
 [3.6.4]

Gli incendi convenzionali di progetto vengono generalmente applicati ad un compartimento dell'edificio alla volta.

Sono ammesse altresì specifiche curve nominali, per descrivere particolari scenari di incendio (tunnel curve, slow heating curve, ecc.), purché di comprovata validità.

3.6.1.5.2 Analisi dell'evoluzione della temperatura

Il campo termico all'interno dei componenti della struttura viene valutato risolvendo il corrispondente problema di propagazione del calore, tenendo conto del trasferimento di calore per irraggiamento e convezione dai gas di combustione alla superficie esterna degli elementi e considerando l'eventuale presenza di materiali protettivi.

3.6.1.5.3 Analisi del comportamento meccanico

Il comportamento meccanico della struttura viene analizzato tenendo conto della riduzione della resistenza meccanica dei componenti dovuta al danneggiamento dei materiali per effetto dell'aumento di temperatura.

L'analisi del comportamento meccanico deve essere effettuata per lo stesso periodo di tempo impiegato nell'analisi dell'evoluzione della temperatura.

Si deve tener conto della presenza delle azioni permanenti e di quelle azioni variabili che agiscono contemporaneamente all'incendio secondo la combinazione eccezionale.

Non si prende in considerazione la possibilità di concomitanza dell'incendio con altre azioni eccezionali e con le azioni sismiche.

Si deve tener conto, ove necessario, degli effetti delle sollecitazioni indirette dovute alle dilatazioni termiche contrastate, ad eccezione dei seguenti casi:

- è riconoscibile a priori che esse sono trascurabili o favorevoli;
- sono implicitamente tenute in conto nei modelli semplificati e conservativi di comportamento strutturale in condizioni di incendio

Le sollecitazioni indirette, dovute agli elementi strutturali adiacenti a quello preso in esame, possono essere trascurate quando i requisiti di sicurezza all'incendio sono valutati in riferimento alla curva nominale d'incendio e alle classi di resistenza al fuoco.

3.6.1.5.4 Verifiche di sicurezza

La verifica della resistenza al fuoco viene eseguita controllando che la resistenza meccanica venga mantenuta per il tempo corrispondente alla classe di resistenza al fuoco della struttura con riferimento alla curva nominale di incendio.

Nel caso in cui si faccia riferimento a una curva naturale d'incendio, le analisi e le verifiche devono essere estese all'intera durata dell'incendio, inclusa la fase di raffreddamento.

Fermo restando il rispetto delle disposizioni legislative emanate ai sensi del D.Lgs. 139/2006, nel caso in cui i requisiti di resistenza al fuoco delle strutture debbano essere mantenuti per un periodo limitato (ad esempio, livello di prestazione II di Tab. 3.5.IV), la verifica della capacità portante delle strutture potrà essere limitata a un tempo di esposizione all'incendio naturale congruente con il livello di prestazione scelto.

3.6.2. ESPLOSIONI

3.6.2.1 GENERALITÀ

Gli effetti delle esplosioni possono essere tenuti in conto nella progettazione di quelle costruzioni in cui possono presentarsi miscele esplosive di polveri o gas in aria o in cui sono contenuti materiali esplosivi.

Sono escluse da questo capitolo le azioni derivanti da esplosioni che si verificano all'esterno della costruzione.

3.6.2.2 CLASSIFICAZIONE DELLE AZIONI DOVUTE ALLE ESPLOSIONI

Le azioni di progetto dovute alle esplosioni sono classificate, sulla base degli effetti che possono produrre sulle costruzioni, in tre categorie, come indicate in Tab. 3.6.I.

Tab. 3.6.I - Categorie di azione dovute alle esplosioni

Categoria di azione	Possibili effetti
1	Effetti trascurabili sulle strutture
2	Effetti localizzati su parte delle strutture
3	Effetti generalizzati sulle strutture

3.6.2.3 MODELLAZIONE DELLE AZIONI DOVUTE ALLE ESPLOSIONI

Le esplosioni esercitano sulle costruzioni onde di pressione. Per le costruzioni usuali, è ammesso che tali onde di pressione siano convenzionalmente ricondotte a distribuzioni di pressioni statiche equivalenti, purché comprovate da modelli teorici adeguati.

Per esplosioni di Categoria 1 non è richiesto alcun tipo di verifica.

Per esplosioni di Categoria 2, ove negli ambienti a rischio di esplosione siano presenti idonei pannelli di sfogo, si può utilizzare la pressione statica equivalente nominale, espressa in kN/m^2 , data dal valore maggiore fra quelli forniti dalle espressioni:

$$p_d = 3 + p_v$$
 [3.6.5a]
 $p_d = 3 + p_v / 2 + 0.04 / (A_v / V)^2$ [3.6.5b]

dove:

 p_v è la pressione statica uniformemente distribuita in corrispondenza della quale le aperture di sfogo cedono, in kN/m^2

A_v è l'area delle aperture di sfogo, in m²

V è il volume dell'ambiente, in m³

Il rapporto fra l'area dei componenti di sfogo e il volume da proteggere deve soddisfare la relazione:

$$0.05 \text{ m}^{-1} \le A_V / V \le 0.15 \text{ m}^{-1}$$
. [3.6.6]

Queste espressioni sono valide in ambienti o in zone di edifici il cui volume totale non superi 1.000 m³.

La pressione dovuta all'esplosione è intesa agire simultaneamente su tutte le pareti dell'ambiente o del gruppo di ambienti considerati.

Comunque, tutti gli elementi chiave e le loro connessioni devono essere progettati per sopportare una pressione statica equivalente con valore di progetto p_d = 20 kN/m², applicata da ogni direzione, insieme con la reazione che ci si attende venga trasmessa direttamente alle membrature dell'elemento chiave da ogni elemento costruttivo, ad esso collegato, altresì soggetto alla stessa pressione.

Per esplosioni di Categoria 3 devono essere effettuati studi più approfonditi.

3.6.2.4 CRITERI DI PROGETTAZIONE

Sono considerati accettabili i danneggiamenti localizzati, anche gravi, dovuti ad esplosioni, a condizione che ciò non esponga al pericolo l'intera struttura o che la capacità portante sia mantenuta per un tempo sufficiente affinché siano prese le necessarie misure di emergenza.

 $Possono\ essere\ adottate,\ nella\ progettazione,\ opportune\ misure\ di\ protezione\ quali:$

- la introduzione di superfici in grado di collassare sotto sovrappressioni prestabilite;
- la introduzione di giunti strutturali allo scopo di separare porzioni di edificio a rischio di esplosione da altre;
- la prevenzione di crolli significativi in conseguenza di cedimenti strutturali localizzati.

3.6.3. URTI

3.6.3.1 GENERALITÀ

Nel seguito vengono definite le azioni dovute a:

- urti da traffico veicolare;
- urti da traffico ferroviario;
- urti da imbarcazioni ed aeromobili.

Non vengono prese in esame le azioni eccezionali dovute a fenomeni naturali, come la caduta di rocce, le frane o le valanghe.

3.6.3.2 CLASSIFICAZIONE DELLE AZIONI DOVUTE AGLI URTI

Le azioni di progetto dovute agli urti sono classificate, sulla base degli effetti che possono produrre sulle costruzioni, in tre categorie, come indicato nella Tab. 3.6.II.

Tab. 3.6.II - Categorie di azione

Categoria di azione	Possibili effetti
1	Effetti trascurabili sulle strutture
2	Effetti localizzati su parte delle strutture
3	Effetti generalizzati sulle strutture

Le azioni dovute agli urti devono essere applicate a quegli elementi strutturali, o ai loro sistemi di protezione, per i quali le relative conseguenze appartengono alle categorie 2 e 3.

3.6.3.3 URTI DA TRAFFICO VEICOLARE

3.6.3.3.1 Traffico veicolare sotto ponti o altre strutture

Le azioni da urto hanno direzione parallela a quella del moto del veicolo al momento dell'impatto. Nelle verifiche si possono considerare, non simultaneamente, due azioni nelle direzioni parallela $(F_{d,x})$ e ortogonale $(F_{d,y})$ alla direzione di marcia normale, con

$$F_{d,y} = 0.50F_{d,x} ag{3.6.7}$$

In assenza di determinazioni più accurate e trascurando la capacità dissipativa della struttura, si possono adottare le forze statiche equivalenti riportate in Tab. 3.6.III.

Tab. 3.6.III – Forze statiche equivalenti agli urti di veicoli

Tipo di strada	Tipo di veicolo	Forza F _{d,x} [kN]
Autostrade, strade extraurbane	-	1000
Strade locali	-	750
Strade urbane	-	500
Aree di parcheggio e autorimesse	Automobili	50
	Veicoli destinati al trasporto di merci, aventi massa massima superiore a 3,5 t	150

Per urti di automobili su membrature verticali, la forza risultante di collisione F deve essere applicata sulla struttura 0,5 m al di sopra della superficie di marcia. L'area di applicazione della forza è pari a 0,25 m (in altezza) per il valore più piccolo tra 1,50 m e la larghezza della membratura (in larghezza).

Per urti sulle membrature verticali, la forza risultante di collisione F deve essere applicata sulla struttura 1,25 m al di sopra della superficie di marcia. L'area di applicazione della forza è pari a 0,5 m (in altezza) per il valore più piccolo tra 1,50 m e la larghezza della membratura (in larghezza).

Nel caso di urti su elementi strutturali orizzontali al di sopra della strada, la forza risultante di collisione F da utilizzare per le verifiche dell'equilibrio statico o della resistenza o della capacità di deformazione degli elementi strutturali è data da:

$$F = r F_{d,x}$$
 [3.6.8]

dove il fattore r è pari ad 1,0 per altezze del sottovia fino a 5 m, decresce linearmente da 1,0 a 0 per altezze comprese fra 5 e 6 m ed è pari a 0 per altezze superiori a 6 m. La forza F è applicata sulle superfici verticali (prospetto dell'elemento strutturale).

Sull'intradosso dell'elemento strutturale si devono considerare gli stessi carichi da urto F di cui sopra, con un'inclinazione rispetto all'orizzontale di 10° verso l'alto.

L'area di applicazione della forza è assunta pari a 0,25 per 0,25 m.

Nelle costruzioni dove sono presenti con regolarità carrelli elevatori si può considerare equivalente agli urti accidentali un'azione orizzontale statica, applicata all'altezza di 0,75 m dal piano di calpestio, pari a

$$F = 5 W$$
 [3.6.9]

essendo W il peso complessivo del carrello elevatore e del massimo carico trasportabile.

3.6.3.3.2 Traffico veicolare sopra i ponti

In assenza di specifiche prescrizioni, nel progetto strutturale dei ponti si può tener conto delle forze causate da collisioni accidentali sugli elementi di sicurezza attraverso una forza orizzontale equivalente di collisione pari a 100 kN. Essa rappresenta l'effetto dell'impatto da trasmettere ai vincoli e deve essere considerata agente trasversalmente ed orizzontalmente 100 mm sotto la sommità dell'elemento o 1,0 m sopra il livello del piano di marcia, a seconda di quale valore sia più piccolo.

Le azioni da considerare nelle verifiche locali dell'impalcato dovranno essere definite in accordo al § 5.1.3.10.

Le forze di collisione da veicoli sugli elementi strutturali eventualmente presenti al disopra del livello di carreggiata sono quelle specificate nel § 3.6.3.3.1

3.6.3.4 URTI DA TRAFFICO FERROVIARIO

Al verificarsi di un deragliamento può esservi il rischio di collisione fra i veicoli deragliati e le strutture adiacenti la ferrovia. Queste ultime dovranno essere progettate in modo da resistere alle azioni conseguenti ad una tale evenienza.

Dette azioni devono determinarsi sulla base di una specifica analisi di rischio, tenendo conto della presenza di eventuali elementi protettivi o sacrificali (respingenti) oppure di condizioni di impianto che possano ridurre il rischio di accadimento dell'evento (marciapiedi, controrotaie, ecc.). Queste azioni non si applicano sui sostegni di tettoie o di pensiline di impianti ferroviari.

In mancanza di specifiche analisi di rischio possono assumersi le seguenti azioni statiche equivalenti, in funzione della distanza d degli elementi esposti dall'asse del binario:

- per d ≤ 5 m:
 - 4000 kN in direzione parallela alla direzione di marcia dei convogli ferroviari;
 - 1500 kN in direzione perpendicolare alla direzione di marcia dei convogli ferroviari;
- per 5 m < $d \le 15$ m:
 - 2000 kN in direzione parallela alla direzione di marcia dei convogli ferroviari;
 - 750 kN in direzione perpendicolare alla direzione di marcia dei convogli ferroviari;
- per d > 15 m pari a zero in entrambe le direzioni.

Queste forze dovranno essere applicate a 1,80 m dal piano del ferro e non dovranno essere considerate agenti simultaneamente.

3.6.3.5 URTI DI IMBARCAZIONI ED AEROMOBILI

Le azioni derivanti da urti di imbarcazioni ed aeromobili vanno valutate sulla base delle indicazioni riportate in documenti di comprovata validità, di cui al Cap. 12.

CAPITOLO 4.

COSTRUZIONI CIVILI E INDUSTRIALI

4.1. COSTRUZIONI DI CALCESTRUZZO

Formano oggetto delle presenti norme le strutture di:

- calcestruzzo armato normale (cemento armato)
- calcestruzzo armato precompresso (cemento armato precompresso)
- calcestruzzo a bassa percentuale di armatura o non armato

con riferimento a calcestruzzi di peso normale e con esclusione di quelle opere per le quali vige una regolamentazione apposita a carattere particolare.

Al § 4.1.12 sono date inoltre le norme integrative per le strutture in calcestruzzo di inerte leggero.

Nel seguito si intendono per calcestruzzi ordinari i calcestruzzi conformi al presente § 4.1 ed al § 11.2, con esclusione dei calcestruzzi di aggregati leggeri (LC), di cui al §4.1.12, e di quelli fibrorinforzati (FRC), di cui al §11.2.12.

Ai fini della valutazione del comportamento e della resistenza delle strutture in calcestruzzo, questo viene titolato ed identificato mediante la classe di resistenza contraddistinta dai valori caratteristici delle resistenze cilindrica e cubica a compressione uniassiale, misurate rispettivamente su provini cilindrici (o prismatici) e cubici, espressa in MPa (§ 11.2).

Per le classi di resistenza normalizzate per calcestruzzo normale si può fare utile riferimento a quanto indicato nelle norme UNI EN 206 e nella UNI 11104.

Sulla base della denominazione normalizzata vengono definite le classi di resistenza della Tab. 4.1.I.

Tab. 4.1.I - Classi di resistenza

Classe di resistenza
C8/10
C12/15
C16/20
C20/25
C25/30
C30/37
C35/45
C40/50
C45/55
C50/60
C55/67
C60/75
C70/85
C80/95
C90/105

Oltre alle classi di resistenza riportate in Tab. 4.1.I si possono prendere in considerazione le classi di resistenza già in uso C28/35 e C32/40.

I calcestruzzi delle diverse classi di resistenza trovano impiego secondo quanto riportato nella Tab. 4.1.II, fatti salvi i limiti derivanti dal rispetto della durabilità.

Per classi di resistenza superiore a C70/85 si rinvia al caso C) del § 11.1.

Per le classi di resistenza superiori a C45/55, la resistenza caratteristica e tutte le grandezze meccaniche e fisiche che hanno influenza sulla resistenza e durabilità del conglomerato devono essere accertate prima dell'inizio dei lavori tramite un'apposita sperimentazione preventiva e la produzione deve seguire specifiche procedure per il controllo di qualità.

Tab. 4.1.II – Impiego delle diverse classi di resistenza

Strutture di destinazione	Classe di resistenza minima
Per strutture non armate o a bassa percentuale di armatura (§ 4.1.11)	C8/10
Per strutture semplicemente armate	C16/20
Per strutture precompresse	C28/35

4.1.1. VALUTAZIONE DELLA SICUREZZA E METODI DI ANALISI

La valutazione della sicurezza va condotta secondo i principi fondamentali ed i metodi precisati al Capitolo 2.

In particolare per l'analisi strutturale, volta alla valutazione degli effetti delle azioni, si potranno adottare i metodi seguenti:

- a) analisi elastica lineare;
- b) analisi plastica;
- c) analisi non lineare.

Quando rilevante, nei diversi metodi di analisi sopra citati vanno considerati gli effetti del secondo ordine (§ 4.1.1.4).

Le analisi globali hanno lo scopo di stabilire la distribuzione delle forze interne, delle tensioni, delle deformazioni e degli spostamenti nell'intera struttura o in una parte di essa.

Analisi locali possono essere necessarie nelle zone singolari quali quelle poste:

- in prossimità degli appoggi;
- in corrispondenza di carichi concentrati;
- alle intersezioni travi-colonne;
- nelle zone di ancoraggio;
- in corrispondenza di variazioni della sezione trasversale.

4.1.1.1 ANALISI ELASTICA LINEARE

L'analisi elastica lineare può essere usata per valutare gli effetti delle azioni sia per gli stati limite di esercizio sia per gli stati limite ultimi

Per la determinazione degli effetti delle azioni, le analisi saranno effettuate assumendo:

- sezioni interamente reagenti con rigidezze valutate riferendosi al solo calcestruzzo;
- relazioni tensione deformazione lineari:
- valori medi del modulo d'elasticità

Per la determinazione degli effetti delle deformazioni termiche, degli eventuali cedimenti e del ritiro, le analisi saranno effettuate assumendo:

- per gli stati limite ultimi, rigidezze ridotte valutate ipotizzando che le sezioni siano fessurate (in assenza di valutazioni più
 precise la rigidezza delle sezioni fessurate potrà essere assunta pari alla metà della rigidezza delle sezioni interamente reagenti);
- per gli stati limite di esercizio, rigidezze intermedie tra quelle delle sezioni interamente reagenti e quelle delle sezioni fessura-

Per le sole verifiche agli stati limite ultimi, i risultati dell'analisi elastica possono essere modificati con una ridistribuzione dei momenti, nel rispetto dell'equilibrio e delle capacità di rotazione plastica delle sezioni dove si localizza la ridistribuzione. In particolare la ridistribuzione non è ammessa per i pilastri e per i nodi dei telai, è consentita per le travi continue, le travi di telai in cui possono essere trascurati gli effetti del secondo ordine e le solette, a condizione che le sollecitazioni di flessione siano prevalenti ed i rapporti tra le luci di campate contigue siano compresi nell'intervallo 0,5-2,0.

Per le travi e le solette che soddisfano le condizioni dette, la ridistribuzione dei momenti flettenti può effettuarsi senza esplicite verifiche in merito alla duttilità delle membrature, purché il rapporto δ tra il momento dopo la ridistribuzione ed il momento prima della ridistribuzione risulti $1 \ge \delta \ge 0.70$.

I valori di δ si ricavano dalle espressioni:

$$\begin{split} \delta \geq &0.44 + 1.25 \cdot (0.6 + 0.0014 / \varepsilon_{cu}) x \ / \ d \qquad & \text{per } f_{ck} \leq 50 \ \text{MPa} \end{split} \tag{4.1.1}$$
 $\delta \geq &0.54 + 1.25 \cdot (0.6 + 0.0014 / \varepsilon_{cu}) x \ / \ d \qquad & \text{per } f_{ck} \geq 50 \ \text{MPa} \end{split} \tag{4.1.2}$

dove x è l'altezza della zona compressa dopo la ridistribuzione, d è l'altezza utile della sezione (Fig.4.1.4) ed ϵ_{cu} è definita in § 4.1.2.1.2.1.

Per le travi continue, le travi di telai in cui possono essere trascurati gli effetti del secondo ordine e le solette, il rapporto x/d nelle sezioni critiche non deve comunque superare il valore 0,45 per $f_{ck} \le 50$ MPa e 0,35 per $f_{ck} > 50$ MPa.

4.1.1.2 ANALISI PLASTICA

L'analisi plastica può essere usata per valutare gli effetti di azioni statiche e per i soli stati limite ultimi.

Al materiale si può attribuire un diagramma tensioni-deformazioni rigido-plastico verificando che la duttilità delle sezioni dove si localizzano le plasticizzazioni sia sufficiente a garantire la formazione del meccanismo previsto.

Nell'analisi si trascurano gli effetti di precedenti applicazioni del carico e si assume un incremento monotono dell'intensità delle azioni e la costanza del rapporto tra le loro intensità così da pervenire ad un unico moltiplicatore di collasso. L'analisi può essere del primo o del secondo ordine.

4.1.1.3 ANALISI NON LINEARE

L'analisi non lineare può essere usata per valutare gli effetti di azioni statiche e dinamiche, sia per gli stati limite di esercizio, sia per gli stati limite ultimi, a condizione che siano soddisfatti l'equilibrio e la congruenza.

Al materiale si può attribuire un diagramma tensioni-deformazioni che ne rappresenti adeguatamente il comportamento reale, verificando che le sezioni dove si localizzano le plasticizzazioni siano in grado di sopportare allo stato limite ultimo tutte le deformazioni non elastiche derivanti dall'analisi, tenendo in appropriata considerazione le incertezze.

Nell'analisi si trascurano gli effetti di precedenti applicazioni del carico e si assume un incremento monotono dell'intensità delle azioni e la costanza del rapporto tra le loro intensità. L'analisi può essere del primo o del secondo ordine.

4.1.1.4 EFFETTI DELLE DEFORMAZIONI

In generale, è possibile effettuare:

- l'analisi del primo ordine, imponendo l'equilibrio sulla configurazione iniziale della struttura,
- l'analisi del secondo ordine, imponendo l'equilibrio sulla configurazione deformata della struttura.

L'analisi globale può condursi con la teoria del primo ordine nei casi in cui possano ritenersi trascurabili gli effetti delle deformazioni sull'entità delle sollecitazioni, sui fenomeni di instabilità e su qualsiasi altro rilevante parametro di risposta della struttura.

Gli effetti del secondo ordine possono essere trascurati se sono inferiori al 10% dei corrispondenti effetti del primo ordine, oppure se sono rispettate le condizioni di cui al § 4.1.2.3.9.2.

4.1.2. VERIFICHE DEGLI STATI LIMITE

4.1.2.1 MATERIALI

4.1.2.1.1 Resistenze di progetto dei materiali

4.1.2.1.1.1 Resistenza di progetto a compressione del calcestruzzo

Per il calcestruzzo la resistenza di progetto a compressione, $\rm f_{cd}$, é:

$$f_{cd} = \alpha_{cc} f_{ck} / \gamma_c$$
 [4.1.3]

dove:

 α_{cc} è il coefficiente riduttivo per le resistenze di lunga durata;

- γ_c è il coefficiente parziale di sicurezza relativo al calcestruzzo;
- f_{ck} è la resistenza caratteristica cilindrica a compressione del calcestruzzo a 28 giorni.

Il coefficiente γ_c è pari ad 1,5.

Il coefficiente α_{cc} è pari a 0,85.

Nel caso di elementi piani (solette, pareti, ...) gettati in opera con calcestruzzi ordinari e con spessori minori di 50 mm, la resistenza di progetto a compressione va ridotta a $0.80 \, f_{cd}$.

Il coefficiente γ_c può essere ridotto da 1,5 a 1,4 per produzioni continuative di elementi o strutture, soggette a controllo continuativo del calcestruzzo dal quale risulti un coefficiente di variazione (rapporto tra scarto quadratico medio e valor medio) della resistenza non superiore al 10%. Le suddette produzioni devono essere inserite in un sistema di qualità di cui al § 11.8.3.

4.1.2.1.1.2 Resistenza di progetto a trazione del calcestruzzo

La resistenza di progetto a trazione, f_{ctd}, vale:

$$f_{ctd} = f_{ctk} / \gamma_c$$
 [4.1.4]

dove:

- γ_c è il coefficiente parziale di sicurezza relativo al calcestruzzo già definito al § 4.1.2.1.1.1;
- f_{ctk} è la resistenza caratteristica a trazione del calcestruzzo (§ 11.2.10.2).

Il coefficiente γ_c assume il valore 1,5.

Nel caso di elementi piani (solette, pareti, ...) gettati in opera con calcestruzzi ordinari e con spessori minori di 50 mm, la resistenza di progetto a trazione va ridotta a $0.80f_{\rm ctd}$.

Il coefficiente γ_c può essere ridotto, da 1,5 a 1,4 nei casi specificati al § 4.1.2.1.1.1.

4.1.2.1.1.3 Resistenza di progetto dell'acciaio

La resistenza di progetto dell'acciaio f_{vd} è riferita alla tensione di snervamento ed il suo valore è dato da:

$$f_{yd} = f_{yk}/\gamma_s$$
 [4.1.5]

dove

 $\gamma_s \;\; \grave{\rm e} \; il$ coefficiente parziale di sicurezza relativo all'acciaio;

 f_{yk} per armatura ordinaria è la tensione caratteristica di snervamento dell'acciaio (§ 11.3.2), per armature da precompressione è la tensione convenzionale caratteristica di snervamento data, a seconda del tipo di prodotto, da f_{pyk} (barre), $f_{p(0,1)k}$ (fili), $f_{p(1)k}$ (trefoli e trecce); si veda in proposito la Tab. 11.3.VIII.

Il coefficiente γ_s assume sempre, per tutti i tipi di acciaio, il valore 1,15.

4.1.2.1.1.4 Tensione tangenziale di aderenza acciaio-calcestruzzo

La resistenza tangenziale di aderenza di progetto f_{bd} vale:

$$f_{bd} = f_{bk} / \gamma_c \tag{4.1.6}$$

dove:

 $\gamma_{\rm c}$ è il coefficiente parziale di sicurezza relativo al calcestruzzo, pari a 1,5;

 $f_{bk}\,$ è la resistenza tangenziale caratteristica di aderenza data da:

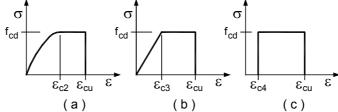
$$f_{bk} = 2,25 \cdot \eta_1 \cdot \eta_2 \cdot f_{ctk}$$
 [4.1.7]

in cui

 η_1 = 1,0 in condizioni di buona aderenza;

 η_1 = 0,7 in condizioni di non buona aderenza, quali nei casi di armature molto addensate, ancoraggi in zona tesa, ancoraggi in zone superiori di getto, in elementi strutturali realizzati con casseforme scorrevoli, a meno che non si adottino idonei provvedimenti:

 $\eta_2 = 1.0$ per barre di diametro $\Phi \le 32$ mm


 η_2 = (132 - Φ)/100 per barre di diametro superiore

La lunghezza di ancoraggio di progetto e la lunghezza di sovrapposizione sono influenzate dalla forma delle barre, dal copriferro, dall'effetto di confinamento dell'armatura trasversale, dalla presenza di barre trasversali saldate, dalla pressione trasversale lungo la lunghezza di ancoraggio e dalla percentuale di armatura sovrapposta rispetto all'armatura totale. Per le regole di dettaglio da adottare si potrà fare utile riferimento alla sezione 8 di UNI EN 1992-1-1:2015.

4.1.2.1.2 Diagrammi di progetto dei materiali '

4.1.2.1.2.1 Diagrammi di progetto tensione-deformazione del calcestruzzo

Per il diagramma tensione-deformazione del calcestruzzo è possibile adottare opportuni modelli rappresentativi del reale comportamento del materiale, definiti in base alla resistenza di progetto f_{cd} e alla deformazione ultima di progetto ϵ_{cu} .

Fig. 4.1.1 – Modelli σ-ε per il calcestruzzo

In Fig. 4.1.1 sono rappresentati i modelli σ - ϵ per il calcestruzzo:

(a) parabola-rettangolo; (b) triangolo-rettangolo; (c) rettangolo (stress block).

In particolare, per le classi di resistenza pari o inferiore a C50/60 si può porre:

 $\begin{aligned} \varepsilon_{c2} &= 0,20\% & \varepsilon_{cu} &= 0,35\% \\ \varepsilon_{c3} &= 0,175\% & \varepsilon_{c4} &= 0,07\% \end{aligned}$

Per le classi di resistenza superiore a C50/60 si può porre:

 $\epsilon_{c2} = 0.20\% \ + 0.0085\% (f_{ck} - 50)^{0.53} \\ \epsilon_{cu} = 0.26\% \ + 3.5\% \ [(90 - f_{ck}) \ / 100]^{4}$

 $\varepsilon_{c3} = 0.175\% + 0.055\% [(f_{ck} - 50)/40] \quad \varepsilon_{c4} = 0.2 \cdot \varepsilon_{c1}$


purché si adottino opportune limitazioni quando si usa il modello (c).

Per sezioni o parti di sezioni soggette a distribuzioni di tensione di compressione approssimativamente uniformi, si assume per la deformazione ultima di progetto il valore ε_{c2} anziché ε_{cu} .

Calcestruzzo confinato

Per il diagramma tensione-deformazione del calcestruzzo confinato è possibile adottare opportuni modelli rappresentativi del reale comportamento del materiale in stato triassiale. Questi modelli possono essere adottati nel calcolo sia della resistenza ultima sia della duttilità delle sezioni e devono essere applicati alle sole zone confinate della sezione.

Il confinamento del calcestruzzo è normalmente generato da staffe chiuse e legature interne, che possono raggiungere la tensione di snervamento a causa della dilatazione laterale del calcestruzzo stesso a cui tendono ad opporsi. Il confinamento consente al calcestruzzo di raggiungere tensioni e deformazioni più elevate di quelle proprie del calcestruzzo non confinato. Le altre caratteristiche meccaniche si possono considerare inalterate.

In assenza di più precise determinazioni basate su modelli analitici di comprovata validità, è possibile utilizzare la relazione tensione-deformazione rappresentata in Fig. 4.1.2 (dove le deformazioni di compressione sono assunte positive), in cui la resistenza caratteristica e le deformazioni del calcestruzzo confinato sono valutate secondo le relazioni seguenti:

$$f_{ck c} = f_{ck} \cdot (1,0+5,0 \cdot \sigma_2/f_{ck})$$
 per $\sigma_2 \le 0.05 f_{ck}$ [4.1.8]

$$f_{ck,c} = f_{ck} \cdot (1,125 + 2,5 \cdot \sigma_2/f_{ck})$$
 per $\sigma_2 > 0,05f_{ck}$ [4.1.9]

$$\varepsilon_{\text{c2.c}} = \varepsilon_{\text{c2}} \cdot \left(f_{\text{ck.c}} / f_{\text{ck}} \right)^2 \tag{4.1.10}$$

$$\varepsilon_{\text{cu}2,\text{c}} = \varepsilon_{\text{cu}} + 0, 2 \cdot \sigma_2 / f_{\text{ck}}$$
 [4.1.11]

$$f_{cd,c} = \alpha_{cc} \cdot f_{ck,c} / \gamma_c$$
 [4.1.12]

essendo σ_2 la pressione laterale efficace di confinamento allo SLV mentre ϵ_{c2} ed ϵ_{cu} sono valutate in accordo al § 4.1.2.1.2.1.

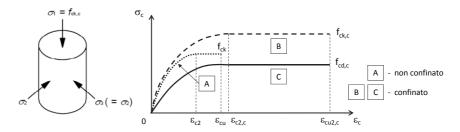


Fig. 4.1.2 – Modelli σ-ε per il calcestruzzo confinato

La pressione efficace di confinamento σ_2 può essere determinata attraverso la relazione seguente:

$$\sigma_2 = \alpha \cdot \sigma_l \tag{4.1.12.a}$$

dove α è un coefficiente di efficienza (\leq 1), definito come rapporto fra il volume $V_{c,eff}$ di calcestruzzo efficacemente confinato ed il volume V_c dell'elemento di calcestruzzo, depurato da quello delle armature longitudinali (generalmente trascurabile) e σ_i è la pressione di confinamento esercitata dalle armature trasversali.

La pressione laterale può essere valutata, per ogni direzione principale della sezione, direttamente da considerazioni di equilibrio sul nucleo confinato, in corrispondenza della tensione di snervamento dell'armatura trasversale, come di seguito indicato.

a) Per sezioni rettangolari

Per le due direzioni principali della sezione x e y valgono, rispettivamente, le relazioni:

$$\sigma_{l,x} = \frac{A_{st,x} \cdot f_{yk,st}}{b_y \cdot s}; \quad \sigma_{l,y} = \frac{A_{st,y} \cdot f_{yk,st}}{b_x \cdot s}$$
 [4.1.12.b]

dove $A_{st,x}$ e $A_{st,y}$ sono il quantitativo totale (aree delle sezioni) di armatura trasversale in direzione parallela, rispettivamente, alle direzioni principali x e y, b_x e b_y sono le dimensioni del nucleo confinato nelle direzioni corrispondenti (con riferimento alla linea media delle staffe), s è il passo delle staffe, $f_y k_x t$ è la tensione caratteristica dell'acciaio delle staffe.

La pressione laterale equivalente σ_l può essere determinata attraverso la relazione:

$$\sigma_{l} = \sqrt{\sigma_{l,x} \cdot \sigma_{l,y}}$$
 [4.1.12.c]

b) Per sezioni circolari

$$\sigma_l = \frac{2A_{st} \cdot f_{yk,st}}{D_0 \cdot s}$$
 [4.1.12.d]

dove: Ast è l'area della sezione della staffa, Do è il diametro del nucleo confinato (con riferimento alla linea media delle staffe).

Il coefficiente di efficienza α può essere valutato come prodotto di un termine relativo alla disposizione delle armature trasversali nel piano della sezione e di un termine relativo al passo delle staffe, attraverso la relazione:

$$\alpha = \alpha_n \cdot \alpha_s \tag{4.1.12.e}$$

con:

a) per sezioni rettangolari

$$\alpha_{\rm n} = 1 - \sum_{\rm x} b_{\rm i}^2 / (6 \cdot b_{\rm x} \cdot b_{\rm y})$$
 [4.1.12.f]

$$\alpha_{s} = \left[1 - s/\left(2 \cdot b_{x}\right)\right] \cdot \left[1 - s/\left(2 \cdot b_{y}\right)\right] \tag{4.1.12.g}$$

dove: n è il numero totale di barre longitudinali contenute lateralmente da staffe o legature, b_i è la distanza tra barre consecutive contenute.

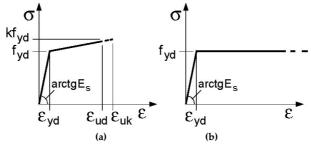
b) per sezioni circolari

$$\alpha_{n} = 1 \qquad [4.1.12.h]$$

$$\alpha_{s} = \left[1 - s / \left(2 \cdot D_{0} \right) \right]^{\beta}$$
 [4.1.12.i]

dove: β = 2 per staffe circolari singole, β = 1 per staffa a spirale.

Nella valutazione della capacità della sezione il contributo del copriferro non deve essere considerato nelle zone esterne al nucleo confinato in cui la deformazione massima supera la deformazione ultima del calcestruzzo non confinato.


Nel caso di utilizzo di rinforzi appositamente progettati per il confinamento degli elementi è possibile considerare i modelli di comportamento riportati in riferimenti tecnici di comprovata validità.

4.1.2.1.2.2 Diagrammi di progetto tensione-deformazione dell'acciaio

Per il diagramma tensione-deformazione dell'acciaio è possibile adottare opportuni modelli rappresentativi del reale comportamento del materiale, modelli definiti in base al valore di progetto $\varepsilon_{ud} = 0.9\varepsilon_{uk}$ ($\varepsilon_{uk} = (A_{gt})_k$) della deformazione uniforme ultima, al valore di progetto della tensione di snervamento f_{vd} ed al rapporto di sovraresistenza $k = (f_t / f_v)_k$ (Tab. 11.3.Ia-b).

In Fig. 4.1.3 sono rappresentati i modelli σ - ϵ per l'acciaio:

(a) bilineare finito con incrudimento; (b) elastico-perfettamente plastico indefinito.

Fig. 4.1.3 – Modelli σ-ε per l'acciaio

4.1.2.2 STATI LIMITE DI ESERCIZIO

4.1.2.2.1 Generalità

Si deve verificare il rispetto dei seguenti stati limite:

- deformazione,
- vibrazione,
- fessurazione,
- tensioni di esercizio,
- fatica per quanto riguarda eventuali danni che possano compromettere la durabilità, per la quale sono definite regole specifiche nei punti seguenti.

4.1.2.2.2 Stato limite di deformazione

I limiti di deformabilità devono essere congruenti con le prestazioni richieste alla struttura anche in relazione alla destinazione d'uso, con riferimento alle esigenze statiche, funzionali ed estetiche.

I valori limite devono essere commisurati a specifiche esigenze e possono essere dedotti da documentazione tecnica di comprovata validità.

4.1.2.2.3 Stato limite per vibrazioni

Quando richiesto, devono essere individuati limiti per vibrazioni:

- al fine di assicurare accettabili livelli di benessere (dal punto di vista delle sensazioni percepite dagli utenti),
- al fine di prevenire possibili danni negli elementi secondari e nei componenti non strutturali,
- al fine di evitare possibili danni che compromettano il funzionamento di macchine e apparecchiature.

4.1.2.2.4 Stato limite di fessurazione

In ordine di severità decrescente, per la combinazione di azioni prescelta, si distinguono i seguenti stati limite:

- a) stato limite di decompressione, nel quale la tensione normale è ovunque di compressione ed al più uguale a 0;
- b) stato limite di formazione delle fessure, nel quale la tensione normale di trazione nella fibra più sollecitata è:

$$\sigma_{t} = \frac{f_{\text{ctm}}}{1.2} \tag{4.1.13}$$

dove f_{ctm} è definito nel § 11.2.10.2;

c) stato limite di apertura delle fessure, nel quale il valore limite di apertura della fessura calcolato al livello considerato è pari ad uno dei seguenti valori nominali:

$$w_1 = 0.2 \text{ mm}$$

$$w_2 = 0.3 \text{ mm}$$

$$w_3 = 0.4 \text{ mm}$$

Lo stato limite di fessurazione deve essere fissato in funzione delle condizioni ambientali e della sensibilità delle armature alla corrosione, come descritto nel seguito.

4.1.2.2.4.1 Combinazioni di azioni

Si prendono in considerazione le seguenti combinazioni:

- combinazioni quasi permanenti;
- combinazioni frequenti.

4.1.2.2.4.2 Condizioni ambientali

Ai fini della protezione contro la corrosione delle armature metalliche e della protezione contro il degrado del calcestruzzo, le condizioni ambientali possono essere suddivise in ordinarie, aggressive e molto aggressive in relazione a quanto indicato nella Tab. 4.1.III con riferimento alle classi di esposizione definite nelle Linee Guida per il calcestruzzo strutturale emesse dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici nonché nella UNI EN 206:2016.

Tab. 4.1.III - Descrizione delle condizioni ambientali

Condizioni ambientali	Classe di esposizione
Ordinarie	X0, XC1, XC2, XC3, XF1
Aggressive	XC4, XD1, XS1, XA1, XA2, XF2, XF3
Molto aggressive	XD2, XD3, XS2, XS3, XA3, XF4

4.1.2.2.4.3 Sensibilità delle armature alla corrosione

Le armature si distinguono in due gruppi:

- armature sensibili:
- armature poco sensibili.

Appartengono al primo gruppo gli acciai da precompresso.

Appartengono al secondo gruppo gli acciai ordinari.

Per gli acciai zincati e per quelli inossidabili, si può tener conto della loro minor sensibilità alla corrosione sulla base di documenti di comprovata validità.

4.1.2.2.4.4 Scelta degli stati limite di fessurazione

Nella Tab. 4.1.IV sono indicati i criteri di scelta dello stato limite di fessurazione con riferimento alle esigenze sopra riportate.

Tab. 4.1.IV - Criteri di scelta dello stato limite di fessurazione

ir pi	Condizioni	Combinazione di	Armatura			
Gruppi di Ssigenze	ambientali	azioni	Sensibile		Poco sensibile	
Grupp di Esigenz			Stato limite	w_k	Stato limite	$\mathbf{w}_{\mathbf{k}}$
Α	Ordinarie	frequente	apertura fessure	$\leq w_2$	apertura fessure	$\leq w_3$
A Ordinarie		quasi permanente	apertura fessure	$\leq w_1$	apertura fessure	$\leq w_2$
	A	frequente	apertura fessure	$\leq w_1$	apertura fessure	$\leq w_2$
B Aggressive		quasi permanente	decompressione	-	apertura fessure	$\leq w_1$
С	Molto	frequente	formazione fessure	-	apertura fessure	$\leq w_1$
	aggressive	quasi permanente	decompressione	-	apertura fessure	$\leq w_1$

 $w_{1\prime}$ $w_{2\prime}$ w_{3} sono definiti al § 4.1.2.2.4, il valore w_{k} è definito al § 4.1.2.2.4.5.

4.1.2.2.4.5 Verifica dello stato limite di fessurazione

Stato limite di decompressione e di formazione delle fessure

Le tensioni sono calcolate in base alle caratteristiche geometriche e meccaniche della sezione omogeneizzata non fessurata.

Stato limite di apertura delle fessure

Il valore caratteristico di apertura delle fessure (w_k) non deve superare i valori nominali w_1 , w_2 , w_3 secondo quanto riportato nella Tab. 4.1.IV.

L'ampiezza caratteristica delle fessure w_k è calcolata come 1,7 volte il prodotto della deformazione media delle barre d'armatura ε_{sm} per la distanza media tra le fessure Δ_{sm} :

$$w_k = 1.7 \ \varepsilon_{\rm sm} \ \Delta_{\rm sm} \tag{4.1.14}$$

Per il calcolo di ε_{sm} e Δ_{sm} vanno utilizzati criteri consolidati riportati in documenti di comprovata validità.

La verifica dell'ampiezza di fessurazione può anche essere condotta senza calcolo diretto, limitando la tensione di trazione nell'armatura, valutata nella sezione parzializzata per la combinazione di carico pertinente, ad un massimo correlato al diametro delle barre ed alla loro spaziatura.

4.1.2.2.5 Stato limite di limitazione delle tensioni

Valutate le azioni interne nelle varie parti della struttura, dovute alle combinazioni caratteristica e quasi permanente delle azioni, si calcolano le massime tensioni sia nel calcestruzzo sia nelle armature; si deve verificare che tali tensioni siano inferiori ai massimi valori consentiti di seguito riportati.

4.1.2.2.5.1 Tensione massima di compressione del calcestruzzo nelle condizioni di esercizio

La massima tensione di compressione del calcestruzzo $\sigma_{c,max}$, deve rispettare la limitazione seguente:

 $\sigma_{c,max} \le 0.60 \text{ f}_{ck}$ per combinazione caratteristica [4.1.15] $\sigma_{c,max} \le 0.45 \text{ f}_{ck}$ per combinazione quasi permanente. [4.1.16]

Nel caso di elementi piani (solette, pareti, ...) gettati in opera con calcestruzzi ordinari e con spessori di calcestruzzo minori di 50 mm i valori limite sopra prescritti vanno ridotti del 20%.

4.1.2.2.5.2 Tensione massima dell'acciaio in condizioni di esercizio

La tensione massima, $\sigma_{s,max}$, per effetto delle azioni dovute alla combinazione caratteristica deve rispettare la limitazione seguente:

$$\sigma_{s,max} \le 0.8 f_{vk}$$
 [4.1.17]

4.1.2.3 STATI LIMITE ULTIMI

4.1.2.3.1 Generalità

Si deve verificare il rispetto dei seguenti stati limite:

- resistenza,
- duttilità.

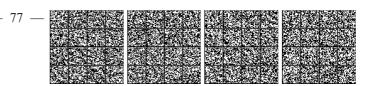
4.1.2.3.2 Stato limite di resistenza

Si deve verificare il rispetto dei seguenti stati limite:

- resistenza flessionale in presenza e in assenza di sforzo assiale,
- resistenza a taglio e punzonamento,
- resistenza a torsione.
- resistenza di elementi tozzi,
- resistenza a fatica,
- stabilità di elementi snelli.

4.1.2.3.3 Stato limite di duttilità

Si deve verificare, ove richiesto al § 7.4 delle presenti norme, il rispetto del seguente stato limite:


- duttilità flessionale in presenza e in assenza di sforzo assiale.

4.1.2.3.4 Resistenza flessionale e duttilità massima in presenza e in assenza di sforzo assiale

4.1.2.3.4.1 Ipotesi di base

Per la valutazione della resistenza flessionale in presenza e in assenza di sforzo assiale delle sezioni di elementi monodimensionali, si adottano le seguenti ipotesi:

- conservazione delle sezioni piane;
- perfetta aderenza tra acciaio e calcestruzzo;
- deformazione iniziale dell'armatura di precompressione considerata nelle relazioni di congruenza della sezione.
- resistenza a trazione del calcestruzzo nulla.

4.1.2.3.4.2 Verifiche di resistenza e duttilità

Con riferimento alla sezione pressoinflessa, rappresentata in Fig. 4.1.4, la capacità, in termini di resistenza e duttilità, si determina in base alle ipotesi di calcolo e ai modelli σ - ϵ di cui al \S 4.1.2.1.2.

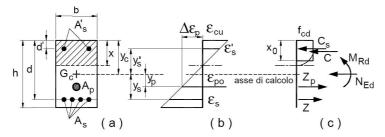


Fig. 4.1.4 - Sezione pressoinflessa

Le verifiche si eseguono confrontando la capacità, espressa in termini di resistenza e, quando richiesto al § 7.4 delle presenti norme, di duttilità, con la corrispondente domanda, secondo le relazioni:

$$M_{Rd} = M_{Rd} (N_{Ed}) \ge M_{Ed}$$
 [4.1.18a]
 $\mu_{\phi} = \mu_{\phi} (N_{Ed}) \ge \mu_{Ed}$ [4.1.18b]

dove

 M_{Rd} è il valore di progetto del momento resistente corrispondente a N_{Ed}

N_{Ed} è il valore di progetto dello sforzo normale sollecitante;

 M_{Ed} è il valore di progetto del momento di domanda;

 $\mu_{_{b}} \hspace{0.5cm} \mbox{\'e}$ il valore di progetto della duttilità di curvatura corrispondente a $N_{\mbox{\scriptsize Ed}},$

 $\mu_{Ed} \hspace{0.5cm} \dot{e}$ la domanda in termini di duttilità di curvatura.

Nel caso di pilastri soggetti a compressione assiale, si deve comunque assumere una componente flettente $M_{\rm Ed}$ = $e \cdot N_{\rm E_{\varphi}}$ con eccentricità e pari almeno ad 1/200 dell'altezza libera di inflessione del pilastro, e comunque non minore di 20 mm.

Nel caso di pressoflessione deviata la verifica della sezione può essere posta nella forma

$$\left(\frac{M_{E_{yd}}}{M_{R_{yd}}}\right)^{\alpha} + \left(\frac{M_{E_{zd}}}{M_{R_{zd}}}\right)^{\alpha} \le 1$$
 [4.1.19]

dove

 $M_{E_{vd'}}M_{E_{zd}}$ sono i valori di progetto delle due componenti di flessione retta della sollecitazione attorno agli assi y e z_i

 $M_{R_{yd'}}M_{R_{zd}}$ sono i valori di progetto dei momenti resistenti di pressoflessione retta corrispondenti a N_{Ed} valutati separatamente attorno agli assi y e z.

L'esponente α può dedursi in funzione della geometria della sezione e dei parametri

$$v = N_{Ed}/N_{Rcd}$$
 [4.1.20]

$$\omega_t = A_t \cdot f_{vd}/N_{Rcd}$$
 [4.1.21]

 $con N_{Rcd} = A_c \cdot f_{cd}$.

In mancanza di una specifica valutazione, può assumersi:

- per sezioni rettangolari:

Ned/Nrcd	0,1	0,7	1,0
α	1,0	1,5	2,0

con interpolazione lineare per valori diversi di $\,N_{Ed}/N_{Rcd};$

- per sezioni circolari ed ellittiche: α = 2.

La capacità in termini di fattore di duttilità in curvatura μ_{φ} può essere calcolata, separatamente per le due direzioni principali di verifica, come rapporto tra la curvatura cui corrisponde una riduzione del 15% della massima resistenza a flessione – oppure il raggiungimento della deformazione ultima del calcestruzzo e/o dell'acciaio – e la curvatura convenzionale di prima plasticizzazione ϕ_{vd} espressa dalla relazione seguente:

$$\phi_{yd} = \frac{M_{Rd}}{M'_{vd}} \cdot \phi'_{yd}$$

dove:

 ϕ'_{yd} è la minore tra la curvatura calcolata in corrispondenza dello snervamento dell'armatura tesa e la curvatura calcolata in corrispondenza della deformazione di picco (ϵ_{c2} se si usa il modello parabola-rettangolo oppure ϵ_{c3} se si usa il modello triangolo-rettangolo) del calcestruzzo compresso;

MRd è il momento resistente della sezione allo SLU;

 M'_{yd} è il momento corrispondente a ϕ'_{yd} e può essere assunto come momento resistente massimo della sezione in campo sostanzialmente elastico.

4.1.2.3.5 Resistenza nei confronti di sollecitazioni taglianti

Senza escludere la possibilità di specifici studi, per la valutazione delle resistenze ultime di elementi monodimensionali nei confronti di sollecitazioni taglianti e delle resistenze ultime per punzonamento, si deve considerare quanto segue.

4.1.2.3.5.1 Elementi senza armature trasversali resistenti a taglio

Se, sulla base del calcolo, non è richiesta armatura al taglio, è comunque necessario disporre un'armatura minima secondo quanto previsto al punto 4.1.6.1.1. E' consentito omettere tale armatura minima in elementi quali solai, piastre e membrature a comportamento analogo, purché sia garantita una ripartizione trasversale dei carichi.

La verifica di resistenza (SLU) si pone con

$$V_{Rd} \ge V_{Ed} \tag{4.1.22}$$

dove V_{Ed} è il valore di progetto dello sforzo di taglio agente.

Con riferimento all'elemento fessurato da momento flettente, la resistenza di progetto a taglio si valuta con

$$V_{Rd} = \max \left\{ \left[0.18 \cdot k \cdot (100 \cdot \rho_1 \cdot f_{ck})^{1/3} / \gamma_c + 0.15 \cdot \sigma_{cp} \right] b_w \cdot d; \ (v_{\min} + 0.15 \cdot \sigma_{cp}) \cdot b_w d \right\}$$
 [4.1.23]

con

 f_{ck} espresso in MPa

 $k = 1 + (200/d)^{1/2} \le 2$

$$v_{min} = 0.035k^{3/2} f_{ck}^{1/2}$$

e dove

d è l'altezza utile della sezione (in mm);

 $\rho_1 = A_{sl} / (b_w \cdot d)$ è il rapporto geometrico di armatura longitudinale tesa ($\leq 0,02$) che si estende per non meno di ($l_{bd} + d$) oltre la sezione considerata, dove l_{bd} è la lunghezza di ancoraggio;

 σ_{cp} = N_{Ed}/A_c [MPa] è la tensione media di compressione nella sezione (\leq 0,2 f_{cd});

b_w è la larghezza minima della sezione (in mm).

Nel caso di elementi in calcestruzzo armato precompresso disposti in semplice appoggio, nelle zone non fessurate da momento flettente (con tensioni di trazione non superiori a f_{ctd}) la resistenza di progetto può valutarsi, in via semplificativa, con la formula:

$$V_{Rd} = 0.7 \cdot b_w \cdot d \left(f_{ctd}^2 + \sigma_{cp} \cdot f_{ctd} \right)^{1/2}$$
 [4.1.24]

In presenza di significativi sforzi di trazione, la resistenza a taglio del calcestruzzo è da considerarsi nulla e, in tal caso, non è possibile adottare elementi sprovvisti di armatura trasversale.

Le armature longitudinali, oltre ad assorbire gli sforzi conseguenti alle sollecitazioni di flessione, devono assorbire quelli provocati dal taglio dovuti all'inclinazione delle fessure rispetto all'asse della trave, inclinazione assunta pari a 45°. In particolare, in corrispondenza degli appoggi, le armature longitudinali devono assorbire uno sforzo pari al taglio sull'appoggio.

4.1.2.3.5.2 Elementi con armature trasversali resistenti al taglio

La resistenza di progetto a taglio V_{Rd} di elementi strutturali dotati di specifica armatura a taglio deve essere valutata sulla base di una adeguata schematizzazione a traliccio. Gli elementi resistenti dell'ideale traliccio sono: le armature trasversali, le armature

longitudinali, il corrente compresso di calcestruzzo e i puntoni d'anima inclinati. L'inclinazione θ dei puntoni di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti:

$$1 \le \text{ctg } \theta \le 2,5$$
 [4.1.25]

La verifica di resistenza (SLU) si pone con

$$V_{Rd} \ge V_{Ed} \tag{4.1.26}$$

dove V_{Ed} è il valore di progetto dello sforzo di taglio agente.

Con riferimento all'armatura trasversale, la resistenza di progetto a "taglio trazione" si calcola con:

$$V_{Rsd} = 0.9 \cdot d \cdot \frac{A_{sw}}{s} \cdot f_{yd} \cdot (ctg\alpha + ctg\theta) \cdot \sin\alpha$$
 [4.1.27]

Con riferimento al calcestruzzo d'anima, la resistenza di progetto a "taglio compressione" si calcola con

$$V_{Rcd} = 0.9 \cdot d \cdot b_w \cdot \alpha_c v \cdot f_{cd} (ctg\alpha + ctg\theta) / (1 + ctg^2 \theta)$$
 [4.1.28]

La resistenza di progetto a taglio della trave è la minore delle due sopra definite:

$$V_{Rd} = \min (V_{Rsd'}, V_{Rcd})$$
 [4.1.29]

dove d, $b_{\rm w}$ e $\sigma_{\rm cp}$ hanno il significato indicato in § 4.1.2.3.5.1. e inoltre si è posto:

A_{sw} area dell'armatura trasversale;

- interasse tra due armature trasversali consecutive;
- angolo di inclinazione dell'armatura trasversale rispetto all'asse della trave;
- vf_{cd} resistenza di progetto a compressione ridotta del calcestruzzo d'anima (v = 0,5);
- coefficiente maggiorativo pari a 1 per membrature non compresse

 $1 + \sigma_{cp}/f_{cd}$ per $0 \le \sigma_{cp} < 0.25 f_{cd}$

1,25 per 0,25 $f_{cd} \le \sigma_{cp} \le 0,5 f_{cd}$ 2,5 $(1 - \sigma_{cp}/f_{cd})$ per 0,5 $f_{cd} < \sigma_{cp} < f_{cd}$

Le armature longitudinali devono essere dimensionate in base alle sollecitazioni flessionali ottenute traslando il diagramma dei momenti flettenti di

$$a_1 = (0.9 \cdot d \cdot ctg \theta) / 2$$
 [4.1.30]

lungo l'asse della trave, nel verso meno favorevole.

4.1.2.3.5.3 Casi particolari

Componenti trasversali

Nel caso di elementi ad altezza variabile o con cavi da precompressione inclinati, il taglio di progetto viene assunto pari a:

$$V_{Ed} = V_d + V_{md} + V_{pd}$$
 [4.1.31]

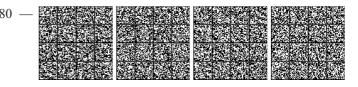
dove:

= valore di progetto del taglio dovuto ai carichi esterni; V_d

= valore di progetto della componente di taglio dovuta all'inclinazione dei lembi della membratura;

= valore di progetto della componente di taglio dovuta alla precompressione.

Carichi in prossimità degli appoggi


Il taglio all'appoggio determinato da carichi applicati alla distanza $a_v \le 2d$ dall'appoggio stesso si potrà ridurre del rapporto a_v/2d, con l'osservanza delle seguenti prescrizioni:

- nel caso di appoggio di estremità, l'armatura di trazione necessaria nella sezione ove è applicato il carico più vicino all'appoggio deve essere prolungata e ancorata al di là dell'asse teorico di appoggio;
- nel caso di appoggio intermedio, l'armatura di trazione all'appoggio deve essere prolungata sin dove necessario e comunque fino alla sezione ove è applicato il carico più lontano compreso nella zona con $a_v \le 2d$.

Nel caso di elementi con armature trasversali resistenti al taglio, si deve verificare che lo sforzo di taglio V_{Ed} , calcolato in questo modo, soddisfi la condizione

$$V_{Ed} \le A_s \cdot f_{vd} \cdot \sin \alpha$$
 [4.1.32]

dove $A_s f_{vd}$ è la resistenza dell'armatura trasversale contenuta nella zona di lunghezza $0.75 a_v$ centrata tra carico ed appoggio e che attraversa la fessura di taglio inclinata ivi compresa.

Lo sforzo di taglio V_{Ed} , calcolato senza la riduzione $a_v/2d$, deve comunque sempre rispettare la condizione:

$$V_{Ed} \le 0.5 b_w d v f_{cd}$$
 [4.1.33]

essendo v = 0.5 un coefficiente di riduzione della resistenza del calcestruzzo fessurato per taglio.

Carichi appesi o indiretti

Se per particolari modalità di applicazione dei carichi gli sforzi degli elementi tesi del traliccio risultano incrementati, le armature dovranno essere opportunamente adeguate.

4.1.2.3.5.4 Verifica al punzonamento

Solette piene, solette nervate a sezione piena sopra le colonne, e fondazioni devono essere verificate nei riguardi del punzonamento allo stato limite ultimo, in corrispondenza dei pilastri e di carichi concentrati.

In mancanza di un'armatura trasversale appositamente dimensionata, la resistenza al punzonamento deve essere valutata, utilizzando formule di comprovata affidabilità, sulla base della resistenza a trazione del calcestruzzo, intendendo la sollecitazione distribuita su di un perimetro efficace distante 2d dall'impronta caricata, con d altezza utile (media) della soletta.

Se, sulla base del calcolo, la resistenza a trazione del calcestruzzo sul perimetro efficace non è sufficiente per fornire la richiesta resistenza al punzonamento, vanno inserite apposite armature al taglio. Queste armature vanno estese fino al perimetro più esterno sul quale la resistenza a trazione del calcestruzzo risulta sufficiente. Per la valutazione della resistenza al punzonamento si può fare utile riferimento al § 6.4.4 della norma UNI EN1992-1-1 nel caso di assenza di armature al taglio, al § 6.4.5 della norma UNI EN1992-1-1 nel caso di presenza di armature al taglio.

Nel caso di fondazioni si adotteranno opportuni adattamenti del modello sopra citato.

4.1.2.3.6 Resistenza nei confronti di sollecitazioni torcenti

Qualora l'equilibrio statico di una struttura dipenda dalla resistenza torsionale degli elementi che la compongono, è necessario condurre la verifica di resistenza nei riguardi delle sollecitazioni torcenti. Qualora, invece, in strutture iperstatiche, la torsione insorga solo per esigenze di congruenza e la sicurezza della struttura non dipenda dalla resistenza torsionale, non sarà generalmente necessario condurre le verifiche. La verifica di resistenza (SLU) consiste nel controllare che

$$T_{Rd} \ge T_{Ed} \tag{4.1.34}$$

dove T_{Ed} è il valore di progetto del momento torcente agente.

Per elementi prismatici sottoposti a torsione semplice o combinata con altre sollecitazioni, che abbiano sezione piena o cava, lo schema resistente è costituito da un traliccio periferico in cui gli sforzi di trazione sono affidati alle armature longitudinali e trasversali ivi contenute e gli sforzi di compressione sono affidati alle bielle di calcestruzzo.

Con riferimento al calcestruzzo la resistenza di progetto si calcola con

$$T_{Rcd} = 2 \cdot A \cdot t \cdot f'_{cd} \cdot ctg\theta / (1 + ctg^2\theta)$$
 [4.1.35]

dove t è lo spessore della sezione cava; per sezioni piene $t = A_o/u$ dove A_c è l'area della sezione ed u è il suo perimetro; t deve essere assunta comunque ≥ 2 volte la distanza fra il bordo e il centro dell'armatura longitudinale.

Le armature longitudinali e trasversali del traliccio resistente devono essere poste entro lo spessore t del profilo periferico. Le barre longitudinali possono essere distribuite lungo detto profilo, ma comunque una barra deve essere presente su tutti i suoi spigoli.

Con riferimento alle staffe trasversali la resistenza di progetto si calcola con

$$T_{Rsd} = 2 \cdot A \cdot \frac{A_s}{s} \cdot f_{yd} \cdot ctg\theta$$
 [4.1.36]

Con riferimento all'armatura longitudinale la resistenza di progetto si calcola con

$$T_{Rld} = 2 \cdot A \cdot \frac{\sum A_1}{u_m} \cdot f_{yd} / ctg\theta$$
 [4.1.37]

dove si è posto

A area racchiusa dalla fibra media del profilo periferico;

A_s area delle staffe;

u_m perimetro medio del nucleo resistente

s passo delle staffe;

 \sum A_1 area complessiva delle barre longitudinali.

L'inclinazione θ delle bielle compresse di calcestruzzo rispetto all'asse della trave deve rispettare i limiti seguenti

$$1 \le \text{ctg } \theta \le 2,5$$
 [4.1.38]

Entro questi limiti, nel caso di torsione pura, può porsi ctg θ = $(a_{\rm l}/a_{\rm s})^{1/2}$

con:
$$a_1 = \sum A_1 / u_m$$
 $a_s = A_s / s$

La resistenza di progetto alla torsione della trave è la minore delle tre sopra definite:

$$T_{Rd} = min (T_{Rcd}, T_{Rsd}, T_{Rld})$$
 [4.1.39]

Nel caso di elementi per i quali lo schema resistente di traliccio periferico non sia applicabile, quali gli elementi a pareti sottili a sezione aperta, dovranno utilizzarsi metodi di calcolo fondati su ipotesi teoriche e risultati sperimentali chiaramente comprovati.

Sollecitazioni composte

a) Torsione, flessione e sforzo normale

Le armature longitudinali, calcolate come sopra indicato per la resistenza nei riguardi della sollecitazione torcente, devono essere aggiunte a quelle calcolate nei riguardi delle verifiche per flessione.

Si applicano inoltre le seguenti regole:

- nella zona tesa, all'armatura longitudinale richiesta dalla sollecitazione di flessione e sforzo normale, deve essere aggiunta l'armatura richiesta dalla torsione:
- nella zona compressa, se la tensione di trazione dovuta alla torsione è minore della tensione di compressione nel calcestruzzo dovuta alla flessione e allo sforzo normale, non è necessaria armatura longitudinale aggiuntiva per torsione.

b) Torsione e taglio

Per quanto riguarda la crisi lato calcestruzzo, la resistenza massima di una membratura soggetta a torsione e taglio è limitata dalla resistenza delle bielle compresse di calcestruzzo. Per non eccedere tale resistenza deve essere soddisfatta la seguente condizione:

$$\frac{T_{ed}}{T_{Rcd}} + \frac{V_{ed}}{V_{Rcd}} \le 1$$
 [4.1.40]

Per l'angolo θ delle bielle compresse di conglomerato cementizio deve essere assunto un unico valore per le due verifiche di taglio e torsione.

4.1.2.3.7 Resistenza di elementi tozzi, nelle zone diffusive e nei nodi

Per gli elementi per cui non valgono i modelli meccanici semplici, le verifiche di sicurezza possono essere condotte con riferimento a schematizzazioni basate sull'individuazione di tiranti e puntoni.

Le verifiche di sicurezza dovranno necessariamente essere condotte nei riguardi di:

- resistenza dei tiranti costituiti dalle sole armature (R_s)
- resistenza dei puntoni di calcestruzzo compresso (R_c)
- ancoraggio delle armature (R_b)
- resistenza dei nodi (R_n)

Deve risultare la seguente gerarchia delle resistenze $R_s < (R_n, R_b, R_c)$

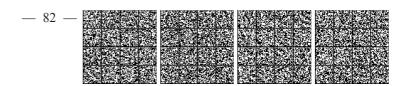
Per la valutazione della resistenza dei puntoni di calcestruzzo, si terrà conto della presenza di stati di sforzo pluriassiali.

Le armature che costituiscono i tiranti devono essere adeguatamente ancorate nei nodi.

Le forze che agiscono sui nodi devono essere equilibrate; si deve tener conto delle forze trasversali perpendicolari al piano del

I nodi si localizzano nei punti di applicazione dei carichi, agli appoggi, nelle zone di ancoraggio dove si ha una concentrazione di armature ordinarie o da precompressione, in corrispondenza delle piegature delle armature, nelle connessioni e negli angoli delle membrature.

Particolare cautela deve essere usata nel caso di schemi iperstatici, che presentano meccanismi resistenti in parallelo.


4.1.2.3.8 Resistenza a fatica

In presenza di azioni cicliche che, per numero dei cicli e per ampiezza della variazione dello stato tensionale, possono provocare fenomeni di fatica, le verifiche di resistenza devono essere condotte secondo affidabili modelli tratti da documentazione di comprovata validità, verificando separatamente il calcestruzzo e l'acciaio.

4.1.2.3.9 Indicazioni specifiche relative a pilastri e pareti

4.1.2.3.9.1 Pilastri cerchiati

Per elementi prevalentemente compressi, armati con barre longitudinali disposte lungo una circonferenza e racchiuse da una spirale di passo non maggiore di 1/5 del diametro inscritto dal nucleo cerchiato, la resistenza allo stato limite ultimo si calcola sommando i contributi della sezione di calcestruzzo confinato del nucleo e dell'armatura longitudinale, dove la resistenza del nucleo

di calcestruzzo confinato può esprimersi come somma di quella del nucleo di calcestruzzo non confinato più il contributo di una armatura fittizia longitudinale di peso eguale alla spirale.

Il contributo dell'armatura fittizia non deve risultare superiore a quello dell'armatura longitudinale, mentre la resistenza globale così valutata non deve superare il doppio di quella del nucleo di calcestruzzo non confinato.

4.1.2.3.9.2 Verifiche di stabilità per elementi snelli

Le verifiche di stabilità degli elementi snelli devono essere condotte attraverso un'analisi del secondo ordine che tenga conto degli effetti flessionali delle azioni assiali sulla configurazione deformata degli elementi stessi.

Si deve tenere adeguatamente conto delle imperfezioni geometriche e delle deformazioni viscose per carichi di lunga durata.

Si devono assumere legami fra azioni interne e deformazioni in grado di descrivere in modo adeguato il comportamento non lineare dei materiali e gli effetti della fessurazione delle sezioni. Cautelativamente il contributo del calcestruzzo teso può essere trascurato.

Snellezza limite per pilastri singoli

In via approssimata gli effetti del secondo ordine in pilastri singoli possono essere trascurati se la snellezza λ non supera il valore limite

$$\lambda_{\lim} = \frac{25}{\sqrt{v}} \tag{4.1.41}$$

dove

 $v = N_{Ed} / (A_c \cdot f_{cd})$ è l'azione assiale adimensionalizzata.

La snellezza è calcolata come rapporto tra la lunghezza libera di inflessione, l_0 , ed il raggio d'inerzia, i, della sezione di calcestruzzo non fessurato:

$$\lambda = l_0 / i \qquad [4.1.42]$$

dove in particolare l₀ va definita in base ai vincoli d'estremità ed all'interazione con eventuali elementi contigui.

Per le pareti il calcolo di lo deve tenere conto delle condizioni di vincolo sui quattro lati e del rapporto tra le dimensioni principali nel piano.

Effetti globali negli edifici

Gli effetti globali del secondo ordine negli edifici possono essere trascurati se è verificata la seguente condizione:

$$P_{Ed} \le 0.31 \frac{n}{n+1.6} \frac{\sum (E_{cd} I_c)}{L^2}$$
 [4.1.43]

dove:

P_{Ed} è il carico verticale totale (su elementi controventati e di controvento);

n è il numero di piani;

L è l'altezza totale dell'edificio sopra il vincolo ad incastro di base;

 $\rm E_{cd}$ è il valore di progetto del modulo elastico del calcestruzzo definito in § 4.1.2.3.9.3;

I_c è il momento di inerzia della sezione di calcestruzzo degli elementi di controvento, ipotizzata interamente reagente.

4.1.2.3.9.3 Metodi di verifica

Per la verifica di stabilità si calcolano le sollecitazioni sotto le azioni di progetto risolvendo il sistema delle condizioni di equilibrio comprensive degli effetti del secondo ordine e si verifica la resistenza delle sezioni come precisato ai precedenti punti del presente § 4.1.2.3.

Per i pilastri compressi di telai a nodi fissi, non altrimenti soggetti ad esplicite azioni flettenti, va comunque inserito nel modello di calcolo un difetto di rettilineità pari a 1/300 della loro altezza.

Analisi elastica lineare

In via semplificata si può impostare il sistema risolvente in forma pseudolineare, utilizzando i coefficienti elastici corretti con i contributi del 2° ordine e una rigidezza flessionale delle sezioni data da

$$EI = \frac{0.3}{1 + 0.5 \phi} E_{cd} I_{c}$$
 [4.1.44]

dove I_c è il momento d'inerzia della sezione di calcestruzzo interamente reagente e ϕ è il coefficiente di viscosità del calcestruzzo (11.2.10.7).

Per i coefficienti elastici corretti si possono utilizzare le espressioni linearizzate nella variabile N_{Ed} (sforzo assiale dell'elemento).

Analisi non lineare

Il sistema risolvente si imposta assumendo adeguati modelli non lineari di comportamento dei materiali basati sui seguenti parametri:

f _{ck} resistenza caratteristica del calcestruzzo;

$$\begin{split} E_{cd} &= E_{cm} \, / \, \gamma_{CE} & \quad \text{modulo elastico di progetto del calcestruzzo con } \gamma_{CE} = 1,2; \\ \phi & \quad \text{coefficiente di viscosità del calcestruzzo (§ 11.2.10.7);} \\ f_{yk} & \quad \text{tensione di snervamento caratteristica dell'armatura;} \end{split}$$

E. modulo elastico dell'armatura.

Oltre al metodo generale basato sull'integrazione numerica delle curvature, si possono utilizzare metodi di elaborazione algebrizzati basati sulla concentrazione dell'equilibrio nelle sezioni critiche (per esempio il metodo della colonna modello), per i quali si rimanda a documenti di comprovata validità.

4.1.2.3.10 Verifica dell'ancoraggio delle barre di acciaio con il calcestruzzo

L'ancoraggio delle barre, sia tese che compresse, deve essere oggetto di specifica verifica.

La verifica di ancoraggio deve tenere conto, qualora necessario, dell'effetto d'insieme delle barre e della presenza di eventuali armature trasversali.

L'ancoraggio delle barre può essere utilmente migliorato mediante uncini terminali. Se presenti, gli uncini dovranno avere raggio interno adeguato, tale da evitare danni all'armatura e, ai fini dell'aderenza, essi possono essere computati nella effettiva misura del loro sviluppo in asse alla barra. In assenza degli uncini la lunghezza di ancoraggio deve essere in ogni caso non minore di 20 diametri, con un minimo di 150 mm.

Particolari cautele devono essere adottate quando si possono prevedere fenomeni di fatica e di sollecitazioni ripetute.

4.1.3. VERIFICHE PER SITUAZIONI TRANSITORIE

Per le situazioni costruttive transitorie, come quelle che si hanno durante le fasi della costruzione, dovranno adottarsi tecnologie costruttive e programmi di lavoro che non possano provocare danni permanenti alla struttura o agli elementi strutturali e che comunque non possano riverberarsi sulla sicurezza dell'opera.

Le entità delle azioni ambientali da prendere in conto saranno determinate in relazione al tempo dell'azione transitoria e della tecnologia esecutiva.

4.1.4. VERIFICHE PER SITUAZIONI ECCEZIONALI

Le resistenze di progetto dei materiali riferite ad una specifica situazione di verifica si ottengono con i seguenti coefficienti parziali di sicurezza:

- calcestruzzo e aderenza con le armature γ_c = 1,0
- acciaio d'armatura γ_s = 1,0

4.1.5. PROGETTAZIONE INTEGRATA DA PROVE E VERIFICA MEDIANTE PROVE

La resistenza e la funzionalità di strutture ed elementi strutturali può essere misurata attraverso prove su campioni di adeguata numerosità.

I risultati delle prove eseguite su opportuni campioni devono essere trattati con i metodi dell'analisi statistica, in modo tale da ricavare parametri significativi quali media, deviazione standard e fattore di asimmetria della distribuzione, sì da caratterizzare adeguatamente un modello probabilistico descrittore delle quantità indagate (variabili aleatorie).

Indicazioni più dettagliate al riguardo e metodi operativi completi per la progettazione integrata da prove possono essere reperiti nella Appendice D della UNI EN 1990:2006.

4.1.6. DETTAGLI COSTRUTTIVI

4.1.6.1 ELEMENTI MONODIMENSIONALI: TRAVI E PILASTRI

Con riferimento ai dettagli costruttivi degli elementi strutturali in calcestruzzo vengono fornite le indicazioni applicative necessarie per l'ottenimento delle prescritte prestazioni.

Dette indicazioni si applicano se non sono in contrasto con più restrittive regole relative a costruzioni in zona sismica.

4.1.6.1.1 Armatura delle travi

L'area dell'armatura longitudinale in zona tesa non deve essere inferiore a

$$A_{_{s,min}} = 0.26 \frac{f_{_{sim}}}{f_{_{yk}}} b_{_t} \cdot d \qquad \text{e comunque non minore di 0,0013} \cdot b_t \cdot d \qquad [4.1.45]$$

dove

b_t rappresenta la larghezza media della zona tesa; per una trave a T con piattabanda compressa, nel calcolare il valore di b_t si considera solo la larghezza dell'anima;

d è l'altezza utile della sezione:

 $f_{ctm}~$ è il valore medio della resistenza a trazione assiale definita nel § 11.2.10.2;

 f_{vk} è il valore caratteristico della resistenza a trazione dell'armatura ordinaria.

Negli appoggi di estremità, all'intradosso deve essere disposta un'armatura efficacemente ancorata, calcolata coerentemente con il modello a traliccio adottato per il taglio e quindi applicando la regola della traslazione della risultante delle trazioni dovute al momento flettente, in funzione dell'angolo di inclinazione assunto per le bielle compresse di calcestruzzo.

Al di fuori delle zone di sovrapposizione, l'area di armatura tesa o compressa non deve superare individualmente $A_{s,max}$ = 0,04 A_{rr} essendo A_{rr} l'area della sezione trasversale di calcestruzzo.

Le travi devono prevedere armatura trasversale costituita da staffe con sezione complessiva non inferiore ad A_{st} = 1,5 b mm²/m essendo b lo spessore minimo dell'anima in millimetri, con un minimo di tre staffe al metro e comunque passo non superiore a 0,8 volte l'altezza utile della sezione.

In ogni caso almeno il 50% dell'armatura necessaria per il taglio deve essere costituita da staffe.

Eventuali armature longitudinali compresse di diametro Φ prese in conto nei calcoli di resistenza devono essere trattenute da armature trasversali con spaziatura non maggiore di 15 Φ .

4.1.6.1.2 Armatura dei pilastri

Nel caso di elementi sottoposti a prevalente sforzo normale, le barre parallele all'asse devono avere diametro maggiore od uguale a 12 mm e non potranno avere interassi maggiori di 300 mm. Inoltre la loro area non deve essere inferiore a

$$A_{s,min} = (0.10 N_{Ed} / f_{vd})$$
 e comunque non minore di 0.003 A_c [4.1.46]

dove:

 f_{yd} è la resistenza di progetto dell'armatura (riferita allo snervamento)

 N_{Ed} è la forza di compressione assiale di progetto

A_c è l'area di calcestruzzo.

Le armature trasversali devono essere poste ad interasse non maggiore di 12 volte il diametro minimo delle barre impiegate per l'armatura longitudinale, con un massimo di 250 mm. Il diametro delle staffe non deve essere minore di 6 mm e di ¼ del diametro massimo delle barre longitudinali.

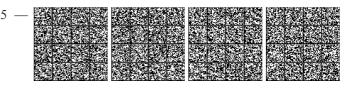
Al di fuori delle zone di sovrapposizione, l'area di armatura non deve superare $A_{s,max} = 0.04 A_{e'}$ essendo A_{c} l'area della sezione trasversale di calcestruzzo.

4.1.6.1.3 Copriferro e interferro

L'armatura resistente deve essere protetta da un adeguato ricoprimento di calcestruzzo. Gli elementi strutturali devono essere verificati allo stato limite di fessurazione secondo il § 4.1.2.2.4.

Al fine della protezione delle armature dalla corrosione, lo strato di ricoprimento di calcestruzzo (copriferro) deve essere dimensionato in funzione dell'aggressività dell'ambiente e della sensibilità delle armature alla corrosione, tenendo anche conto delle tolleranze di posa delle armature; a tale scopo si può fare utile riferimento alla UNI EN 1992-1-1.

Per consentire un omogeneo getto del calcestruzzo, il copriferro e l'interferro delle armature devono essere rapportati alla dimensione massima degli inerti impiegati.


Il copriferro e l'interferro delle armature devono essere dimensionati anche con riferimento al necessario sviluppo delle tensioni di aderenza con il calcestruzzo.

4.1.6.1.4 Ancoraggio delle barre e loro giunzione

Le armature longitudinali devono essere interrotte oppure sovrapposte preferibilmente nelle zone compresse o di minore solleci-

La continuità fra le barre può effettuarsi mediante:

- sovrapposizione, calcolata in modo da assicurare l'ancoraggio di ciascuna barra. In ogni caso la lunghezza di sovrapposizione nel tratto rettilineo deve essere non minore di quanto prescritto al § 4.1.2.3.10. La distanza mutua (interferro) nella sovrapposizione non deve superare 4 volte il diametro;
- saldatura, eseguita in conformità alla norma UNI EN ISO 17660-1:2007. Devono essere accertate la saldabilità degli acciai che vengono impiegati, nonché la compatibilità fra metallo e metallo di apporto nelle posizioni o condizioni operative previste nel progetto esecutivo;
- giunzioni meccaniche per barre di armatura. Tali giunzioni sono qualificate secondo quanto indicato al § 11.3.2.9.

Per barre di diametro Ø >32 mm occorrerà adottare particolari cautele negli ancoraggi e nelle sovrapposizioni.

Nell'assemblaggio o unione di due barre o elementi di armatura di acciaio per calcestruzzo armato possono essere usate giunzioni meccaniche mediante manicotti che garantiscano la continuità. Le giunzioni meccaniche possono essere progettate con riferimento a normative o documenti di comprovata validità.

4.1.7. ESECUZIONE

Tutti i progetti devono contenere la descrizione delle specifiche di esecuzione in funzione della particolarità dell'opera, del clima, della tecnologia costruttiva.

In particolare il documento progettuale deve contenere la descrizione dettagliata delle cautele da adottare per gli impasti, per la maturazione dei getti, per il disarmo e per la messa in opera degli elementi strutturali. Analoga attenzione dovrà essere posta nella progettazione delle armature per quanto riguarda: la definizione delle posizioni, le tolleranze di esecuzione e le modalità di piegatura.

Si potrà a tal fine fare utile riferimento alla norma UNI EN 13670.

4.1.8. NORME ULTERIORI PER IL CALCESTRUZZO ARMATO PRECOMPRESSO

I sistemi di precompressione con armature, previsti dalla presente norma, possono essere a cavi scorrevoli ancorati alle estremità (sistemi post-tesi) o a cavi aderenti (sistemi pre-tesi).

La condizione di carico conseguente alla precompressione si combinerà con le altre (peso proprio, carichi permanenti e variabili...) al fine di avere le più sfavorevoli condizioni di sollecitazione.

Nel caso della post-tensione, se le armature di precompressione non sono rese aderenti al conglomerato cementizio dopo la tesatura mediante opportune iniezioni di malta all'interno delle guaine (cavi non aderenti), si deve tenere conto delle conseguenze dello scorrimento relativo acciaio-calcestruzzo.

Le presenti norme non danno indicazioni su come trattare i casi di precompressione a cavi non aderenti per i quali si potrà fare utile riferimento ad UNI EN 1992-1-1.

Nel caso sia prevista la parzializzazione delle sezioni nelle condizioni di esercizio, particolare attenzione deve essere posta alla resistenza a fatica dell'acciaio in presenza di sollecitazioni ripetute.

4.1.8.1 VALUTAZIONE DELLA SICUREZZA - NORME DI CALCOLO

4.1.8.1.1 Stati limite ultimi

Per la valutazione della resistenza degli elementi strutturali vale quanto stabilito al § 4.1.2.3, tenendo presente che per la verifica delle sezioni si assumerà il valore di progetto della forza di precompressione con il coefficiente parziale γ_P = 1, secondo quanto previsto al punto § 2.6.1.

Per le verifiche di resistenza locale degli ancoraggi delle armature di precompressione, si assumerà, invece, un valore di progetto della forza di precompressione con $\gamma_P = 1,2$.

4.1.8.1.2 Stati limite di esercizio

Vale quanto stabilito al § 4.1.2.2. Per la valutazione degli stati di deformazione e di tensione si devono tenere in conto gli effetti delle cadute di tensione per i fenomeni reologici che comportano deformazioni differite dei materiali: ritiro e viscosità del calcestruzzo, rilassamento dell'acciaio.

Nella valutazione della precompressione nel caso di armatura post-tesa la tensione iniziale va calcolata deducendo dalla tensione al martinetto la perdita per rientro degli apparecchi di ancoraggio e scorrimento dei fili e le perdite per attrito lungo il cavo.


Nelle strutture ad armatura pre-tesa si deve considerare la caduta di tensione per deformazione elastica.

Per le limitazioni degli stati tensionali nelle condizioni di esercizio, per tutte le strutture precompresse, valgono le prescrizioni riportate al \S 4.1.2.2.5.

4.1.8.1.3 Tensioni di esercizio nel calcestruzzo a cadute avvenute

Vale quanto stabilito al § 4.1.2.2.5.

Non sono ammesse tensioni di trazione ai lembi nelle strutture costruite per conci prefabbricati, quando non sia possibile disporre l'armatura ordinaria che assorbe lo sforzo di trazione.

4.1.8.1.4 Tensioni iniziali nel calcestruzzo

All'atto della precompressione le tensioni di compressione non debbono superare il valore:

$$\sigma_{\rm c} < 0.60 \; {\rm f_{ckj}}$$
 [4.1]

essendo f_{ckj} la resistenza caratteristica del calcestruzzo all'atto del tiro.

Per elementi con armatura pre-tesa, la tensione del calcestruzzo al momento del trasferimento della pretensione può essere aumentata sino al valore $0.70~f_{\rm cki.}$

Nella zona di ancoraggio delle armature di precompressione si possono tollerare compressioni locali σ_c prodotte dagli apparecchi di ancoraggio pari a:

$$\sigma_{c} < c f_{cd}$$
 [4.1.48]

dove

 σ_c = γ_P P / A₀ è la pressione agente sull'impronta caricata di area A₀;

P è la forza iniziale di tesatura nel cavo (γ_P =1,2);

 f_{cd} = f_{ckj} / γ_c è la resistenza cilindrica del calcestruzzo all'atto della precompressione;

 $c \le 3$ è un fattore di sovraresistenza che dipende da:

il rapporto A₀/A₁ tra l'area caricata e quella circostante interessata;

la posizione dell'impronta caricata rispetto ai bordi della sezione;

le eventuali interferenze con aree interessate vicine.

Per i valori di c si può far utile riferimento al §6.7 della norma UNI EN1992-1-1.

Si raccomanda di disporre idonee armature in grado di equilibrare le forze di trazione trasversali dovute all'effetto del carico.

Qualora le aree di influenza di apparecchi vicini si sovrappongano, le azioni vanno sommate e riferite all'area complessiva.

4.1.8.1.5 Tensioni limite per gli acciai da precompressione

Per le tensioni in esercizio a perdite avvenute vale quanto stabilito al § 4.1.2.2.5.2 ove si sostituisca $f_{p(0,1)k}$, $f_{p(1)k}$ o f_{pyk} a f_{yk} .

Le tensioni iniziali devono rispettare le più restrittive delle seguenti limitazioni:

$$\begin{array}{lll} \sigma_{spi}\!<\!0.85\,f_{p(0.1)k} & \sigma_{spi}\!<\!0.75\,f_{ptk} & per armatura post-tesa \\ \sigma_{spi}\!<\!0.90\,f_{p(0.1)k} & \sigma_{spi}\!<\!0.80\,f_{ptk} & per armatura pre-tesa \end{array} \tag{4.1.49}$$

ove si sostituisca $f_{p(1)k}$ o f_{pyk} a $f_{p(0,1)k'}$ se del caso.

In entrambi i casi è ammessa una sovratensione, in misura non superiore a $0.05~f_{p(0.1)k}$

4.1.8.2 DETTAGLI COSTRUTTIVI PER IL CALCESTRUZZO ARMATO PRECOMPRESSO

Con riferimento ai dettagli costruttivi degli elementi strutturali in calcestruzzo armato precompresso, ai punti seguenti del presente paragrafo vengono fornite le indicazioni applicative necessarie per l'ottenimento delle prescritte prestazioni.

4.1.8.2.1 Armatura longitudinale ordinaria

Nelle travi precompresse con esclusione delle sezioni di giunto delle travi a conci prefabbricati, anche in assenza di tensioni di trazione in combinazione rara, la percentuale di armatura longitudinale ordinaria non dovrà essere inferiore allo 0,1% dell'area complessiva dell'anima e dell'eventuale ringrosso dal lato dei cavi.

Nel caso sia prevista la parzializzazione della sezione in esercizio, le barre longitudinali di armatura ordinaria devono essere disposte nella zona della sezione che risulta parzializzata.

4.1.8.2.2 Staffe

Nelle travi dovranno disporsi staffe aventi sezione complessiva non inferiore a quanto prescritto al punto § 4.1.6.1.1. In prossimità di carichi concentrati o delle zone d'appoggio valgono le prescrizioni di cui al § 4.1.2.3.5.

In presenza di torsione valgono le prescrizioni di cui al § 4.1.2.3.6.

4.1.8.3 ESECUZIONE DELLE OPERE IN CALCESTRUZZO ARMATO PRECOMPRESSO

Per quanto riguarda lo strato di ricoprimento di calcestruzzo necessario alla protezione delle armature dalla corrosione, si rimanda al § 4.1.6.1.3.

Nel caso di armature pre-tese, nella testata i trefoli devono essere ricoperti con adeguato materiale protettivo, o con getto in opera

Nel caso di armature post-tese, gli apparecchi d'ancoraggio della testata devono essere protetti in modo analogo.

All'atto della messa in tiro si debbono misurare contemporaneamente la forza applicata e l'allungamento conseguito. Per prodotti marcati CE si applicano le procedure di controllo previste dalle pertinenti norme europee armonizzate.

La distanza minima netta tra le guaine deve essere commisurata sia alla massima dimensione dell'aggregato impiegato sia al diametro delle guaine stesse in relazione rispettivamente ad un omogeneo getto del calcestruzzo fresco ed al necessario sviluppo delle tensioni di aderenza con il calcestruzzo.

I risultati conseguiti nelle operazioni di tiro, le letture ai manometri e gli allungamenti misurati, vanno registrati in apposite tabelle e confrontate con le tensioni iniziali delle armature e gli allungamenti teorici previsti in progetto.

La protezione dei cavi scorrevoli va eseguita mediante l'iniezione di adeguati materiali atti a prevenire la corrosione ed a fornire

Per la buona esecuzione delle iniezioni è necessario che le stesse vengano eseguite secondo apposite procedure di controllo della qualità.

4.1.9. NORME ULTERIORI PER I SOLAI

Si intendono come solai le strutture bidimensionali piane caricate ortogonalmente al proprio piano, con prevalente comporta-

4.1.9.1 SOLAI MISTI DI C.A. E C.A.P. E BLOCCHI FORATI IN LATERIZIO O IN CALCESTRUZZO

Nei solai misti in calcestruzzo armato normale e precompresso e blocchi forati in laterizio o in calcestruzzo, i blocchi hanno funzione di alleggerimento e di aumento della rigidezza flessionale del solaio. Essi si suddividono in blocchi collaboranti e non collaboranti.

Nel caso di blocchi non collaboranti la resistenza allo stato limite ultimo è affidata al calcestruzzo ed alle armature ordinarie e/o di precompressione. Nel caso di blocchi collaboranti questi partecipano alla resistenza in modo solidale con gli altri materiali.

4.1.9.2 SOLAI MISTI DI C.A. E C.A.P. E BLOCCHI DIVERSI DAL LATERIZIO O CALCESTRUZZO

Possono utilizzarsi per realizzare i solai misti di calcestruzzo armato e calcestruzzo armato precompresso anche blocchi diversi dal laterizio o dal calcestruzzo, con sola funzione di alleggerimento.

I blocchi in calcestruzzo leggero di argilla espansa, calcestruzzo normale sagomato, polistirolo, materie plastiche, elementi organici mineralizzati, ecc., devono essere dimensionalmente stabili e non fragili, e capaci di seguire le deformazioni del solaio.

4.1.9.3 SOLAI REALIZZATI CON L'ASSOCIAZIONE DI COMPONENTI PREFABBRICATI IN C.A. E C.A.P.

I componenti di questi tipi di solai devono rispettare le norme di cui al presente § 4.1.

Oltre a quanto indicato nei precedenti paragrafi relativamente allo stato limite di deformazione, devono essere tenute presenti le seguenti norme complementari.

I componenti devono essere provvisti di opportuni dispositivi e magisteri che assicurino la congruenza delle deformazioni tra i componenti stessi accostati, sia per i carichi ripartiti che per quelli concentrati. In assenza di soletta collaborante armata o in difformità rispetto alle prescrizioni delle specifiche norme tecniche europee, l'efficacia di tali dispositivi deve essere certificata mediante prove sperimentali.

Quando si voglia realizzare una ridistribuzione trasversale dei carichi è necessario che il solaio così composto abbia dei componenti strutturali ortogonali alla direzione dell'elemento resistente principale.

Qualora il componente venga integrato da un getto di completamento all'estradosso, questo deve avere uno spessore non inferiore a 40 mm ed essere dotato di una armatura di ripartizione a maglia incrociata e si deve verificare la trasmissione delle azioni di taglio fra elementi prefabbricati e getto di completamento, tenuto conto degli stati di coazione che si creano per le diverse caratteristiche reologiche dei calcestruzzi, del componente e dei getti di completamento.

4.1.10. NORME ULTERIORI PER LE STRUTTURE PREFABBRICATE

Formano oggetto del presente paragrafo i componenti strutturali prefabbricati in calcestruzzo armato, normale o precompresso (nel seguito detti componenti) che rispondono alle specifiche prescrizioni del presente § 4.1, ai metodi di calcolo di cui al§ 2.6e che, singolarmente o assemblati tra di loro oppure con parti costruite in opera, siano utilizzati per la realizzazione di opere di ingegneria civile.

Rientrano nel campo di applicazione delle presenti norme i componenti prodotti in stabilimenti permanenti o in impianti temporanei allestiti per uno specifico cantiere, oppure realizzati a piè d'opera.

Componenti di serie devono intendersi unicamente quelli prodotti in stabilimenti permanenti, con tecnologia ripetitiva e processi industrializzati, in tipologie predefinite per campi dimensionali e tipi di armature.

Di produzione occasionale si intendono i componenti prodotti senza il presupposto della ripetitività tipologica.

Il componente deve garantire i livelli di sicurezza e prestazione sia come componente singolo, nelle fasi transitorie di sformatura, movimentazione, stoccaggio, trasporto e montaggio, sia come elemento di un più complesso organismo strutturale una volta installato in opera.

Nel caso di prodotti coperti da marcatura CE, devono essere comunque rispettati, laddove applicabili, i $\S\S$ 11.8.2, 11.8.3.4 e 11.8.5 delle presenti Norme Tecniche.

4.1.10.1 PRODOTTI PREFABBRICATI NON SOGGETTI A MARCATURA CE

Per gli elementi strutturali prefabbricati qui disciplinati, quando non soggetti a Dichiarazione di Prestazione e conseguente Marcatura CE secondo una specifica tecnica armonizzata elaborata ai sensi del Regolamento UE 305/2011 e i cui riferimenti sono pubblicati sulla Gazzetta Ufficiale dell'Unione Europea, sono previste due categorie di produzione:

- serie dichiarata
- serie controllata

I componenti per i quali non sia applicabile la marcatura CE, ai sensi del Regolamento UE 305/2011, devono essere realizzati attraverso processi sottoposti ad un sistema di controllo della produzione ed i produttori di componenti in serie dichiarata ed in serie controllata, devono altresì provvedere alla preventiva qualificazione del sistema di produzione, con le modalità indicate nel § 11.8.

4.1.10.2 PRODOTTI PREFABBRICATI IN SERIE

Rientrano tra i prodotti prefabbricati in serie:

- i componenti di serie per i quali è stato effettuato il deposito ai sensi dell'articolo 9 della legge 5 novembre 1971 n. 1086;
- i componenti per i quali è stata rilasciata la certificazione di idoneità ai sensi degli articoli 1 e 7 della legge 2 febbraio 1974 n.
 64:
- ogni altro componente compreso nella definizione di cui al 3° comma del § 4.1.10.

4.1.10.2.1 Prodotti prefabbricati in serie dichiarata

Rientrano in serie dichiarata i componenti di serie che, pur appartenendo ad una tipologia predefinita, vengono progettati di volta in volta su commessa per dimensioni ed armature (serie tipologica).

Per le tipologie predefinite il produttore dovrà provvedere, nell'ambito delle modalità di qualificazione della produzione di cui al § 11.8, al deposito della documentazione tecnica relativa al processo produttivo ed al progetto tipo presso il Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici.

Per ogni singolo impiego delle serie tipologiche la specifica documentazione tecnica dei componenti prodotti in serie dovrà essere allegata alla documentazione progettuale depositata presso l'Ufficio regionale competente, ai sensi della vigente legislazione in materia.

Rientrano altresì in serie dichiarata i componenti di serie costituiti da un tipo compiutamente determinato, predefinito in dimensioni ed armature sulla base di un progetto depositato (serie ripetitiva).

Per ogni tipo di componente, o per ogni famiglia omogenea di tipi, il produttore dovrà provvedere, nell'ambito delle modalità di qualificazione della produzione di cui al § 11.8, al deposito della documentazione tecnica relativa al processo produttivo ed al progetto specifico presso il Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici.

Per ogni singolo impiego delle serie ripetitive, sarà sufficiente allegare alla documentazione progettuale depositata presso l'Ufficio regionale competente, ai sensi della vigente legislazione in materia, gli estremi del deposito presso il Servizio Tecnico Centrale.

4.1.10.2.2 Prodotti prefabbricati in serie controllata

Per serie controllata si intende la produzione di serie che, oltre ad avere i requisiti specificati per la serie dichiarata, sia eseguita con procedure che prevedono verifiche sperimentali su prototipo e controllo permanente della produzione, come specificato al § 11.8.

Devono essere prodotti in serie controllata:

- i componenti costituiti da assetti strutturali non consueti;
- i componenti realizzati con l'impiego di calcestruzzi speciali o di classe > C 45/55;
- i componenti armati o precompressi con spessori, anche locali, inferiori a 40 mm;
- i componenti il cui progetto sia redatto su modelli di calcolo non previsti dalle presenti Norme Tecniche.

Per i componenti ricadenti in uno dei casi sopra elencati, è obbligatorio il rilascio preventivo dell'autorizzazione alla produzione, secondo le procedure di cui al § 11.8.4.3.

4.1.10.3 RESPONSABILITÀ E COMPETENZE

Il Progettista e il Direttore tecnico dello stabilimento di prefabbricazione, ciascuno per le proprie competenze, sono responsabili della capacità portante e della sicurezza del componente, sia incorporato nell'opera, sia durante le fasi di trasporto fino a piè d'opera.

È responsabilità del progettista e del Direttore dei lavori del complesso strutturale di cui l'elemento fa parte, ciascuno per le proprie competenze, la verifica del componente durante il montaggio, la messa in opera e l'uso dell'insieme strutturale realizzato.

I componenti prodotti negli stabilimenti permanenti devono essere realizzati sotto la responsabilità di un Direttore tecnico dello stabilimento, dotato di adeguata abilitazione professionale, che assume le responsabilità proprie del Direttore dei lavori.

I componenti di produzione occasionale devono inoltre essere realizzati sotto la vigilanza del Direttore dei lavori dell'opera di destinazione.

I funzionari del Servizio Tecnico Centrale potranno accedere anche senza preavviso agli stabilimenti di produzione dei componenti prefabbricati per l'accertamento del rispetto delle presenti norme.

4.1.10.4 PROVE SU COMPONENTI

Per verificare le prestazioni di un nuovo prodotto o di una nuova tecnologia produttiva ed accertare l'affidabilità dei modelli di calcolo impiegati nelle verifiche di resistenza, prima di dare inizio alla produzione corrente è necessario eseguire delle prove di carico su di un adeguato numero di prototipi al vero, portati fino a rottura.

Tali prove sono obbligatorie, in aggiunta alle prove correnti sui materiali di cui al Capitolo 11, per le produzioni in serie controllata.

4.1.10.5 NORME COMPLEMENTARI

Le verifiche del componente vanno fatte con riferimento al livello di maturazione e di resistenza raggiunto, controllato mediante prove sui materiali di cui al § 11.8.3.1 ed eventuali prove su prototipo prima della movimentazione del componente e del cimento statico dello stesso.

I dispositivi di sollevamento e movimentazione debbono essere esplicitamente previsti nel progetto del componente strutturale e realizzati con materiali appropriati e dimensionati per le sollecitazioni previste.

Il copriferro degli elementi prefabbricati deve rispettare le regole generali di cui al presente § 4.1.

4.1.10.5.1 Appoggi

Per i componenti appoggiati in via definitiva, particolare attenzione va posta alla posizione e dimensione dell'apparecchio d'appoggio, sia rispetto alla geometria dell'elemento di sostegno, sia rispetto alla sezione terminale dell'elemento portato, tenendo nel dovuto conto le tolleranze dimensionali e di montaggio e le deformazioni per fenomeni reologici e/o termici.

I vincoli provvisori o definitivi devono essere progettati con particolare attenzione e, se necessario, validati attraverso prove sperimentali

Gli appoggi scorrevoli devono essere dimensionati in modo da consentire gli spostamenti relativi previsti senza perdita della capacità portante.

4.1.10.5.2 Realizzazione delle unioni e dei collegamenti

Le unioni ed i collegamenti fra elementi prefabbricati devono avere resistenza e deformabilità coerenti con le ipotesi progettuali e devono essere qualificati secondo quanto previsto al pertinente paragrafo del Cap11.8.

4.1.10.5.3 Tolleranze

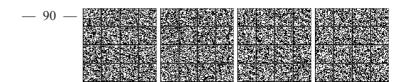
Il progetto deve indicare le tolleranze minime di produzione che dovrà rispettare il componente. Il componente che non rispetta tali tolleranze, sarà giudicato non conforme e quindi potrà essere consegnato in cantiere per l'utilizzo nella costruzione solo dopo preventiva accettazione da parte del Direttore dei lavori.

Il progetto dell'opera deve altresì tener conto delle tolleranze di produzione, tracciamento e montaggio assicurando un coerente funzionamento del complesso strutturale.

Il montaggio dei componenti ed il completamento dell'opera devono essere conformi alle previsioni di progetto. Nel caso si verificassero delle non conformità, queste devono essere analizzate dal Direttore dei lavori nei riguardi delle eventuali necessarie misure correttive.

4.1.11. CALCESTRUZZO A BASSA PERCENTUALE DI ARMATURA O NON ARMATO

Il calcestruzzo a bassa percentuale di armatura è quello per il quale la percentuale di armatura messa in opera è minore di quella minima necessaria per il calcestruzzo armato o la quantità media in peso di acciaio per metro cubo di calcestruzzo è inferiore a 0.3 kN.


Sia il calcestruzzo a bassa percentuale di armatura, sia quello non armato possono essere impiegati solo per elementi secondari o per strutture massicce o estese.

4.1.11.1 VALUTAZIONE DELLA SICUREZZA – NORME DI CALCOLO

Per le verifiche di resistenza delle sezioni sotto sforzi normali si adottano le competenti ipotesi tratte dal \S 4.1.2.3.4.1. Per una sezione rettangolare di lati a e b soggetta ad una forza normale N_{Ed} con una eccentricità e nella direzione del lato a la verifica di resistenza allo SLU, con il modello (c) di \S 4.1.2.1.2.1, si pone con

 $N_{Ed} \le N_{Rd} = f_{cd} b x$ [4.1.50]

con x = a - 2e.

La verifica di resistenza della stessa sezione rettangolare di lati a e b soggetta anche ad un sforzo di taglio Vea nella direzione del lato a si pone con

 $V_{Ed} \le V_{Rd} = f_{cvd} b \times / 1.5$

con

 $f_{cvd} = \sqrt{(f_{ct1d}^2 + \sigma_c f_{ct1d})}$ per σc≤σclim $f_{cvd} = \sqrt{(f_{ct1d}^2 + \sigma_c f_{ct1d} - \delta^2/4)}$ per $\sigma_c > \sigma_{clim}$

dove

 $\sigma_c = N_{Ed} / (b x)$

 $\delta = \sigma_c - \sigma_{clim}$

 $\sigma_{\text{clim}} = f_{\text{cd}} - 2 \sqrt{(f_{\text{ct1d}} + f_{\text{cd}} f_{\text{ct1d}})}$

dove

fct1d=0.85 fctd

è la resistenza a trazione di progetto per calcestruzzo non armato o debolmente armato.

CALCESTRUZZO DI AGGREGATI LEGGERI (LC)

Il presente capitolo si applica ai calcestruzzi di aggregati leggeri minerali, artificiali o naturali, con esclusione dei calcestruzzi aerati.

Per le classi di densità e di resistenza normalizzate può farsi utile riferimento a quanto riportato nella norma UNI EN 206:2016. Sulla base della denominazione normalizzata come definita in § 4.1 per il calcestruzzo di peso normale, vengono ammesse classi di resistenza fino alla classe LC55/60.

I calcestruzzi delle diverse classi trovano impiego secondo quanto riportato nella Tab. 4.1.II.

Valgono le specifiche prescrizioni sul controllo della qualità date in § 4.1 e in § 11.1.

NORME DI CALCOLO

Al progetto delle strutture in calcestruzzo di aggregati leggeri si applicano le norme di cui ai §§ da 4.1.1 a 4.1.11, tenuto conto della specificità del materiale e comunque ponendo la resistenza a trazione di progetto pari a

$$f_{ctd} = 0.85 f_{ctk}/\gamma_c$$
 [4.1.50]

Non possono impiegarsi barre di diametro maggiore di 32 mm. Per ogni indicazione applicativa si potrà fare utile riferimento alla sezione 11 di UNI EN 1992-1-1:2005.

4.1.13. **RESISTENZA AL FUOCO**

Le verifiche di resistenza al fuoco potranno eseguirsi con riferimento a UNI EN 1992-1-2, utilizzando i coefficienti γ_{M} (§ 4.1.4) relativi alle combinazioni eccezionali ed assumendo il coefficiente $\alpha_{\rm cc}$ pari a 1,0.

4.2. **COSTRUZIONI DI ACCIAIO**

Le presenti norme definiscono i principi e le regole generali per soddisfare i requisiti di sicurezza delle costruzioni con struttura

I requisiti per l'esecuzione di strutture di acciaio, al fine di assicurare un adeguato livello di resistenza meccanica e stabilità, di efficienza e di durata, devono essere conformi alle UNI EN 1090-2:2011, "Esecuzione di strutture di acciaio e di alluminio - Parte 2: Requisiti tecnici per strutture di acciaio", per quanto non in contrasto con le presenti norme.

4.2.1. **MATERIALI**

ACCIAIO LAMINATO

Gli acciai per impiego strutturale devono appartenere ai gradi da S235 a S460 e le loro caratteristiche devono essere conformi ai requisiti di cui al § 11.3.4 delle presenti norme.

Per le applicazioni nelle zone dissipative delle costruzioni soggette ad azioni sismiche sono richiesti ulteriori requisiti specificati nel § 11.3.4.9 delle presenti norme.

In sede di progettazione, per gli acciai di cui alle norme europee armonizzate UNI EN 10025-1, UNI EN 10210-1 ed UNI EN 10219-1, si possono assumere nei calcoli i valori nominali delle tensioni caratteristiche di snervamento f_{yk} e di rottura f_{tk} riportati nelle tabelle seguenti.

Tab. 4.2.I – Laminati a caldo con profili a sezione aperta piani e lunghi

	Spessore nominale "t" dell'elemento					
Norme e qualità degli acciai	t ≤ 40	mm	40 mm < t	≤ 80 mm		
	f _{yk} [N/mm ²] f _{tk} [N/mm ²]		f _{yk} [N/mm ²]	f _{tk} [N/mm ²]		
UNI EN 10025-2						
S 235	235	360	215	360		
S 275	275	430	255	410		
S 355	355	510	335	470		
S 450	440	550	420	550		
UNI EN 10025-3						
S 275 N/NL	275	390	255	370		
S 355 N/NL	355	490	335	470		
S 420 N/NL	420	520	390	520		
S 460 N/NL	460	540	430	540		
UNI EN 10025-4						
S 275 M/ML	275	370	255	360		
S 355 M/ML	355	470	335	450		
S 420 M/ML	420	520	390	500		
S 460 M/ML	460	540	430	530		
S460 Q/QL/QL1	460	570	440	580		
UNI EN 10025-5						
S 235 W	235	360	215	340		
S 355 W	355	510	335	490		

Tab. 4.2.II - Laminati a caldo con profili a sezione cava

	Spessore nominale "t" dell'elemento					
Norme e qualità degli acciai	t ≤ 40	mm	40 mm < t	≤ 80 mm		
	f _{yk} [N/mm²] f _{tk} [N/mm²]		f _{yk} [N/mm ²]	f _{tk} [N/mm ²]		
UNI EN 10210-1						
S 235 H	235	360	215	340		
S 275 H	275	430	255	410		
S 355 H	355	510	335	490		
S 275 NH/NLH	275	390	255	370		
S 355 NH/NLH	355	490	335	470		
S 420 NH/NLH	420	540	390	520		
S 460 NH/NLH	460	560	430	550		
UNI EN 10219-1						
S 235 H	235	360				
S 275 H	275	430				
S 355 H	355	510				
S 275 NH/NLH	275	370				
S 355 NH/NLH	355	470				
S 275 MH/MLH	275	360				
S 355 MH/MLH	355	470				
S 420 MH/MLH	420	500				
S460 MH/MLH	460	530				
S460 NH/NHL	460	550				

4.2.1.2 ACCIAIO INOSSIDABILE

Gli acciai inossidabili per impieghi strutturali devono essere conformi a quanto previsto nel § 11.3.4.8. Per quanto attiene alla progettazione strutturale con acciai inossidabili, le indicazioni e le regole indicate nella presente norma devono essere integrate da norme di comprovata validità, quali, ad esempio, la UNI EN 1993-1-4.

4.2.1.3 SALDATURE

I procedimenti di saldatura e i materiali di apporto devono essere conformi ai requisiti di cui al § 11.3.4.5 delle presenti norme.

Per l'omologazione degli elettrodi da impiegare nella saldatura ad arco può farsi utile riferimento alla norma UNI EN ISO 2560.

Per gli altri procedimenti di saldatura devono essere impiegati fili, flussi o gas di cui alle prove di qualifica del procedimento.

Le caratteristiche dei materiali di apporto (tensione di snervamento, tensione di rottura, allungamento a rottura e resilienza) devono, salvo casi particolari precisati dal progettista, essere equivalenti o superiori alle corrispondenti caratteristiche delle parti collegate.

4.2.1.4 BULLONI E CHIODI

I bulloni e i chiodi per collegamenti di forza devono essere conformi ai requisiti di cui al § 11.3.4.6 delle presenti norme.

I valori della tensione di snervamento f_{yb} e della tensione di rottura f_{tb} dei bulloni, da adottare nelle verifiche quali valori caratteristici, sono specificati nel § 11.3.4.6 delle presenti norme.

4.2.2. VALUTAZIONE DELLA SICUREZZA

La valutazione della sicurezza è condotta secondo i principi fondamentali illustrati nel Capitolo 2.

I requisiti richiesti di resistenza, funzionalità, durabilità e robustezza si garantiscono verificando il rispetto degli stati limite ultimi e degli stati limite di esercizio della struttura, dei componenti strutturali e dei collegamenti descritti nella presente norma.

4.2.2.1 STATI LIMITE

Gli stati limite ultimi da verificare, ove necessario, sono:

- stato limite di equilibrio, al fine di controllare l'equilibrio globale della struttura e delle sue parti durante tutta la vita nominale comprese le fasi di costruzione e di riparazione;
- stato limite di collasso, corrispondente al raggiungimento della tensione di snervamento oppure delle deformazioni ultime del materiale e quindi della crisi o eccessiva deformazione di una sezione, di una membratura o di un collegamento (escludendo fenomeni di fatica), o alla formazione di un meccanismo di collasso, o all'instaurarsi di fenomeni di instabilità dell'equilibrio negli elementi componenti o nella struttura nel suo insieme, considerando anche fenomeni locali d'instabilità dei quali si possa tener conto eventualmente con riduzione delle aree delle sezioni resistenti;
- stato limite di fatica, controllando le variazioni tensionali indotte dai carichi ripetuti in relazione alle caratteristiche dei dettagli strutturali interessati.

Per strutture o situazioni particolari, può essere necessario considerare altri stati limite ultimi.

Gli stati limite di esercizio da verificare, ove necessario, sono:

- stati limite di deformazione e/o spostamento, al fine di evitare deformazioni e spostamenti che possano compromettere l'uso efficiente della costruzione e dei suoi contenuti, nonché il suo aspetto estetico;
- stato limite di vibrazione, al fine di assicurare che le sensazioni percepite dagli utenti garantiscano accettabili livelli di comfort ed il cui superamento potrebbe essere indice di scarsa robustezza e/o indicatore di possibili danni negli elementi secondari;
- stato limite di plasticizzazioni locali, al fine di scongiurare deformazioni plastiche che generino deformazioni irreversibili ed inaccettabili;
- stato limite di scorrimento dei collegamenti ad attrito con bulloni ad alta resistenza, nel caso che il collegamento sia stato dimensionato a collasso per taglio dei bulloni.

4.2.3. ANALISI STRUTTURALE

Il metodo di analisi deve essere coerente con le ipotesi di progetto. L'analisi deve essere basata su modelli strutturali di calcolo appropriati, a seconda dello stato limite considerato.

Le ipotesi scelte ed il modello di calcolo adottato devono essere in grado di riprodurre il comportamento globale della struttura e quello locale delle sezioni adottate, degli elementi strutturali, dei collegamenti e degli appoggi.

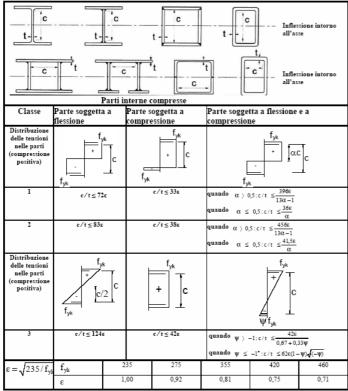
Nell'analisi globale della struttura, in quella dei sistemi di controvento e nel calcolo delle membrature si deve tener conto delle imperfezioni geometriche e strutturali di cui al § 4.2.3.5.

4.2.3.1 CLASSIFICAZIONE DELLE SEZIONI

Le sezioni trasversali degli elementi strutturali si classificano in funzione della loro capacità rotazionale C_{θ} definita come:

$$C_{\vartheta} = \vartheta_{r} / \vartheta_{v} - 1$$
 [4.2.0]

essendo ϑ_r e ϑ_v le rotazioni corrispondenti rispettivamente al raggiungimento della deformazione ultima ed allo snervamento.


La classificazione delle sezioni trasversali degli elementi strutturali si effettua in funzione della loro capacità di deformarsi in campo plastico. E' possibile distinguere le seguenti classi di sezioni:

- classe 1 se la sezione è in grado di sviluppare una cerniera plastica avente la capacità rotazionale richiesta per l'analisi strutturale condotta con il metodo plastico di cui al § 4.2.3.2 senza subire riduzioni della resistenza Possono generalmente classificarsi come tali le sezioni con capacità rotazionale $C_{\vartheta} \ge 3$;
- classe 2 se la sezione è in grado di sviluppare il proprio momento resistente plastico, ma con capacità rotazionale limitata. Possono generalmente classificarsi come tali le sezioni con capacità rotazionale $C_{\vartheta} \ge 1,5;$
- classe 3 se nella sezione le tensioni calcolate nelle fibre estreme compresse possono raggiungere la tensione di snervamento, ma l'instabilità locale impedisce lo sviluppo del momento resistente plastico;
- classe 4 se, per determinarne la resistenza flettente, tagliante o normale, è necessario tener conto degli effetti dell'instabilità locale in fase elastica nelle parti compresse che compongono la sezione. In tal caso nel calcolo della resistenza la sezione geometrica effettiva può sostituirsi con una sezione efficace.

Le sezioni di classe 1 si definiscono duttili, quelle di classe 2 compatte, quelle di classe 3 semi-compatte e quelle di classe 4 snelle. Per i casi più comuni delle forme delle sezioni e delle modalità di sollecitazione, le seguenti Tabelle 4.2.III, 4.2.IV e 4.2.V forniscono indicazioni per la classificazione delle sezioni.

La classe di una sezione composta corrisponde al valore di classe più alto tra quelli dei suoi elementi componenti.

Tab. 4.2.III - Massimi rapporti larghezza spessore per parti compresse

 $^{^{}ullet}$) ψ \leq -1 si applica se la tensione di compressione σ \leq f_{vk} o la deformazione a trazione $arepsilon_v >$ f_{vk}/E

Tab. 4.2.IV - Massimi rapporti larghezza spessore per parti compresse

1 4.2.1 V - Wildostini rupporti iurgitezzu spessore per purit compresse							
Piattabande esterne							
Profilati laminati a caldo			Sezioni saldate				
Classe	Piattab			e esterne sog		ne e a	
		soggette a	compressio				
	compre		Con estrem	ità in		emità in	
			compression		trazione		
Distribuzione delle tensioni nelle parti (compressione positiva)	+ c		+		1	+	
1	c/t≤9ε		$e/t \le \frac{9\varepsilon}{\alpha}$		c/t	$c/t \le \frac{9\varepsilon}{\alpha \sqrt{\alpha}}$	
2	c∕t≤10ε		$c/t \le \frac{10\varepsilon}{\alpha}$		$c/t \le \frac{10c}{\alpha \sqrt{a}}$	-	
Distribuzione delle tensioni nelle parti (compressione positiva)	- + +						
3	c∕t≤14ε		c/t $\leq 21\epsilon\sqrt{k_e}$ Per k_e vedere EN 1993-1-5				
$\varepsilon = \sqrt{235/f_{vk}}$	f_{yk}	235	275	355	420	460	
2- γ 233/1 _{yk}	ε	1,00	0,92	0,81	0,75	0,71	

Tab. 4.2.V - Massimi rapporti larghezza spessore per parti compresse

Angolari						
t b Riferirsi anche alle piattabande esterne (v. Tab 4.2.II) Non si applica agli angoli in contatto continuo con altri componenti						
Classe	ш сонтапо сони		ezione in comp	ressione		
Distribuzione delle tensioni sulla sezione (compressione positiva)	fyk					
3	$h/t \le 15\varepsilon$ $\frac{b+h}{2t} \le 11,5\varepsilon$					
Sezioni Tubolari						
Classe		Sezi	one inflessa e/o	compressa	P	
1	$d/t \le 50\varepsilon^2$					
2	$d/t \leq 70\varepsilon^2$					
3	$d/t \le 90\varepsilon^2$	(Per d/t >	90 E 2 vedere EN 1	993-1-6)		
	f_{yk}	235	275	355	420	460
$\varepsilon = \sqrt{235/f_{yk}}$	ε	1,00	0,92	0,81	0,75	0,71
379	ε^2	1,00	0,85	0,66	0,56	0,51

4.2.3.2 CAPACITÀ RESISTENTE DELLE SEZIONI

La capacità resistente delle sezioni deve essere valutata nei confronti delle sollecitazioni di trazione o compressione, flessione, taglio e torsione, determinando anche gli effetti indotti sulla resistenza dalla presenza combinata di più sollecitazioni.

La capacità resistente della sezione si determina con uno dei seguenti metodi.

Metodo elastico (F)

Si assume un comportamento elastico lineare del materiale, sino al raggiungimento della condizione di snervamento.

Il metodo può applicarsi a tutte le classi di sezioni, con l'avvertenza di riferirsi al metodo delle sezioni efficaci o a metodi equivalenti, nel caso di sezioni di classe 4.

Metodo plastico (P)

Si assume la completa plasticizzazione del materiale. Il metodo può applicarsi solo a sezioni di classe $1\,\mathrm{e}\,2$.

Metodo elasto-plastico (EP)

Si assumono legami costitutivi tensione-deformazione del materiale di tipo bilineare o più complessi.

Il metodo può applicarsi a qualsiasi tipo di sezione.

4.2.3.3 METODI DI ANALISI GLOBALE

L'analisi globale della struttura può essere condotta con uno dei seguenti metodi:

Metodo elastico (E)

Si valutano gli effetti delle azioni nell'ipotesi che il legame tensione-deformazione del materiale sia indefinitamente lineare.

Il metodo è applicabile a strutture composte da sezioni di classe qualsiasi.

La resistenza delle sezioni può essere valutata con il metodo elastico, plastico o elasto-plastico per le sezioni duttili o compatte (classe 1 o 2), con il metodo elastico o elasto-plastico per le sezioni semi-compatte o snelle (classe 3 o 4).

Metodo plastico (P)

Gli effetti delle azioni si valutano trascurando la deformazione elastica degli elementi strutturali e concentrando le deformazioni plastiche nelle sezioni di formazione delle cerniere plastiche.

Il metodo è applicabile a strutture interamente composte da sezioni di classe 1.

Metodo elasto-plastico(EP)

Gli effetti delle azioni si valutano introducendo nel modello il legame momento-curvatura delle sezioni ottenuto considerando un legame costitutivo tensione-deformazione di tipo bilineare o più complesso.

Il metodo è applicabile a strutture composte da sezioni di classe qualsiasi.

Le possibili alternative per i metodi di analisi strutturale e di valutazione della capacità resistente flessionale delle sezioni sono riassunte nella seguente Tab. 4.2.VI.

Tab. 4.2.VI - Metodi di analisi globali e relativi metodi di calcolo delle capacità e classi di sezioni ammesse

Metodo di analisi globale	Metodo di calcolo della capacità resistente della sezione	Tipo di sezione
(E)	(E)	tutte (*)
(E)	(P)	classi 1 e 2
(E)	(EP)	tutte (*)
(P)	(P)	classe 1
(EP)	(EP)	tutte (*)

(*) per le sezioni di classe 4 la capacità resistente può essere calcolata con riferimento alla sezione efficace.

4.2.3.4 EFFETTI DELLE DEFORMAZIONI

In generale, è possibile effettuare:

- l'analisi del primo ordine, imponendo l'equilibrio sulla configurazione iniziale della struttura,
- l'analisi del secondo ordine, imponendo l'equilibrio sulla configurazione deformata della struttura.

L'analisi globale può condursi con la teoria del primo ordine nei casi in cui possano ritenersi trascurabili gli effetti delle deformazioni sull'entità delle sollecitazioni, sui fenomeni di instabilità e su qualsiasi altro rilevante parametro di risposta della struttura.

Tale condizione si può assumere verificata se risulta soddisfatta la seguente relazione:

$$\begin{split} \alpha_{\rm cr} &= \frac{F_{\rm cr}}{F_{\rm Ed}} \geq 10 \quad \text{ per l'analisi elastica} \\ \alpha_{\rm cr} &= \frac{F_{\rm cr}}{F_{\rm Ed}} \geq 15 \quad \text{per l'analisi plastica} \end{split} \tag{4.2.1}$$

dove α_{cr} è il moltiplicatore dei carichi applicati che induce l'instabilità globale della struttura, F_{Ed} è il valore dei carichi di progetto e F_{cr} è il valore del carico instabilizzante calcolato considerando la rigidezza iniziale elastica della struttura.

4.2.3.5 EFFETTO DELLE IMPERFEZIONI

Nell'analisi della struttura, in quella dei sistemi di controvento e nel calcolo delle membrature si deve tener conto degli effetti delle imperfezioni geometriche e strutturali quali la mancanza di verticalità o di rettilineità, la mancanza di accoppiamento e le inevitabili eccentricità minori presenti nei collegamenti reali.

A tal fine possono adottarsi nell'analisi adeguate imperfezioni geometriche equivalenti, di valore tale da simulare i possibili effetti delle reali imperfezioni da esse sostituite, a meno che tali effetti non siano inclusi implicitamente nel calcolo della resistenza degli elementi strutturali.

Si devono considerare nel calcolo:

- le imperfezioni globali per i telai o per i sistemi di controvento;
- le imperfezioni locali per i singoli elementi strutturali.

Gli effetti delle imperfezioni globali per telai sensibili agli effetti del secondo ordine possono essere riprodotti introducendo un errore iniziale di verticalità della struttura ed una curvatura iniziale degli elementi strutturali costituenti.

L'errore iniziale di verticalità in un telaio può essere trascurato quando:

$$H_{Ed} \ge 0.15 \cdot Q_{Ed}$$
 [4.2.2]

dove H_{Ed} è la somma delle reazioni orizzontali alla base delle colonne del piano considerato e Q_{Ed} è la somma delle reazioni verticali alla base delle colonne del piano stesso.

Nel caso di telai non sensibili agli effetti del secondo ordine, nell'esecuzione dell'analisi globale per il calcolo delle sollecitazioni da introdurre nelle verifiche di stabilità degli elementi strutturali, la curvatura iniziale degli elementi strutturali può essere trascurata.

Nell'analisi dei sistemi di controvento che devono garantire la stabilità laterale di travi inflesse o elementi compressi, gli effetti delle imperfezioni globali devono essere riprodotti introducendo, sotto forma di errore di rettilineità iniziale, un'imperfezione geometrica equivalente dell'elemento da vincolare.

Nella verifica di singoli elementi strutturali, quando non occorra tenere conto degli effetti del secondo ordine, gli effetti delle imperfezioni locali sono da considerarsi inclusi implicitamente nelle formule di verifica di stabilità.

4.2.4. VERIFICHE

Le azioni caratteristiche (carichi, distorsioni, variazioni termiche, ecc.) devono essere definite in accordo con quanto indicato nei Capitoli 3 e 5 delle presenti norme.

Per costruzioni civili o industriali di tipo corrente e per le quali non esistano regolamentazioni specifiche, le azioni di progetto si ottengono, per le verifiche statiche, secondo quanto indicato nel Capitolo 2.

Il calcolo deve condursi con appropriati metodi della meccanica strutturale, secondo i criteri indicati in § 4.2.3.

4.2.4.1 VERIFICHE AGLI STATI LIMITE ULTIMI

4.2.4.1.1 Resistenza di progetto

La resistenza di progetto delle membrature R_d si pone nella forma:

$$R_{d} = \frac{R_k}{\gamma_M}$$
 [4.2.3]

dove:

 R_k è il valore caratteristico della resistenza (trazione, compressione, flessione, taglio e torsione) della membratura, determinata dai valori caratteristici delle resistenze dei materiali f_{yk} e dalle caratteristiche geometriche degli elementi strutturali, dipendenti dalla classe della sezione.

 $\gamma_{\rm M}~$ è il fattore parziale globale relativo al modello di resistenza adottato.

Nel caso in cui si abbiamo elementi con sezioni di classe 4 può farsi riferimento alle caratteristiche geometriche "efficaci", area efficace $A_{\rm effr}$ modulo di resistenza efficace $W_{\rm effr}$ modulo di inerzia efficace $J_{\rm effr}$ valutati seguendo il procedimento indicato in UNI EN 1993-1-5. Nel caso di elementi strutturali formati a freddo e lamiere sottili, per valutare le caratteristiche "efficaci" si può fare riferimento a quanto indicato in UNI EN1993-1-3. In alternativa al metodo delle caratteristiche geometriche efficaci si potrà utilizzare il metodo delle tensioni ridotte, indicato in UNI EN 1993-1-5.

Per le verifiche di resistenza delle sezioni delle membrature, con riferimento ai modelli di resistenza esposti nella presente normativa ed utilizzando acciai dal grado S 235 al grado S 460 di cui al § 11.3, si adottano i fattori parziali γ_{M0} e γ_{M2} indicati nella Tab. 4.2.VII. Il coefficiente di sicurezza γ_{M2} , in particolare, deve essere impiegato qualora si eseguano verifiche di elementi tesi nelle zone di unione delle membrature indebolite dai fori.

Per valutare la stabilità degli elementi strutturali compressi, inflessi e presso-inflessi, si utilizza il coefficiente parziale di sicurezza γ_{M1} indicato nella seguente tabella.

Tab. 4.2.VII - Coefficienti di sicurezza per la resistenza delle membrature e la stabilità

Resistenza delle Sezioni di Classe 1-2-3-4	$\gamma_{M0} = 1.05$
Resistenza all'instabilità delle membrature	$\gamma_{\rm M1}$ = 1,05
Resistenza all'instabilità delle membrature di ponti stradali e ferroviari	$\gamma_{M1} = 1,10$
Resistenza, nei riguardi della frattura, delle sezioni tese (indebolite dai fori)	$\gamma_{M2} = 1,25$

4.2.4.1.2 Resistenza delle membrature

Per la verifica delle travi la resistenza di progetto da considerare dipende dalla classificazione delle sezioni.

La verifica in campo elastico è ammessa per tutti i tipi di sezione, con l'avvertenza di tener conto degli effetti di instabilità locale per le sezioni di classe 4.

Le verifiche in campo elastico, per gli stati di sforzo piani tipici delle travi, si eseguono con riferimento al seguente criterio:


$$\sigma_{x,Ed}^2 + \sigma_{z,Ed}^2 - \sigma_{z,Ed}\sigma_{x,Ed} + 3\tau_{Ed}^2 \le (f_{vk}/\gamma_{M0})^2$$
 [4.2.4]

dove:

 $\sigma_{
m x,Ed}$ è il valore di progetto della tensione normale nel punto in esame, agente in direzione parallela all'asse della membratura;

 $\sigma_{z,Ed}$ è il valore di progetto della tensione normale nel punto in esame, agente in direzione ortogonale all'asse della membratura:

 τ_{Ed} è il valore di progetto della tensione tangenziale nel punto in esame, agente nel piano della sezione della membratura.

La verifica in campo plastico richiede che si determini una distribuzione di tensioni interne "staticamente ammissibile", cioè in equilibrio con le sollecitazioni applicate (N, M, T, ecc.) e rispettosa della condizione di plasticità.

I modelli resistenti esposti nei paragrafi seguenti definiscono la resistenza delle sezioni delle membrature nei confronti delle sollecitazioni interne, agenti separatamente o contemporaneamente.

Per le sezioni di classe 4, in alternativa alle formule impiegate nel seguito, si possono impiegare altri procedimenti di comprovata validità.

4.2.4.1.2.1 Trazione

L'azione assiale di progetto N_{Ed} deve rispettare la seguente condizione:

$$\frac{N_{Ed}}{N_{t,Rd}} \le 1$$
 [4.2.5]

dove la resistenza di progetto a trazione $N_{t,Rd}$ di membrature con sezioni indebolite da fori per collegamenti bullonati o chiodati deve essere assunta pari al minore dei valori seguenti:

a) la resistenza plastica di progetto della sezione lorda, A,

$$N_{pl,Rd} = \frac{Af_{yk}}{\gamma_{M0}}$$
 [4.2.6]

b) la resistenza di progetto a rottura della sezione netta, A_{net} , in corrispondenza dei fori per i collegamenti

$$N_{u,Rd} = \frac{0.9 \cdot A_{net} \cdot f_{tk}}{\gamma_{M2}}.$$
 [4.2.7]

Qualora il progetto preveda la gerarchia delle resistenze, come avviene in presenza di azioni sismiche, la resistenza di progetto plastica della sezione lorda, $N_{pl,Rd}$, deve risultare minore della resistenza di progetto a rottura delle sezioni indebolite dai fori per i collegamenti, $N_{u,Rd}$:

$$N_{pl,Rd} \le N_{u,Rd} \tag{4.2.8}$$

4.2.4.1.2.2 Compressione

La forza di compressione di progetto N_{Ed} deve rispettare la seguente condizione:

$$\frac{N_{Ed}}{N_{cRd}} \le 1 \tag{4.2.9}$$

dove la resistenza di progetto a compressione della sezione $N_{c,Rd}$ vale:

$$N_{c,Rd}=A~f_{yk}~/~\gamma_{M0}~~$$
 per le sezioni di classe 1, 2 e 3,
$$N_{c,Rd}=A_{eff}~f_{yk}~/~\gamma_{M0}~~$$
 per le sezioni di classe 4.
$$\label{eq:NcRd} [4.2.10]$$

Non è necessario dedurre l'area dei fori per i collegamenti bullonati o chiodati, purché in tutti i fori siano presenti gli elementi di collegamento e non siano presenti fori sovradimensionati o asolati.

4.2.4.1.2.3 Flessione monoassiale (retta)

Il momento flettente di progetto $M_{\rm Ed}$ deve rispettare la seguente condizione:

$$\frac{M_{Ed}}{M_{c,Rd}} \le 1$$
 [4.2.11]

dove la resistenza di progetto a flessione retta della sezione $M_{c,Rd}$ si valuta tenendo conto della presenza di eventuali fori in zona tesa per collegamenti bullonati o chiodati.

La resistenza di progetto a flessione retta della sezione $M_{c,Rd}$ vale:

$$M_{c,Rd} = M_{pl,Rd} = \frac{W_{pl} \cdot f_{yk}}{\gamma_{M0}}$$
 per le sezioni di classe 1 e 2; [4.2.12]

in cui W_{Pl} rappresenta il modulo di resistenza plastico della sezione

$$M_{c,Rd} = M_{el,Rd} = \frac{W_{el,min} \cdot f_{yk}}{\gamma_{M0}}$$
 per le sezioni di classe 3; [4.2.13]

$$M_{c,Rd} = \frac{W_{eff,min} \cdot f_{yk}}{\gamma_{M0}}$$
 per le sezioni di classe 4; [4.2.14]

per le sezioni di classe 3, $W_{el,min}$ è il modulo resistente elastico minimo della sezione in acciaio; per le sezioni di classe 4, invece, il modulo $W_{eff,min}$ è calcolato eliminando le parti della sezione inattive a causa dei fenomeni di instabilità locali, secondo il procedimento esposto in UNI EN1993-1-5, e scegliendo il minore tra i moduli così ottenuti.

Per la flessione biassiale si veda oltre

Negli elementi inflessi caratterizzati da giunti strutturali bullonati, la presenza dei fori nelle piattabande tese dei profili può essere trascurata nel calcolo del momento resistente se è verificata la relazione

$$\frac{0.9 \cdot A_{f,net} \cdot f_{tk}}{\gamma_{M2}} \ge \frac{A_f \cdot f_{yk}}{\gamma_{M0}}$$
 [4.2.15]

 $dove \ A_f \`e \ l'area \ lorda \ della \ piattabanda \ tesa, \ A_{f,net} \`e \ l'area \ della \ piattabanda \ al \ netto \ dei \ fori \ e \ f_{tk} \`e \ la \ resistenza \ ultima \ dell'acciaio.$

4.2.4.1.2.4 Taglio

Il valore di progetto dell'azione tagliante V_{Ed} deve rispettare la condizione

$$\frac{V_{Ed}}{V_{c,Rd}} \le 1$$
 [4.2.16]

dove la resistenza di progetto a taglio $V_{c,Rd}$, in assenza di torsione, vale

$$V_{c,Rd} = \frac{A_v \cdot f_{yk}}{\sqrt{3} \cdot \gamma_{M0}}$$
 [4.2.17]

dove A_v è l'area resistente a taglio. Per profilati ad I e ad H caricati nel piano dell'anima si può assumere

$$A_v = A - 2 b t_f + (t_w + 2 r) t_f$$
 [4.2.18]

per profilati a C o ad U caricati nel piano dell'anima si può assumere

$$A_v = A - 2bt_f + (t_w + r)t_f$$
 [4.2.19]

per profilati ad I e ad H caricati nel piano delle ali si può assumere

$$A_{v} = A - \sum (h_{w} \cdot t_{w})$$
 [4.2.20]

per profilati a T caricati nel piano dell'anima si può assumere

$$A_v = 0.9 (A - b t_f)$$
 [4.2.21]

per profili rettangolari cavi "profilati a caldo" di spessore uniforme si può assumere

 $A_v = Ah/(b+h)$ quando il carico è parallelo all'altezza del profilo,

$$A_v = Ab/(b+h)$$
 quando il carico è parallelo alla base del profilo; [4.2.22]

per sezioni circolari cave e tubi di spessore uniforme:

$$A_{v} = 2A/\pi ag{4.2.23}$$

dove:

A è l'area lorda della sezione del profilo,

b è la larghezza delle ali per i profilati e la larghezza per le sezioni cave,

h_w è l'altezza dell'anima,

h è l'altezza delle sezioni cave,

r è il raggio di raccordo tra anima ed ala,

 t_f è lo spessore delle ali,

t_w è lo spessore dell'anima.

In presenza di torsione, la resistenza a taglio del profilo deve essere opportunamente ridotta. Per le sezioni ad I o H la resistenza di progetto a taglio ridotta è data dalla formula

$$V_{\text{e,Rd,red}} = V_{\text{e,Rd}} \sqrt{1 - \frac{\tau_{\text{t,Ed}}}{1,25 \cdot f_{\text{yk}} / (\sqrt{3} \cdot \gamma_{\text{M0}})}}$$
 [4.2.24]

 $dove \, \tau_{t,Ed} \, \grave{e} \, \, la \, \, tensione \, tangenziale \, massima \, dovuta \, alla \, torsione \, uniforme. \, Per \, sezioni \, cave, \, invece, \, la \, formula \, \grave{e} \, \, la \, tensione \, tangenziale \, la \, torsione \, la \, tor$

$$V_{c,Rd,red} = \left[1 - \frac{\tau_{t,Ed}}{f_{yk}/(\sqrt{3} \cdot \gamma_{M0})}\right] V_{c,Rd}$$
 [4.2.25]

La verifica a taglio della sezione può anche essere condotta in termini tensionali (verifica elastica) nel punto più sollecitato della sezione trasversale utilizzando la formula

$$\frac{\tau_{_{1,Ed}}}{f_{_{yk}}/(\sqrt{3}\cdot\gamma_{_{M0}})} \le 1,0$$
 [4.2.26]

dove τ_{Ed} è valutata in campo elastico lineare.

La verifica all'instabilità dell'anima della sezione soggetta a taglio e priva di irrigidimenti deve essere condotta in accordo con § 4.2.4.1.3.4 se

$$\frac{h_w}{t} > \frac{72}{\eta} \cdot \sqrt{\frac{235}{f_{yk}}}$$
 [4.2.27]

 $con \eta$ assunto cautelativamente pari a 1,00 oppure valutato secondo quanto previsto in norme di comprovata validità.

4.2.4.1.2.5 Torsione

Per gli elementi soggetti a torsione, quando possano essere trascurate le distorsioni della sezione, la sollecitazione torcente di progetto, T_{Ed} , deve soddisfare la relazione

$$\frac{T_{Ed}}{T_{Pd}} \le 1.0$$
 [4.2.28]

essendo T_{Rd} la resistenza torsionale di progetto della sezione trasversale. La torsione agente T_{Ed} può essere considerata come la somma di due contributi

$$T_{Ed} = T_{t,Ed} + T_{w,Ed}$$
 [4.2.29]

dove $T_{t,Ed}$ è la torsione uniforme e $T_{w,Ed}$ è la torsione per ingobbamento impedito.

4.2.4.1.2.6 Flessione e taglio

Se il taglio di progetto V_{Ed} è inferiore a metà della resistenza di progetto a taglio $V_{\text{c,Rd}}$

$$V_{Ed} \le 0.5 \ V_{c,Rd}$$
 [4.2.30]

si può trascurare l'influenza del taglio sulla resistenza a flessione, eccetto nei casi in cui l'instabilità per taglio riduca la resistenza a flessione della sezione. Se il taglio di progetto V_{Ed} è superiore a metà della resistenza di progetto a taglio $V_{c,Rd}$ bisogna tener conto dell'influenza del taglio sulla resistenza a flessione.

Posto

$$\rho = \left[\frac{2V_{Ed}}{V_{c,Rd}} - 1 \right]^2$$
 [4.2.31]

 $la \ resistenza \ a \ flessione \ si \ determina \ assumendo \ per \ l'area \ resistente \ a \ taglio \ A_v \ la \ tensione \ di \ snervamento \ ridotta \ (1-\rho) \ f_{yk}.$

Per le sezioni ad I o ad H di classe 1 e 2 doppiamente simmetriche, soggette a flessione e taglio nel piano dell'anima, la corrispondente resistenza convenzionale di progetto a flessione retta può essere valutata come:

$$M_{y,V,Rd} = \frac{\left[W_{pl,y} - \frac{\rho \cdot A_w^2}{4t_w}\right] f_{yk}}{\gamma_{M0}} \le M_{y,c,Rd}$$
 [4.2.32]

in cui A_w rappresenta l'area dell'anima del profilo.

4.2.4.1.2.7 Presso o tenso-flessione retta

La presso- o tenso-flessione retta può essere trattata con riferimento a metodi di comprovata validità.

Per le sezioni ad I o ad H di classe 1 e 2 doppiamente simmetriche, soggette a presso o tenso-flessione nel piano dell'anima, la corrispondente resistenza convenzionale di progetto a flessione retta può essere valutata come:

$$M_{N,y,Rd} = M_{pl,y,Rd} (1-n) / (1-0.5 a) = \le M_{pl,y,Rd}$$
 [4.2.33]

Per le sezioni ad I o ad H di classe 1 e 2 doppiamente simmetriche, soggette a presso o tenso-flessione nel piano delle ali, la corrispondente resistenza convenzionale di progetto a flessione retta può essere valutata come:

$$M_{N,z,Rd} = M_{pl,z,Rd} \text{ per } n \le a$$
 [4.2.34]

o $\mathbf{M}_{_{N_{\mathcal{Z},Rd}}} = \mathbf{M}_{_{pl,z,Rd}} \left[1 - \left(\frac{n-a}{1-a} \right)^2 \right] \text{per } n > a$ [4.2.35]

essendo

 $M_{pl,y,Rd}$ il momento resistente plastico di progetto a flessione semplice nel piano dell'anima, $M_{pl,z,Rd}$ il momento resistente plastico di progetto a flessione semplice nel piano delle ali,

e posto:

$$n = N_{Ed} / N_{pl,Rd}$$
 [4.2.36]

$$a = \frac{(A - 2bt_{\ell})}{A} \le 0.5$$
 [4.2.37]

dove:

A è l'area lorda della sezione,

b è la larghezza delle ali,

 t_f è lo spessore delle ali.

Per sezioni generiche di classe 1 e 2 la verifica si conduce controllando che il momento di progetto sia minore del momento plastico di progetto, ridotto per effetto dello sforzo normale di progetto, $M_{N,v,Rd}$.

4.2.4.1.2.8 Presso o tenso flessione biassiale

La presso- o tenso-flessione biassiale può essere trattata con riferimento a metodi di comprovata validità.

Per le sezioni ad I o ad H di classe 1 e 2 doppiamente simmetriche, soggette a presso o tenso-flessione biassiale, la condizione di resistenza può essere valutata come:

$$\left(\frac{M_{y,Ed}}{M_{N,y,Rd}}\right)^{2} + \left(\frac{M_{z,Ed}}{M_{N,z,Rd}}\right)^{5n} \leq 1$$
 [4.2.38]

con $n \ge 0.2$ essendo $n = N_{Ed} / N_{pl,Rd}$. Nel caso in cui n < 0.2, e comunque per sezioni generiche di classe 1 e 2, la verifica può essere condotta cautelativamente controllando che:

$$\left(\frac{M_{y,Ed}}{M_{N,y,Rd}}\right) + \left(\frac{M_{z,Ed}}{M_{N,z,Rd}}\right) \le 1$$
[4.2.39]

Per le sezioni di classe 3, in assenza di azioni di taglio, la verifica a presso o tenso-flessione retta o biassiale è condotta in termini tensionali utilizzando le verifiche elastiche; la tensione agente è calcolata considerando la eventuale presenza dei fori.

Per le sezioni di classe 4, le verifiche devono essere condotte con riferimento alla resistenza elastica (verifica tensionale); si possono utilizzare le proprietà geometriche efficaci della sezione trasversale considerando la eventuale presenza dei fori.

4.2.4.1.2.9 Flessione, taglio e sforzo assiale

Nel calcolo del momento flettente resistente devono essere considerati gli effetti di sforzo assiale e taglio, se presenti.

Nel caso in cui il taglio sollecitante di progetto, $V_{Ed'}$ sia inferiore al 50% della resistenza di progetto a taglio, $V_{c,Rd'}$ la resistenza a flessione della sezione può essere calcolata con le formule per la tenso/presso flessione. Se la sollecitazione di progetto a taglio supera il 50% della resistenza di progetto a taglio, si assume una tensione di snervamento ridotta per l'interazione tra flessione e taglio: $f_{v,red}$ =(1- ρ) f_{vk} dove:

$$\rho = \left[\frac{2V_{Ed}}{V_{c,Rd}} - 1 \right]^2$$
 [4.2.40]

Per le sezioni di classe 3 e classe 4 le verifiche devono essere condotte con riferimento alla resistenza elastica (verifica tensionale); per le sezioni di classe 4 si possono utilizzare le proprietà geometriche efficaci della sezione trasversale.

4.2.4.1.3 Stabilità delle membrature

4.2.4.1.3.1 Aste compresse

La verifica di stabilità di un'asta si effettua nell'ipotesi che la sezione trasversale sia uniformemente compressa. Deve essere

$$\frac{N_{Ed}}{N_{b,Rd}} \le 1$$
 [4.2.41]

dove

N_{Ed} è l'azione di compressione di progetto,

 $N_{\,b,Rd}\;$ è la resistenza di progetto all'instabilità nell'asta compressa, data da

$$N_{b,Rd} = \frac{\chi A f_{yk}}{\gamma_{M1}}$$
 per le sezioni di classe 1, 2 e 3, [4.2.42]

e da

$$N_{b,Rd} = \frac{\chi A_{eff} f_{yk}}{\gamma_{M1}}$$
 per le sezioni di classe 4 [4.2.43]

I coefficienti χ dipendono dal tipo di sezione e dal tipo di acciaio impiegato; essi si desumono, in funzione di appropriati valori della snellezza normalizzata $\bar{\lambda}$, dalla seguente formula

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \overline{\lambda}^2}} \le 1.0$$
 [4.2.44]

dove $\Phi = 0.5 \left| 1 + \alpha \left(\overline{\lambda} - 0.2 \right) + \overline{\lambda^2} \right|$, $\alpha \in \mathbb{R}$ il fattore di imperfezione ricavato dalla Tab. 4.2.VIII e la snellezza normalizzata $\overline{\lambda} \in \mathbb{R}$

$$\bar{\lambda} = \sqrt{\frac{A \cdot f_{yk}}{N_{cr}}}$$
 per le sezioni di classe 1, 2 e 3, e a [4.2.45]

$$\overline{\lambda} = \sqrt{\frac{A_{eff} \cdot f_{yk}}{N_{cr}}}$$
 per le sezioni di classe 4. [4.2.46]

 Tab. 4.2.VIII - Curve d'instabilità per varie tipologie di sezioni e classi d'acciaio, per elementi compressi

let. 12. v III Curve a monoma per vari			Limiti		Inflessione intorno all'asse		Curva di instabilità				
Sezione trasversale		\$235, \$275, \$355, \$420					S460				
	z	<u>,</u>	.1,2	$t_f \leq 40$ s	mm	y-y z-z		a b		a ₀	
Sezioni laminate	h y		h/b > 1.2	40 mm < t _f ≤	100 mm	y-y z-z		b c		a a	
			≤1,2	$t_f \le 100$	mm	y-y z-z		b c		a a	
			h/b ≤	t _f > 100	mm	y-y z-z		d		c c	
Sezioni ad la saldate		z tf	t _f ≤ 40 mm			y-y z-z			b c		
		- '-y	t _f > 40 mm				y-y c c d			c d	
cave			Sezione formata "a caldo"		qu	alunque	unque a		a ₀		
Sezioni cave			S	ezione formata "	a freddo"	qu	alunque	c		с	
san salda		t _f	In generale		qu	alunque	b	,	b		
Sezioni scat				saldature "spesse": a>0.5t _f ; b/t _f <30; h/t _w <30		qu	qualunque			c	
Sezioni piene, ad U e T						qu	qualunque			с	
Sezioni ad L		 			qualunque		ь		b		
Curva	Curva di instabilità a ₀			a	b	b c		d		d	
Fattor	Fattore di imperfezione α 0,13			0,21	0,34	0,34 0,49		0,76			

 N_{cr} è il carico critico elastico basato sulle proprietà della sezione lorda e sulla lunghezza di libera inflessione l_0 dell'asta, calcolato per la modalità di collasso per instabilità appropriata (flessionale, torsionale o flesso-torsionale).

Nel caso in cui $\bar{\lambda}$ sia minore di 0,2 oppure nel caso in cui la sollecitazione di progetto N_{Ed} sia inferiore a 0,04 N_{cr} , gli effetti legati ai fenomeni di instabilità per le aste compresse possono essere trascurati.

Limitazioni della snellezza

Si definisce lunghezza d'inflessione la lunghezza l_0 = β ·1 da sostituire nel calcolo del carico critico elastico N_{cr} alla lunghezza l dell'asta quale risulta dallo schema strutturale. Il coefficiente β deve essere valutato tenendo conto delle effettive condizioni di vincolo dell'asta nel piano di inflessione considerato.

Si definisce snellezza di un'asta nel piano di verifica considerato il rapporto


$$\lambda = l_0 / i$$
 [4.2.47]

dove

l₀ è la lunghezza d'inflessione nel piano considerato,

i è il raggio d'inerzia relativo.

È opportuno limitare la snellezza λ al valore di 200 per le membrature principali ed a 250 per le membrature secondarie.

4.2.4.1.3.2 Travi inflesse

Le travi inflesse con la piattabanda compressa non sufficientemente vincolata lateralmente, devono essere verificate nei riguardi dell'instabilità flesso-torsionale secondo la formula

$$\frac{\mathbf{M}_{Ed}}{\mathbf{M}_{hRd}} \le 1 \tag{4.2.48}$$

dove:

M_{Ed} è il massimo momento flettente di progetto

 $M_{b,Rd}$ è il momento resistente di progetto per l'instabilità.

Nel caso di profilo inflesso secondo l'asse forte (asse y) il momento resistente di progetto per i fenomeni di instabilità di una trave lateralmente non vincolata può essere assunto pari a

$$M_{b,Rd} = \chi_{LT} \cdot W_y \frac{f_{yk}}{\gamma_{M1}}$$
 [4.2.49]

dove

 W_y è il modulo resistente della sezione, pari al modulo plastico $W_{pl,y'}$ per le sezioni di classe 1 e 2, al modulo elastico $W_{el,y'}$ per le sezioni di classe 3 e che può essere assunto pari al modulo efficace $W_{eff,y'}$ per le sezioni di classe 4.

Il fattore χ_{LT} è il fattore di riduzione per l'instabilità flessotorsionale, dipendente dal tipo di profilo impiegato e può essere determinato dalla formula

$$\chi_{\mathrm{LT}} = \frac{1}{\mathrm{f}} \cdot \frac{1}{\Phi_{\mathrm{LT}} + \sqrt{\Phi_{\mathrm{LT}}^2 - \beta \cdot \overline{\lambda}_{\mathrm{LT}}^2}} \leq K \chi$$

$$\text{dove } \Phi_{LT} = 0.5 \left[1 + \alpha_{LT} \left(\overline{\lambda}_{LT} - \overline{\lambda}_{LT,0} \right) + \beta \cdot \overline{\lambda}_{LT}^2 \right]$$

Il coefficiente di snellezza normalizzata $\overline{\lambda}_{LT}$ è dato dalla formula

$$\overline{\lambda}_{LT} = \sqrt{\frac{W_{Y} \cdot f_{yk}}{M_{cr}}}$$
 [4.2.51]

in cui M_{cr} è il momento critico elastico di instabilità flesso-torsionale, calcolato considerando la sezione lorda del profilo e tenendo in conto, le condizioni di carico ed i vincoli torsionali presenti, nell'ipotesi di diagramma di momento flettente uniforme.

Il fattore di imperfezione α_{LT} è ottenuto dalle indicazioni riportate nella Tab. 4.2.IX (a) in base alle curve di stabilità definita nella tabella Tab. 4.2.IX (b)

Il fattore f considera la reale distribuzione del momento flettente tra i ritegni torsionali dell'elemento inflesso ed è definito dalla formula

$$f = 1 - 0, 5(1 - k_c) \left[1 - 2, 0 \left(\overline{\lambda}_{LT} - 0, 8 \right)^2 \right]$$
 [4.2.52]

in cui il fattore correttivo k_c assume i valori riportati in Tab. 4.2.X. In particolare nel caso di variazione lineare del momento flettente ψ (-1 \leq ψ <1) rappresenta il rapporto tra il momento in modulo minimo ed il momento in modulo massimo presi entrambi con il loro segno.

Nel caso generale, si può assume f=1, β =1, K χ =1 e $\overline{\lambda}_{LT,0}$ =0,2.

Tab. 4.2.IX (a) Valori raccomandati di $\alpha_{\rm LT}$ per le differenti curve di stabilità.

Curva di stabilità	a	b	c	d
Fattore di imperfezione $\alpha_{\rm LT}$	0,21	0,34	0,49	0,76

Tab. 4.2.IX (b) - Definizione delle curve di stabilità per le varie tipologie di sezione e per gli elementi inflessi

,	,	, , , , ,				
Sezione trasversale	Limiti	Curva di instabilità da Tab. 4.2.VIII				
Sezione laminata ad I	h/b≤2	b				
Sezione iaminata ad i	h/b>2	С				
Comiono commonte caldata	h/b≤2	С				
Sezione composta saldata	h/b>2	d				
Altre sezioni trasversali	-	d				

Per i profili a I o a H, laminati o composti saldati, il coefficiente $\overline{\lambda}_{\text{LT},0}$ non può mai essere assunto superiore a 0,4, il coefficiente β non può mai essere assunto inferiore a 0,75 e il termine $K\chi$ è definito come:

$$K_{\chi} = \min\left(1, \frac{1}{f \cdot \overline{\lambda}_{LT}^2}\right)$$
 [4.2.53]

4.2.4.1.3.3 Membrature inflesse e compresse

Per elementi strutturali soggetti a compressione e flessione, si debbono studiare i relativi fenomeni di instabilità facendo riferimento a normative di comprovata validità.

4.2.4.1.3.4 Stabilità dei pannelli

Gli elementi strutturali in parete sottile (di classe 4) presentano problemi complessi d'instabilità locale, per la cui trattazione si deve fare riferimento a normative di comprovata validità.

4.2.4.1.4 Stato limite di fatica

Per le strutture soggette a carichi ciclici deve essere verificata la resistenza a fatica imponendo che:

$$\Delta_{\rm d} \le \Delta_{\rm R} / \gamma_{\rm Mf}$$
 [4.2.54]

essendo

 Δ_d l'escursione di tensione (effettiva o equivalente allo spettro di tensione) prodotta dalle azioni cicliche di progetto che inducono fenomeni di fatica con coefficienti parziali γ_{M_f} = 1;

 Δ_R la resistenza a fatica per la relativa categoria dei dettagli costruttivi, come desumibile dalle curve S-N di resistenza a fatica, per il numero totale di cicli di sollecitazione N applicati durante la vita di progetto richiesta,

 γ_{Mf} il coefficiente parziale definito nella Tab. 4.2.XI.

Nel caso degli edifici la verifica a fatica delle membrature non è generalmente necessaria, salvo per quelle alle quali sono applicati dispositivi di sollevamento dei carichi o macchine vibranti.

Tab. 4.2.X - Coefficiente correttivo del momento flettente per la verifica a stabilità delle travi inflesse

Distribuzione del momento flettente	Fattore correttivo kc
$M_{sx} = M_{dx} / M_{sx} = 1$ $W = M_{dx} / M_{sx} = 1$	1,0
M_{xx}	$\frac{1}{1,33-0,33\psi}$
	0,94
	0,90
	0,91
	0,86
	0,77
	0,82

Nel caso dei ponti gli spettri dei carichi da impiegare per le verifiche a fatica sono fissati nel Capitolo 5 delle presenti norme.

Per valutare gli effetti della fatica è innanzitutto necessario classificare le strutture nei confronti della loro sensibilità al fenomeno

Si definiscono strutture poco sensibili alla rottura per fatica quelle in cui si verifichino tutte le seguenti circostanze:

- dettagli costruttivi, materiali e livelli di tensione tali che le eventuali lesioni presentino bassa velocità di propagazione e significativa lunghezza critica;
- disposizioni costruttive che permettano la ridistribuzione degli sforzi;
- dettagli idonei ad arrestare la propagazione delle lesioni;
- dettagli facilmente ispezionabili e riparabili;
- prestabilite procedure di ispezione e di manutenzione atte a rilevare e riparare le eventuali lesioni.

Si definiscono strutture sensibili alla rottura per fatica quelle che non ricadono nei punti precedenti.

La resistenza a fatica di un dettaglio è individuata mediante una curva caratteristica, detta curva S-N, che esprime il numero di cicli a rottura N in funzione delle variazioni di tensione nel ciclo $\Delta\sigma$ o $\Delta\tau$.

Per indicazioni riguardanti le modalità di realizzazione dei dettagli costruttivi e la loro classificazione, con le rispettive curve S-N si può fare riferimento al documento UNI EN1993-1-9.

Tab. 4.2.XI - Coefficienti di sicurezza da assumere per le verifiche a fatica.

	Conseguenze della rottura		
	Conseguenze moderate	Conseguenze significative	
Strutture poco sensibili alla rot- tura per fatica	γ_{Mf} = 1,00	γ_{Mf} = 1,15	
Strutture sensibili alla rottura per fatica	γ_{Mf} = 1,15	γ_{Mf} = 1,35	

Le verifiche a fatica possono essere a vita illimitata o a danneggiamento.

Verifica a vita illimitata.

La verifica a vita illimitata si esegue controllando che sia:

$$\Delta \sigma_{\text{max,d}} = \gamma_{\text{Mf}} \cdot \Delta \sigma_{\text{max}} \le \Delta \sigma_{\text{D}}$$
 [4.2.55]

oppure che:

$$\Delta \tau_{\text{max,d}} = \gamma_{\text{Mf}} \cdot \Delta \tau_{\text{max}} \le \Delta \tau_{\text{D}} = \Delta \tau_{\text{L}}$$
 [4.2.56]

dove $\Delta\sigma_{\text{max,d}}$ e $\Delta\tau_{\text{max,d}}$ sono, rispettivamente, i valori di progetto delle massime escursioni di tensioni normali e di tensioni tangenziali indotte nel dettaglio considerato dallo spettro di carico, e $\Delta\sigma_D$ e $\Delta\tau_D$ i limiti di fatica ad ampiezza costante.

La verifica a vita illimitata è esclusa per tutti i dettagli le cui curve S-N non presentino limite di fatica ad ampiezza costante (per es., i connettori a piolo).

Verifica a danneggiamento

La verifica a danneggiamento si esegue mediante la formula di Palmgren-Miner, controllando che il danneggiamento D risulti:

$$D = \sum_{i} \frac{n_{i}}{N_{i}} \le 1,0$$
 [4.2.57]

dove n_i è il numero dei cicli di ampiezza $\Delta \sigma_{i,d}$ indotti dallo spettro di carico per le verifiche a danneggiamento nel corso della vita prevista per il dettaglio e N_i è il numero di cicli di ampiezza $\Delta \sigma_{i,d}$ a rottura, ricavato dalla curva S-N caratteristica del dettaglio.

La verifica a danneggiamento può essere eseguita anche con il metodo dei coefficienti di danneggiamento equivalente λ . Per l'impiego di tale metodo si deve fare riferimento a normative di comprovata validità, di cui al capitolo 12.

Nel caso di combinazioni di tensioni normali e tangenziali, la valutazione della resistenza a fatica dovrà considerare i loro effetti congiunti adottando idonei criteri di combinazione del danno.

Nella valutazione della resistenza a fatica dovrà tenersi conto dello spessore del metallo base nel quale può innescarsi una potenziale lesione.

Le curve S-N reperibili nella letteratura consolidata sono riferite ai valori nominali delle tensioni.

Per i dettagli costruttivi dei quali non sia nota la curva di resistenza a fatica, le escursioni tensionali potranno riferirsi alle tensioni geometriche o di picco, cioè alle tensioni principali nel metallo base in prossimità della potenziale lesione, secondo le modalità e le limitazioni specifiche del metodo, nell'ambito della meccanica della frattura.

Nelle verifiche a fatica è consentito tenere conto degli effetti favorevoli di eventuali trattamenti termici o meccanici, purché adeguatamente comprovati.

4.2.4.1.5 Fragilità alle basse temperature

La temperatura minima alla quale l'acciaio per impiego strutturale può essere utilizzato senza pericolo di rottura fragile, in assenza di dati più precisi, deve essere stimata sulla base della temperatura T alla quale per detto acciaio può essere garantita la resilienza KV, richiesta secondo le norme europee applicabili.

Per quanto riguarda le caratteristiche di tenacità, nel caso di strutture non protette, si assumono come temperatura di riferimento T_{Ed} quella minima del luogo di installazione della struttura, con un periodo di ritorno di cinquant'anni T_{min} definita al §3.5.2

$$T_{Ed} = T_{min}$$
 [4.2.58]

Nel caso di strutture protette verrà invece adottata la temperatura T_{min} aumentata di 15 $^{\circ}$ C

$$T_{Ed} = T_{min} + 15 \,^{\circ}C$$
 [4.2.59]

In assenza di dati statistici locali si potrà assumere come temperatura di riferimento il valore T_{Ed} = -25 °C per strutture non protette e T_{Ed} = -10 °C per strutture protette.

Per la determinazione dei massimi spessori di utilizzo degli acciai in funzione

- della temperatura minima di servizio,
- dei livelli di sollecitazione di progetto $\sigma_{\rm Ed}$ col metodo agli stati limiti,
- del tipo e del grado dell'acciaio,

può essere utilizzato il prospetto 2.1 di UNI EN 1993-1-10:2005.

Per membrature compresse valgono le prescrizioni del prospetto 2.1 della UNI EN 1993-1-10 con σ_{Ed} =0,25 f_v.

Tale tabella è valida per velocità di deformazione non superiori a $\varepsilon_0 = 4x10^4/s$ e per materiali che non abbiano subito incrudimenti e/o invecchiamenti tali da alterarne le caratteristiche di tenacità.

4.2.4.1.6 Resistenza di cavi, barre e funi

La verifica di cavi, barre e funi dovrà tener conto della specificità di tali elementi sia per quanto riguarda le caratteristiche dei materiali, sia per i dettagli costruttivi e potrà essere condotta con riferimento a specifiche indicazioni contenute in normative di comprovata validità, quali UNI EN 12385, UNI EN 10059 e UNI EN 10060, adottando fattori parziali γ_M che garantiscano i livelli di sicurezza stabiliti nelle presenti norme.

4.2.4.1.7 Resistenza degli apparecchi di appoggio

Le verifiche degli apparecchi di appoggio devono essere condotte tenendo conto della specificità dei materiali impiegati e della tipologia delle apparecchiature.

Si può fare riferimento a modelli di calcolo contenuti in normative di comprovata validità, quali le norme della serie UNI EN 1337, adottando fattori parziali γ_M che garantiscano i livelli di sicurezza stabiliti nelle presenti norme.

4.2.4.2 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO

4.2.4.2.1 Spostamenti verticali

Il valore totale dello spostamento ortogonale all'asse dell'elemento (Fig. 4.2.3) è definito come

 $\delta_{\text{tot}} = \delta_1 + \delta_2 \tag{4.2.6}$

Fig. 4.2.3 -Definizione degli spostamenti verticali per le verifiche in esercizio

essendo:

 δ_C la monta iniziale della trave,

 δ_1 lo spostamento elastico dovuto ai carichi permanenti,

 δ_2 lo spostamento elastico dovuto ai carichi variabili,

 $\delta_{max}\,$ lo spostamento nello stato finale, depurato della monta iniziale = δ_{tot} - $\delta_{C}.$

Nel caso di coperture, solai e travi di edifici ordinari, i valori limite di δ_{max} e δ_2 , riferiti alle combinazioni caratteristiche delle azioni, sono espressi come funzione della luce L dell'elemento.

I valori di tali limiti sono da definirsi in funzione degli effetti sugli elementi portati, della qualità del comfort richiesto alla costruzione, delle caratteristiche degli elementi strutturali e non strutturali gravanti sull'elemento considerato, delle eventuali implicazioni di una eccessiva deformabilità sul valore dei carichi agenti.

In carenza di più precise indicazioni si possono adottare i limiti indicati nella Tab. 4.2.XII, dove L è la luce dell'elemento o, nel caso di mensole, il doppio dello sbalzo.

4.2.4.2.2 Spostamenti laterali

Negli edifici gli spostamenti laterali alla sommità delle colonne per le combinazioni caratteristiche delle azioni devono generalmente limitarsi ad una frazione dell'altezza della colonna e dell'altezza complessiva dell'edificio da valutarsi in funzione degli effetti sugli elementi portati, della qualità del comfort richiesto alla costruzione, delle eventuali implicazioni di una eccessiva deformabilità sul valore dei carichi agenti.

In assenza di più precise indicazioni si possono adottare i limiti per gli spostamenti orizzontali indicati in Tab. 4.2.XIII (Δ spostamento in sommità; δ spostamento relativo di piano – Fig. 4.2.4).

Tab. 4.2.XII - Limiti di deformabilità per gli elementi di impalcato delle costruzioni ordinarie

	Limiti superiori per gli sposta- menti verticali		
Elementi strutturali	$\frac{\delta_{max}}{L}$	$\frac{\delta_2}{L}$	
Coperture in generale	$\frac{1}{200}$	$\frac{1}{250}$	
Coperture praticabili	$\frac{1}{250}$	$\frac{1}{300}$	
Solai in generale	$\frac{1}{250}$	$\frac{1}{300}$	
Solai o coperture che reggono intonaco o altro materiale di finitura fragile o tramezzi non flessibili	$\frac{1}{250}$	1 350	
Solai che supportano colonne	$\frac{1}{400}$	$\frac{1}{500}$	
Nei casi in cui lo spostamento può compromettere l'aspetto dell'edificio	$\frac{1}{250}$		

In caso di specifiche esigenze tecniche e/o funzionali tali limiti devono essere opportunamente ridotti.

Tab. 4.2.XIII - Limiti di deformabilità per costruzioni ordinarie soggette ad azioni orizzontali

	Limiti superiori per gli spostamenti orizzontali			
Tipologia dell'edificio	$\frac{\delta}{h}$	$\frac{\Delta}{H}$		
Edifici industriali monopiano senza carro- ponte	$\frac{1}{150}$	/		
Altri edifici monopiano	$\frac{1}{300}$	/		
Edifici multipiano	$\frac{1}{300}$	<u>1</u> 500		
In caso di enecifiche ecioenza tecniche ela funzionali tali limiti depana eccese appartunamente vidatti				

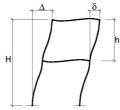


Fig. 4.2.4 - Definizione degli spostamenti orizzontali per le verifiche in esercizio

4.2.4.2.3 Stato limite di vibrazioni

Le verifiche devono essere condotte adottando le combinazioni frequenti di progetto e facendo riferimento a normative per la misura e la valutazione degli effetti indotti dalle vibrazioni quali: la UNI 9614, la UNI 9916 ed altre norme di comprovata validità.

4.2.4.2.3.1 Edifici

Nel caso di solai caricati regolarmente da persone, la frequenza naturale più bassa della struttura del solaio non deve in generale essere minore di 3 Hz.

Nel caso di solai soggetti a eccitazioni cicliche la frequenza naturale più bassa non deve in generale essere inferiore a 5 Hz. In alternativa a tali limitazioni potrà condursi un controllo di accettabilità della percezione delle vibrazioni.

4.2.4.2.3.2 Strutture di elevata flessibilità e soggette a carichi ciclici

I controlli di accettabilità della percezione devono essere condotti seguendo metodologie e limitazioni suggerite da normative di comprovata validità.

4.2.4.2.3.3 Oscillazioni prodotte dal vento

Le strutture di elevata flessibilità, quali edifici alti e snelli, coperture molto ampie, ecc., devono essere verificate per gli effetti indotti dall'azione dinamica del vento sia per le vibrazioni parallele che per quelle perpendicolari all'azione del vento.

Le verifiche devono condursi per le vibrazioni indotte dalle raffiche e per quelle indotte dai vortici, utilizzando dati suffragati da opportuna documentazione, o tramite metodi analitici, numerici e/o sperimentali adeguatamente comprovati.

4.2.4.2.4 Stato limite di plasticizzazioni locali

Nelle strutture in acciaio è normale che la presenza di tensioni residue (dovute a processi di fabbricazione, tolleranze, particolarità di alcuni dettagli, variazioni localizzate della temperatura) produca concentrazioni di tensioni e conseguenti plasticizzazioni localizzate. Queste non influenzano la sicurezza dell'opera nei confronti degli stati limite ultimi. Inoltre i criteri di cui al § 4.2.4.1.3 tengono conto dell'influenza di questi parametri nei riguardi dell'instabilità delle membrature.

In presenza di fenomeni di fatica a basso numero di cicli ci si deve cautelare mediante specifiche verifiche.

4.2.5. VERIFICHE PER SITUAZIONI PROGETTUALI TRANSITORIE

Per le situazioni costruttive transitorie, come quelle che si hanno durante le fasi della costruzione, dovranno adottarsi tecnologie costruttive e programmi di lavoro che non possano provocare danni permanenti alla struttura o agli elementi strutturali e che comunque non possano riverberarsi sulla sicurezza dell'opera.

Le entità delle azioni ambientali da prendere in conto saranno determinate in relazione alla durata nel tempo della situazione transitoria e della tecnologia esecutiva.

4.2.6. VERIFICHE PER SITUAZIONI PROGETTUALI ECCEZIONALI

Per situazioni progettuali eccezionali, il progetto dovrà dimostrare la robustezza della costruzione mediante procedure di scenari di danno per i quali i fattori parziali γ_M dei materiali possono essere assunti pari all'unità.

4.2.7. PROGETTAZIONE INTEGRATA DA PROVE E VERIFICA MEDIANTE PROVE

La resistenza e la funzionalità di strutture ed elementi strutturali può essere misurata attraverso prove su campioni di adeguata numerosità.

I risultati delle prove eseguite su opportuni campioni devono essere trattati con i metodi dell'analisi statistica, in modo tale da ricavare parametri significativi quali media, deviazione standard e fattore di asimmetria della distribuzione, sì da caratterizzare adeguatamente un modello probabilistico descrittore delle quantità indagate (variabili aleatorie).

Indicazioni più dettagliate al riguardo e metodi operativi completi per la progettazione integrata da prove possono essere reperiti nella Appendice D della UNI EN 1990:2006.

4.2.8. UNIONI

Nel presente paragrafo sono considerati sistemi di unione elementari, in quanto parti costituenti i collegamenti strutturali tra le membrature in acciaio. In particolare, sono presentati metodi per calcolare le prestazioni resistenti e le relative modalità e regole per la realizzazione dei vari tipi di unione esaminati. Le tipologie di unione analizzate sono quelle realizzate tramite bulloni, chiodi, perni e saldature.

Le sollecitazioni agenti nei collegamenti allo stato limite ultimo e allo stato limite di esercizio si devono valutare con i criteri indicati in § 4.2.2.

Le sollecitazioni così determinate possono essere distribuite, con criteri elastici oppure plastici, nei singoli elementi costituenti i collegamenti strutturali tra le membrature a condizione che:

- le azioni così ripartite fra gli elementi di unione elementari (unioni) del collegamento siano in equilibrio con quelle applicate e soddisfino la condizione di resistenza imposta per ognuno di essi;
- le deformazioni derivanti da tale distribuzione delle sollecitazioni all'interno degli elementi di unione non superino la loro capacità di deformazione.

Per il calcolo della resistenza a taglio delle viti e dei chiodi, per il rifollamento delle piastre collegate e per il precarico dei bulloni, si adottano i fattori parziali γ_M indicati in Tab. 4.2.XIV.

Tab. 4.2. XIV - Coefficienti di sicurezza per la verifica delle unioni.

Tab. 4.2. XIV - Coefficienti di sicurezza per la verifica delle unioni.	
Resistenza dei bulloni	
Resistenza dei chiodi	
Resistenza delle connessioni a perno	$\gamma_{M2} = 1,25$
Resistenza delle saldature a parziale penetrazione e a cordone d'angolo	
Resistenza dei piatti a contatto	
Resistenza a scorrimento: per SLU	$\gamma_{M3} = 1,25$
per SLE	$\gamma_{M3} = 1,10$
Resistenza delle connessioni a perno allo stato limite di esercizio	$\gamma_{M6,ser} = 1.0$
Precarico di bullone ad alta resistenza	
con serraggio controllato	$\gamma_{M7} = 1.0$
con serraggio non controllato	$\gamma_{M7} = 1,10$

4.2.8.1 UNIONI CON BULLONI, CHIODI E PERNI SOGGETTI A CARICHI STATICI

Le unioni realizzate con bulloni si distinguono in "non precaricate" e "precaricate".

Le unioni realizzate con chiodi si considerano sempre "non precaricate" e i chiodi devono essere preferibilmente impegnati a taglio.

I perni delle cerniere sono sollecitati a taglio e flessione.

4.2.8.1.1 Unioni con bulloni e chiodi

Nei collegamenti con bulloni "non precaricati" gli assiemi Vite/Dado/Rondella devono essere conformi a quanto specificato nel § 11.3.4.6.1.

Nei collegamenti con bulloni "precaricati" gli assiemi Vite/Dado/Rondella devono essere conformi a quanto specificato nel § 11.3.4.6.2.

Nelle unioni con bulloni ad alta resistenza delle classi 8.8 e 10.9, precaricati con serraggio controllato, per giunzioni ad attrito, le viti, i dadi e le rondelle devono essere forniti dal medesimo produttore. Il momento di serraggio M per tali unioni è pari a:

$$M = k \cdot d \cdot F_{p,c} = k \cdot d \cdot 0.7 \cdot A_{res} \cdot f_{tbk}$$
 [4.2.61]

dove: d è il diametro nominale della vite, A_{res} è l'area resistente della vite e f_{tbk} è la resistenza a rottura del materiale della vite. Il valore del fattore k è indicato sulle targhette delle confezioni (dei bulloni, oppure delle viti) per le tre classi funzionali specificate nella seguente Tabella 4.2.XV.

Tabella 4.2.XV - Classi funzionali per i bulloni

K0	Nessun requisito sul fattore k
K1	Campo di variabilità del fattore $k_{\rm i}$ del singolo elemento tra minimo e massimo dichiarati sulla confezione
K2	$ \begin{tabular}{lll} Valore medio k_m del fattore e suo coefficiente di variazione V_k dichiarati sulla confezione \\ \end{tabular} $

Nel caso il momento di serraggio non sia riportato sulle targhette delle confezioni, ma compaia il solo fattore k secondo la classe funzionale, si può fare riferimento alle seguenti Tabelle 4.2.XVII e 4.2.XVII, che si riferiscono rispettivamente alle viti di classe 8.8 e 10.9

Tabella 4.2.XVI – Coppie di serraggio per i bulloni 8.8

	Viti 8.8 – Momento di serraggio M [N m]					
Vite	k=0.10	k=0.12	k=0.14	k=0.16	$F_{p,C}[kN]$	A_{res} [mm ²]
M12	56.6	68.0	79.3	90.6	47.2	84.3
M14	90.2	108	126	144	64.4	115
M16	141	169	197	225	87.9	157
M18	194	232	271	310	108	192
M20	274	329	384	439	137	245
M22	373	448	523	597	170	303
M24	474	569	664	759	198	353
M27	694	833	972	1110	257	459
M30	942	1131	1319	1508	314	561
M36	1647	1976	2306	2635	457	817

Tabella 4.2.XVII Coppie di serraggio per bulloni 10.9

				-		
	Viti 10.9 – Momento di serraggio M [N m]					
Vite	k=0.10	k=0.12	k=0.14	k=0.16	$F_{p,C}[kN]$	A _{res} [mm ²]
M12	70.8	85.0	99.1	113	59.0	84.3
M14	113	135	158	180	80.5	115
M16	176	211	246	281	110	157
M18	242	290	339	387	134	192
M20	343	412	480	549	172	245
M22	467	560	653	747	212	303
M24	593	712	830	949	247	353
M27	868	1041	1215	1388	321	459
M30	1178	1414	1649	1885	393	561
M36	2059	2471	2882	3294	572	817

Nelle tabelle sono riportati: la dimensione della vite MXX, l'area resistente della vite A_{res} in mm², la forza di precarico $F_{p,C}$ =0.7· A_{res} · f_{tbk} in kN ed i valori del momento di serraggio M in Nm, corrispondenti a differenti valori del fattore k. Poiché il momento di serraggio è funzione lineare del fattore k, la interpolazione per righe è immediata.

E' consigliabile utilizzare, per quanto possibile, lotti di produzione di bulloni omogenei.

Nel caso di carichi dinamici e/o vibrazione è opportuno predisporre sistemi antisvitamento reperibili in norme di comprovata validità tecnica.

Nel caso di utilizzo di bulloneria con classe funzionale K1 o K2, tutti i bulloni "non precaricati" devono essere adeguatamente serrati.

Il serraggio dei bulloni deve essere eseguito in accordo alla norma UNI EN 1090-2:2011.

Nei giunti con bulloni ad alta resistenza "precaricati" la resistenza ad attrito dipende dalle modalità di preparazione delle superfici a contatto, dalle modalità di esecuzione e dal gioco foro-bullone. In via semplificativa la resistenza di progetto allo scorrimento di un bullone ad attrito si calcolerà assumendo una forza di precarico pari al 70% della resistenza ultima a trazione del bullone. Il valore della forza di "precarico" da assumere nelle unioni progettate ad attrito, per lo stato limite di servizio oppure per lo stato limite ultimo è pari quindi a

$$F_{p,Cd} = 0.7 \cdot \frac{f_{tbk} \cdot A_{res}}{\gamma_{M7}}$$
 [4.2.62]

dove $A_{\rm res}$ è l'area resistente della vite del bullone

La posizione dei fori per le unioni bullonate o chiodate deve rispettare le limitazioni presentate nella Tab. 4.2.XVIII, che fa riferimento agli schemi di unione riportati nella Fig. 4.2.5.

Tab. 4.2.XVIII - Posizione dei fori per unioni bullonate e chiodate.

Distanze e		Massimo			
interassi (Fig. 4.2.5)	Minimo	Unioni esposte a fenomeni corrosivi o ambientali	Unioni non esposte a fenomeni corrosivi o ambientali	Unioni di elementi in acciaio resistente alla cor- rosione (UNI EN10025-5)	
e_1	1,2 d ₀	4t+40 mm	-	max(8t;12 mm)	
e ₂	1,2 d ₀	4t+40 mm	-	max(8t;125 mm)	
p_1	2,2 d ₀	min(14t;200 mm)	min(14t;200 mm)	min(14t;175 mm)	
P _{1,0}	-	min(14t;200 mm)	-	-	
p _{1,i}	-	min(28t;400 mm)	-	-	
p ₂	2,4 d ₀	min(14t;200 mm)	min(14t;200 mm)	min(14t;175 mm)	

L'instabilità locale del piatto posto tra i bulloni/chiodi non deve essere considerata se $(p_1/t) \le [9(235/fy)^{0.5}]$: in caso contrario si assumerà una lunghezza di libera inflessione pari a $0.6 \cdot p_1$.

t è lo spessore minimo degli elementi esterni collegati.

I fori devono avere diametro uguale a quello del bullone maggiorato al massimo di 1 mm, per bulloni sino a 20 mm di diametro, e di 1,5 mm per bulloni di diametro maggiore di 20 mm. Si può derogare da tali limiti quando eventuali assestamenti sotto i carichi di servizio non comportino il superamento dei limiti di deformabilità o di servizio. Quando necessario, è possibile adottare "accoppiamenti di precisione" in cui il gioco foro-bullone non dovrà superare 0,3 mm per bulloni sino a 20 mm di diametro e 0,5 mm per bulloni di diametro superiore, o altri accorgimenti di riconosciuta validità.

Per fori asolati o maggiorati devono essere utilizzate le indicazioni riportate in UNI EN 1993-1-8.

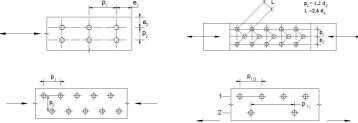


Fig. 4.2.5 -Disposizione dei fori per le realizzazione di unioni bullonate o chiodate

Unioni con bulloni o chiodi soggette a taglio e/o a trazione

La resistenza di progetto a taglio dei bulloni e dei chiodi $F_{v,Rd'}$ per ogni piano di taglio che interessa il gambo dell'elemento di connessione, può essere assunta pari a:

$F_{v,Rd}$ = 0,6 f_{tbk} A_{res} / γ_{M2} ,	bulloni classe 4.6, 5.6 e 8.8;	[4.2.63]
$F_{v,Rd}$ = 0,5 f_{tbk} A_{res} / γ_{M2} ,	bulloni classe 6.8 e 10.9;	[4.2.64]
$F_{y,p,d} = 0.6 f_{trk} A_0 / \gamma_{M2}$	per i chiodi.	[4.2.65]

 A_{res} indica l'area resistente della vite e si adotta quando il piano di taglio interessa la parte filettata della vite. Nei casi in cui il piano di taglio interessa il gambo non filettato della vite si ha

$$F_{v,Rd}$$
 = 0,6 f_{tbk} A/ γ_{M2} , bulloni - tutte le classi di resistenza, [4.2.66]

dove A indica l'area nominale del gambo della vite e f_{tbk} , invece, indica la resistenza a rottura del materiale impiegato per realizzare il bullone. Con f_{trk} è indicata la resistenza caratteristica del materiale utilizzato per i chiodi, mentre A_0 indica la sezione del foro

 $La \ resistenza \ di \ progetto \ a \ rifollamento \ F_{b,Rd} \ del \ piatto \ dell'unione, bullonata \ o \ chiodata, \ pu\`o \ essere \ assunta \ pari \ a \ dell'unione, bullonata \ o \ chiodata, \ pu\'o \ essere \ assunta \ pari \ a \ dell'unione, \ bullonata \ o \ chiodata, \ pu\'o \ essere \ assunta \ pari \ a \ dell'unione, \ bullonata \ o \ chiodata, \ pu\'o \ essere \ assunta \ pari \ a \ dell'unione, \ bullonata \ o \ chiodata, \ pu\'o \ essere \ assunta \ pari \ a \ dell'unione, \ bullonata \ o \ chiodata, \ pu\'o \ essere \ assunta \ pari \ a \ dell'unione, \ bullonata \ o \ chiodata, \ pu\'o \ essere \ assunta \ pari \ a \ dell'unione, \ bullonata \ o \ chiodata, \ pu\'o \ essere \ assunta \ pari \ a \ dell'unione, \ bullonata \ o \ chiodata, \ pu\'o \ essere \ assunta \ pari \ a \ dell'unione, \ bullonata \ o \ chiodata, \ pu\'o \ essere \ assunta \ pari \ a \ dell'unione, \ bullonata \ o \ chiodata, \ pu\'o \ essere \ assunta \ pari \ a \ dell'unione, \ bullonata \ o \ chiodata, \ pu\'o \ essere \ a \ dell'unione, \ bullonata \ o \ chiodata, \ pu\'o \ essere \ a \ dell'unione, \ bullonata \ o \ chiodata, \ pu\'o \ essere \ a \ dell'unione, \ bullonata \ o \ chiodata, \ pu\'o \ essere \ a \ dell'unione, \ bullonata \ o \ chiodata, \ pu\'o \ essere \ a \ dell'unione, \ bullonata \ o \ chiodata, \ pu\'o \ essere \ a \ dell'unione, \ bullonata \ o \ chiodata, \ pu\'o \ essere \ a \ dell'unione, \ bullonata \ o \ chiodata, \ pu\'o \ essere \ a \ dell'unione, \ bullonata \ o \ chiodata, \ pu\'o \ essere \ a \ dell'unione, \ bullonata \ o \ chiodata, \ pu\'o \ essere \ a \ dell'unione, \ bullonata \ o \ chiodata, \ pu\'o \ essere \ a \ dell'unione, \ bullonata \ a \ dell'unione, \ bullonata \ a \ dell'unione, \ a \ dell'unione, \ bullonata \ a \ dell'$

$$F_{b,Rd} = k \alpha f_{tk} dt / \gamma_{M2}$$
 [4.2.67]

dove:

d è il diametro nominale del gambo del bullone,

t è lo spessore della piastra collegata,

 f_{tk} è la resistenza caratteristica a rottura del materiale della piastra collegata,

 α =min {e₁/(3 d₀) ; f_{tbk}/f_{tk}; 1} per bulloni di bordo nella direzione del carico applicato,

 $\alpha = min~\{p_1/(3~d_0) - 0.25~;~f_{tbk}/f_{tk}~;~1\} \\ \hspace{0.5cm} per~bulloni~interni~nella~direzione~del~carico~applicato,~f_{tk},~f_{tk$

k=min $\{2,8 \text{ e}_2/\text{d}_0 - 1,7; 2,5\}$ per bulloni di bordo nella direzione perpendicolare al carico applicato,

 $k=min \{1.4 p_2/d_0 - 1.7, 2.5\}$ per bulloni interni nella direzione perpendicolare al carico applicato,

essendo e_1 , e_2 , p_1 e p_2 indicati in Fig. 4.2.5 e d_0 il diametro nominale del foro di alloggiamento del bullone.

La resistenza di progetto a trazione degli elementi di connessione $F_{t,Rd}$ può essere assunta pari a:

$$\begin{split} F_{t,Rd} &= 0.9_{ftbk} \, A_{res} \, / \, \gamma_{M2'} \; \; \text{per i bulloni;} & [4.2.68] \\ F_{t,Rd} &= 0.6 \, f_{trk} \, A_{res} \, / \, \gamma_{M2'} \; \text{per i chiodi.} & [4.2.69] \end{split}$$

Inoltre, nelle unioni bullonate soggette a trazione è necessario verificare la piastra a punzonamento; ciò non è richiesto per le unioni chiodate. La resistenza di progetto a punzonamento del piatto collegato è pari a

$$B_{p,Rd} = 0.6 \pi d_m t_p f_{tk} / \gamma_{M2};$$
 [4.2.70]

dove d_m è il minimo tra il diametro del dado e il diametro medio della testa del bullone; t_p è lo spessore del piatto e f_{tk} è la tensione di rottura dell'acciaio del piatto.

La resistenza di progetto complessiva della singola unione a taglio è perciò data da min $(F_{v,Rd}; F_{b,Rd})$, mentre la resistenza di progetto della singola unione a trazione è ottenuta come min $(B_{p,Rd}; F_{t,Rd})$.

Nel caso di presenza combinata di trazione e taglio si può adottare la formula di interazione lineare:

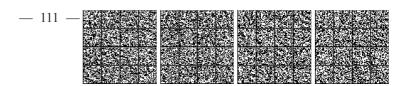
$$\frac{F_{v,Ed}}{F_{v,Rd}} + \frac{F_{t,Ed}}{1,4F_{t,Rd}} \le 1$$
 [4.2.71]

 $con \ la \ limitazione \ \frac{F_{t,Ed}}{F_{t,Rd}} \leq 1 \ , \ dove \ con \ F_{v,Ed} \ ed \ F_{t,Ed} \ si \ sono \ indicate \ rispettivamente le sollecitazioni di taglio e di trazione agenti$

 $sull'unione; per brevit\`{a}, le resistenze a taglio ed a trazione dell'unione sono state indicate con F_{v,Rd} ed F_{t,Rd}.$

Unioni a taglio per attrito con bulloni ad alta resistenza

La resistenza di progetto allo scorrimento $F_{s,Rd}$ di un bullone di classe 8.8 o 10.9 precaricato può essere assunta pari a:


$$F_{s,Rd} = n \mu F_{p,Cd} / \gamma_{M3}$$
. [4.2.72]

dove:

n è il numero delle superfici di attrito,

μ è il coefficiente di attrito,

 $F_{p,Cd}$ è la forza di precarico del bullone data dalla espressione [4.2.62] che, in caso di serraggio controllato, può essere assunta pari a 0,7 f_{tbk} A_{res} , invece che pari a 0,7 f_{tbk} A_{res} $A_{$

Il coefficiente di attrito tra le piastre μ a contatto nelle unioni "precaricate" è in genere assunto pari a:

 μ = 0,5 $\,$ - $\,$ superfici sabbiate meccanicamente o a graniglia, esenti da incrostazioni di ruggine e da vaiolature;

 μ = 0,4 - superfici sabbiate meccanicamente o a graniglia, e verniciate a spruzzo con prodotti a base di alluminio o di zinco.

superfici sabbiate meccanicamente o a graniglia, e verniciate con silicato di zinco alcalino applicando uno spessore dello strato di 50-80

 $\mu = 0.3$ — superfici pulite mediante spazzolatura o alla fiamma, esenti da in-

crostazioni di ruggine;

 $\mu = 0.2$ – superfici non trattate.

Nel caso un collegamento ad attrito con bulloni ad alta resistenza precaricati sia soggetto a trazione $F_{t,Ed}$ (allo stato limite ultimo) la resistenza di progetto allo scorrimento $F_{s,Rd}$ si riduce rispetto al valore sopra indicato e può essere assunta pari a:

$$F_{s,Rd} = n \mu (F_{p,Cd} - 0.8 F_{t,Ed}) / \gamma_{M3}$$
 [4.2.73]

Nel caso di verifica allo scorrimento nello stato limite di esercizio, in modo analogo si può assumere:

$$F_{s,Rd,eser} = n \mu (F_{p,Cd} - 0.8 F_{t,Ed,eser}) / \gamma_{M3}$$
 [4.2.74]

dove $F_{t.Ed,eser}$ è la sollecitazione di progetto ottenuta dalla combinazione dei carichi per le verifiche in esercizio.

4.2.8.1.2 Collegamenti con perni

La resistenza di progetto a taglio del perno è pari a

$$F_{v,Rd} = 0.6 f_{upk} A / \gamma_{M2}$$
 [4.2.75]

dove A è l'area della sezione del perno ed $f_{\rm upk}$ è la tensione a rottura del perno.

La resistenza di progetto a rifollamento dell'elemento in acciaio connesso dal perno è pari a

$$F_{b,Rd} = 1.5 \text{ t d } f_y / \gamma_{M0}$$
 [4.2.76]

dove t è lo spessore dell'elemento, d il diametro del perno, f_y è la minore tra la tensione di snervamento del perno (f_{ypk}) e quella delle piastre (f_{yk}).

Nella concezione delle connessioni con perni si deve aver cura di contenere le azioni flettenti. La resistenza a flessione del perno è data da

$$M_{Rd} = 1.5 W_{el} f_{ypk} / \gamma_{M0}$$
 [4.2.77]

dove W_{el} è il modulo (resistente) elastico della sezione del perno.

Qualora si preveda la sostituzione del perno durante la vita della costruzione, bisogna limitare le sollecitazioni di flessione e taglio sul perno e di compressione sul contorno dei fori. Per cui la forza di taglio ed il momento agenti sul perno in esercizio, $F_{b,Ed,ser}$ e $M_{Ed,ser}$, devono essere limitate secondo le seguenti formule:

$$F_{b,Rd,ser} = 0.6 \text{ t d } f_y / \gamma_{M6ser} > F_{b,Ed,ser}$$
 [4.2.78]

$$M_{Rd,ser} = 0.8 W_{el} f_{vpk} / \gamma_{M6,ser} > M_{Ed,ser}$$
 [4.2.79]

Inoltre, affinché il perno possa essere sostituito, è necessario limitare le tensioni di contatto, $\sigma_{h,Ed}$, al valore limite, $f_{h,Ed}$ = 2,5 f_y / $\gamma_{M6,ser}$. Le tensioni di contatto possono essere valutate con la formula seguente

$$\sigma_{h,Ed} = 0.591 \sqrt{\frac{E \cdot F_{Ed,ser} \cdot (d_0 - d)}{d^2 \cdot t}}$$
 [4.2.80]

dove con d_0 si è indicato il diametro del foro di alloggiamento del perno, mentre $F_{Ed,ser}$ è la forza di taglio che il perno trasferisce a servizio ed E è il modulo elastico dell'acciaio.

4.2.8.2 Unioni saldate

Nel presente paragrafo sono considerate unioni saldate a piena penetrazione, a parziale penetrazione, ed unioni realizzate con cordoni d'angolo. Per i requisiti riguardanti i procedimenti di saldatura, i materiali d'apporto e i controlli idonei e necessari per la realizzazione di saldature dotate di prestazioni meccaniche adeguate ai livelli di sicurezza richiesti dalla presente norma, si faccia riferimento al § 11.3.4.5.

4.2.8.2.1 Unioni con saldature a piena penetrazione

I collegamenti testa a testa, a T e a croce a piena penetrazione sono generalmente realizzati con materiali d'apporto aventi resistenza uguale o maggiore a quella degli elementi collegati. Pertanto la resistenza di progetto dei collegamenti a piena penetrazio-

ne si assume eguale alla resistenza di progetto del più debole tra gli elementi connessi. Una saldatura a piena penetrazione è caratterizzata dalla piena fusione del metallo di base attraverso tutto lo spessore dell'elemento da unire con il materiale di apporto.

4.2.8.2.2 Unioni con saldature a parziale penetrazione

I collegamenti testa a testa, a T e a croce a parziale penetrazione vengono verificati con gli stessi criteri dei cordoni d'angolo (di cui al successivo § 4.2.8.2.4.).

L'altezza di gola dei cordoni d'angolo da utilizzare nelle verifiche è quella teorica, corrispondente alla preparazione adottata e specificata nei disegni di progetto, senza tenere conto della penetrazione e del sovrametallo di saldatura, in conformità con la norme UNI EN ISO 9692, parti 1, 2, 3 e 4.

4.2.8.2.3 Unioni con saldature a cordoni d'angolo

La resistenza di progetto, per unità di lunghezza, dei cordoni d'angolo si determina con riferimento all'altezza di gola "a", cioè all'altezza "a" del triangolo iscritto nella sezione trasversale del cordone stesso (Fig. 4.2.6).

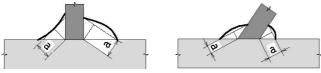


Fig. 4.2.6 -Definizione dell'area di gola per le saldature a cordone d'angolo

La lunghezza di calcolo L è quella intera del cordone, purché questo non abbia estremità palesemente mancanti o difettose.

Eventuali tensioni σ_{ll} definite al paragrafo successivo agenti nella sezione trasversale del cordone, inteso come parte della sezione resistente della membratura, non devono essere prese in considerazione ai fini della verifica del cordone stesso.

Per il calcolo della resistenza delle saldature con cordoni d'angolo, qualora si faccia riferimento ai modelli di calcolo presentati nel paragrafo seguente, si adottano i fattori parziali $\gamma_{\rm M}$ indicati in Tab. 4.2.XIV. È possibile utilizzare modelli contenuti in normative di comprovata validità, adottando fattori parziali $\gamma_{\rm M}$ che garantiscano i livelli di sicurezza stabiliti nelle presenti norme.

Ai fini della durabilità delle costruzioni, le saldature correnti a cordoni intermittenti, realizzati in modo non continuo lungo i lembi delle parti da unire, non sono ammesse in strutture non sicuramente protette contro la corrosione.

Per le verifiche occorre riferirsi alternativamente alla sezione di gola nella effettiva posizione o in posizione ribaltata, come indicato nel paragrafo successivo.

4.2.8.2.4 Resistenza delle saldature a cordoni d'angolo

Allo stato limite ultimo le azioni di progetto sui cordoni d'angolo si distribuiscono uniformemente sulla sezione di gola (definita al § 4.2.8.2.3).

Nel seguito si indicano con σ_{\perp} la tensione normale e con τ_{\perp} la tensione tangenziale perpendicolari all'asse del cordone d'angolo, agenti nella sezione di gola nella sua posizione effettiva, e con $\sigma_{||}$ la tensione normale e con $\tau_{||}$ la tensione tangenziale parallele all'asse del cordone d'angolo. La tensione normale $\sigma_{||}$ non influenza la resistenza del cordone.

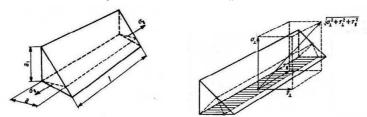


Figura 4.2.7

Considerando la sezione di gola nella sua effettiva posizione, si può assumere la seguente condizione di resistenza

$$\left[\left.\sigma_{\perp}\right.^{2}+3\left(\left.\tau_{\perp}\right.^{2}+\tau_{\mid\mid}\right.^{2}\right)\right]^{0.5}\leq f_{tk}\,/\left(\beta\,\gamma_{M2}\right)$$

$$\sigma_{\perp}\leq0.9\,f_{tk}\,/\,\gamma_{M2}$$
 [4.2.81]

dove:

 f_{tk} è la resistenza caratteristica a trazione ultima nominale della più debole delle parti collegate; β = 0,80 per acciaio S235; 0,85 per acciaio S275; 0,90 per acciaio S355; 1,00 per acciaio S420 e S460.

In alternativa, detta a l'altezza di gola, si può adottare cautelativamente il criterio semplificato

$$F_{w,Ed}/F_{w,Rd} \le 1$$
 [4.2.82]

dove $F_{w,Ed}$ è la forza di progetto che sollecita il cordone d'angolo per unità di lunghezza e $F_{w,Rd}$ è la resistenza di progetto del cordone d'angolo per unità di lunghezza

$$F_{w,Rd} = af_{tk} / \left(\sqrt{3}\beta\gamma_{M2}\right)$$
 [4.2.83]

Considerando la sezione di gola in posizione ribaltata, si indicano con n_{\perp} e con t_{\perp} la tensione normale e la tensione tangenziale perpendicolari all'asse del cordone.

La verifica dei cordoni d'angolo si effettua controllando che siano soddisfatte simultaneamente le due condizioni

$$\sqrt{\mathbf{n}_{\perp}^2 + \mathbf{t}_{\perp}^2 + \mathbf{\tau}_{\parallel}^2} \le \beta_{\mathbf{l}} \cdot \mathbf{f}_{\mathbf{v}\mathbf{k}} \tag{4.2.84}$$

$$|\mathbf{n}_{\perp}| + |\mathbf{t}_{\perp}| \le \beta_2 \cdot \mathbf{f}_{vk} \tag{4.2.85}$$

dove f_{yk} è la tensione di snervamento caratteristica ed i coefficienti $\beta 1$ e $\beta 2$ sono dati, in funzione del grado di acciaio, in Tab. 4.2.XIX.

Tab. 4.2.XIX - Valori dei coefficienti β_1 e β_2

	S235	S275 - S355	S420 - S460
β_1	0,85	0,70	0,62
β_2	1,0	0,85	0,75

4.2.8.3 UNIONI SOGGETTE A CARICHI DA FATICA

La resistenza a fatica relativa ai vari dettagli dei collegamenti bullonati e saldati, con le relative curve S-N, può essere reperita in UNI EN 1993-1-9.

In ogni caso si adottano i coefficienti parziali indicati in Tab. 4.2.XI. In alternativa si possono utilizzare modelli contenuti in normative di comprovata validità, adottando fattori parziali γ_M che garantiscano i livelli di sicurezza stabiliti nelle presenti norme.

4.2.8.4 UNIONI SOGGETTE A VIBRAZIONI, URTI E/O INVERSIONI DI CARICO

Nei collegamenti soggetti a taglio e dinamicamente sollecitati, a causa di vibrazioni indotte da macchinari oppure a causa di improvvise variazioni delle sollecitazioni dovute a urti o altre azioni dinamiche, devono adottarsi apposite soluzioni tecniche che impediscano efficacemente lo scorrimento.

A tal proposito si consiglia l'utilizzo di giunzioni saldate, oppure, nel caso di unioni bullonate, l'utilizzo di dispositivi antisvitamento, bulloni precaricati, bulloni in fori calibrati o altri tipi di bulloni idonei a limitare o eliminare lo scorrimento.

4.2.9. REQUISITI PER LA PROGETTAZIONE E L'ESECUZIONE

L'esecuzione delle strutture in acciaio deve essere conforme alla UNI EN 1090-2:2011, per quanto non in contrasto con le presenti

4.2.9.1 Spessori Limite

È vietato l'uso di profilati con spessore t < 4 mm.

Una deroga a tale norma, fino ad uno spessore t = 3 mm, è consentita per opere sicuramente protette contro la corrosione, quali per esempio tubi chiusi alle estremità e profili zincati, od opere non esposte agli agenti atmosferici.

Le limitazioni di cui sopra non riguardano elementi e profili sagomati a freddo.

4.2.9.2 ACCIAIO INCRUDITO

Deve essere giustificato mediante specifica valutazione l'impiego di acciaio incrudito in ogni caso in cui si preveda la plasticizzazione del materiale (analisi plastica, azioni sismiche o eccezionali, ecc.) o prevalgano i fenomeni di fatica.

4.2.9.3 GIUNTI DI TIPO MISTO

In uno stesso giunto è vietato l'impiego di differenti metodi di collegamento di forza (ad esempio saldatura e bullonatura), a meno che uno solo di essi sia in grado di sopportare l'intero sforzo, oppure sia dimostrato, per via sperimentale o teorica, che la disposizione costruttiva è esente dal pericolo di collasso prematuro a catena.

4.2.9.4 PROBLEMATICHE SPECIFICHE

Per tutto quanto non trattato nelle presenti norme, in relazione a:

- Preparazione del materiale
- Tolleranze degli elementi strutturali di fabbricazione e di montaggio
- Impiego dei ferri piatti
- Variazioni di sezione

- Intersezioni
- Collegamenti a taglio con bulloni normali e chiodi
- Tolleranze foro-bullone. Interassi dei bulloni e dei chiodi. Distanze dai margini
- Collegamenti ad attrito con bulloni ad alta resistenza
- Collegamenti saldati
- Collegamenti per contatto

si può far riferimento a normative di comprovata validità.

4.2.9.5 APPARECCHI DI APPOGGIO

La concezione strutturale deve prevedere facilità di sostituzione degli apparecchi di appoggio, nel caso in cui questi abbiano vita nominale più breve di quella della costruzione alla quale sono connessi.

4.2.9.6 VERNICIATURA E ZINCATURA

Gli elementi delle strutture in acciaio, a meno che siano di comprovata resistenza alla corrosione, devono essere adeguatamente protetti mediante verniciatura o zincatura, tenendo conto del tipo di acciaio, della sua posizione nella struttura e dell'ambiente nel quale è collocato. Devono essere particolarmente protetti i collegamenti bullonati (precaricati e non precaricati), in modo da impedire qualsiasi infiltrazione all'interno del collegamento.

Anche per gli acciai con resistenza alla corrosione migliorata (per i quali può farsi utile riferimento alla norma UNI EN 10025-5) devono prevedersi, ove necessario, protezioni mediante verniciatura.

Nel caso di parti inaccessibili, o profili a sezione chiusa non ermeticamente chiusi alle estremità, dovranno prevedersi adeguati sovraspessori.

Gli elementi destinati ad essere incorporati in getti di calcestruzzo non devono essere verniciati: possono essere invece zincati a caldo.

4.2.10. CRITERI DI DURABILITÀ

La durabilità deve assicurare il mantenimento nel tempo della geometria e delle caratteristiche dei materiali della struttura, affinché questa conservi inalterate funzionalità, aspetto estetico e resistenza.

Al fine di garantire tale persistenza in fase di progetto devono essere presi in esame i dettagli costruttivi, la eventuale necessità di adottare sovraspessori, le misure protettive e deve essere definito un piano di manutenzione (ispezioni, operazioni manutentive e programma di attuazione delle stesse).

4.2.11. RESISTENZA AL FUOCO

Le verifiche di resistenza al fuoco potranno eseguirsi con riferimento a UNI EN 1993-1-2, utilizzando i coefficienti γ_M (§ 4.2.6) relativi alle combinazioni eccezionali.

4.3. COSTRUZIONI COMPOSTE DI ACCIAIO - CALCESTRUZZO

Le strutture composte sono costituite da parti realizzate in acciaio per carpenteria e da parti realizzate in calcestruzzo armato (normale o precompresso) rese collaboranti fra loro con un sistema di connessione appropriatamente dimensionato.

Le presenti norme definiscono i principi e le regole generali per soddisfare i requisiti di sicurezza delle costruzioni con strutture composte in acciaio e calcestruzzo.

Per tutto quanto non espressamente indicato nel presente capitolo, per la progettazione strutturale, l'esecuzione, i controlli e la manutenzione deve farsi riferimento ai precedenti §§ 4.1 e 4.2 relativi alle costruzioni di calcestruzzo armato ed alle costruzioni di acciaio, rispettivamente.

4.3.1. VALUTAZIONE DELLA SICUREZZA

 $La\ valutazione\ della\ sicurezza\ \grave{e}\ condotta\ secondo\ i\ principi\ fondamentali\ illustrati\ nel\ Capitolo\ 2.$

I requisiti richiesti di resistenza, funzionalità, durabilità e robustezza si garantiscono verificando il rispetto degli stati limite ultimi e degli stati limite di esercizio della struttura, dei componenti strutturali e dei collegamenti descritti nella presente norma.

In aggiunta a quanto indicato in §§ 4.1 e 4.2 dovranno essere considerati gli ulteriori stati limite di seguito indicati.

4.3.1.1 STATI LIMITE ULTIMI

Stato limite di resistenza della connessione acciaio-calcestruzzo, al fine di evitare la crisi del collegamento tra elementi in acciaio ed elementi in calcestruzzo con la conseguente perdita del funzionamento composto della sezione.

4.3.1.2 STATI LIMITE DI ESERCIZIO

Stato limite di esercizio della connessione acciaio-calcestruzzo, al fine di evitare eccessivi scorrimenti fra l'elemento in acciaio e l'elemento in calcestruzzo durante l'esercizio della costruzione.

4.3.1.3 FASI COSTRUTTIVE

Le fasi costruttive, quando rilevanti, devono essere considerate nella progettazione, nell'analisi e nella verifica delle strutture composte.

4.3.2. ANALISI STRUTTURALE

Il metodo di analisi deve essere coerente con le ipotesi di progetto.

L'analisi deve essere basata su modelli strutturali di calcolo appropriati, a seconda dello stato limite considerato.

4.3.2.1 CLASSIFICAZIONE DELLE SEZIONI

La classificazione delle sezioni composte è eseguita secondo lo schema introdotto per le sezioni in acciaio in § 4.2.3. Nel calcolo si possono adottare distribuzioni di tensioni plastiche o elastiche per le classi 1 e 2, mentre per le classi 3 e 4 si debbono utilizzare distribuzioni di tensioni elastiche.

In particolare, per le sezioni di classe 1 e 2, l'armatura di trazione A_s in soletta, posta all'interno della larghezza collaborante ed utilizzata per il calcolo del momento plastico, deve essere realizzata con acciaio B450C e rispettare la condizione:

$$A_{s} \ge \rho_{s} \cdot A_{c} \tag{4.3.1.a}$$

$$\rho_{s} = \delta \frac{f_{yk}}{235} \frac{f_{ctm}}{f_{sk}} \sqrt{\frac{1}{1 + h_{c}/(2z_{0})} + 0.3} \le \delta \frac{f_{yk}}{235} \frac{f_{ctm}}{f_{sk}}$$
[4.3.1.b]

dove A_C è l'area collaborante della soletta di calcestruzzo , f_{ctm} è la resistenza media a trazione del calcestruzzo, f_{yk} e f_{sk} sono la resistenza caratteristica a snervamento dell'acciaio da carpenteria e di quello d'armatura rispettivamente, h_c è lo spessore della soletta di calcestruzzo, z_0 è la distanza tra il baricentro della soletta di calcestruzzo non fessurata e il baricentro della sezione composta non fessurata, δ è pari ad 1 per le sezioni in classe 2 e a 1,1 per le sezioni in classe 1.

4.3.2.2 METODI DI ANALISI GLOBALE

Gli effetti delle azioni possono essere valutati mediante l'analisi globale elastica anche quando si consideri la resistenza plastica, o comunque in campo non-lineare delle sezioni trasversali.

L'analisi lineare elastica può essere utilizzata per le verifiche agli stati limite di esercizio, introducendo opportune correzioni per tenere conto degli effetti non-lineari quali la fessurazione del calcestruzzo, e per le verifiche dello stato limite di fatica.

Gli effetti del trascinamento da taglio e dell'instabilità locale devono essere tenuti in debito conto quando questi influenzino significativamente l'analisi.

4.3.2.2.1 Analisi lineare elastica

In questo tipo di analisi si devono anche considerare, se rilevanti, la viscosità, la fessurazione, gli effetti della temperatura, il ritiro e le fasi costruttive.

Per costruzioni poco sensibili ai fenomeni del secondo ordine e quindi non suscettibili di problemi di stabilità globale, è possibile tenere in conto la viscosità nelle travi di impalcato sostituendo l'area delle porzioni in calcestruzzo, $A_{c'}$ con aree equivalenti ridotte in ragione del coefficiente di omogeneizzazione n, cioè del rapporto tra i moduli elastici dei materiali, calcolato per breve e lungo termine. Quando le tensioni di lunga durata non siano preponderanti si può adottare un unico coefficiente di omogeneizzazione assumendo un modulo elastico del calcestruzzo pari alla metà del modulo elastico istantaneo, sia per le analisi a breve termine che per quelle a lungo termine. Per tenere in conto la fessurazione delle travi composte è possibile utilizzare due metodi.

Il primo consiste nell'effettuare una prima "analisi non fessurata" in cui l'inerzia omogeneizzata di tutte le travi è pari a quella della sezione interamente reagente, EJ_1 . Individuate, alla conclusione dell'analisi, le sezioni soggette a momento flettente negativo, nelle quali si hanno fenomeni di fessurazione, si esegue una seconda "analisi fessurata". In tale analisi la rigidezza EJ_1 è assegnata alle porzioni di trave soggette a momento flettente positivo, mentre la rigidezza fessurata ottenuta trascurando il calcestruzzo teso, EJ_2 , è assegnata alle porzioni di trave soggette a momento flettente negativo. La nuova distribuzione delle rigidezze e delle sollecitazioni interne è utilizzata per le verifiche agli stati limite di servizio ed ultimo.

Il secondo metodo, applicabile alle travi continue in telai controventati in cui le luci delle campate non differiscono tra loro di più del 60%, considera una estensione della zona fessurata all'estremità di ogni campata, caratterizzata da rigidezza EJ_2 , pari al 15% della luce della campata; la rigidezza EJ_1 è assegnata a tutte le altre zone.

La rigidezza delle colonne deve essere assunta pari al valore indicato in § 4.3.5.2 della presente norma.

Gli effetti della temperatura devono essere considerati nel calcolo quando influenti. Tali effetti possono solitamente essere trascurati nella verifica allo stato limite ultimo, quando gli elementi strutturali siano in classe 1 o 2 e quando non vi siano pericoli di instabilità flesso-torsionale.

Il momento flettente ottenuto dall'analisi elastica può essere ridistribuito in modo da soddisfare ancora l'equilibrio tenendo in conto gli effetti del comportamento non-lineare dei materiali e tutti i fenomeni di instabilità.

Per le verifiche allo stato limite ultimo, ad eccezione delle verifiche a fatica, il momento elastico può essere ridistribuito quando la trave composta è continua o parte di un telaio controventato, è di altezza costante, non vi è pericolo di fenomeni di instabilità.

Nel caso di travi composte parzialmente rivestite di calcestruzzo, occorre anche verificare che la capacità rotazionale sia sufficiente per effettuare la ridistribuzione, trascurando il contributo del calcestruzzo a compressione nel calcolo del momento resistente ridotto nella situazione ridistribuita.

La riduzione del massimo momento negativo non deve eccedere le percentuali indicate nella Tab. 4.3.I.

Tab. 4.3.I - Limiti della ridistribuzione del momento negativo sugli appoggi

Classe della sezione	1	2	3	4
"Analisi non-fessurata"	40	30	20	10
"Analisi fessurata"	25	15	10	0

Se si utilizzano profili di acciaio strutturale di grado S355 o superiore la ridistribuzione può essere fatta solo con sezioni di classe 1 e classe 2, e non deve superare il 30% per le "analisi non fessurate" ed il 15% per le "analisi fessurate".

4.3.2.2.2 Analisi plastica

L'analisi plastica può essere utilizzata per eseguire le verifiche allo stato limite ultimo quando:

- tutti gli elementi sono in acciaio o composti acciaio-calcestruzzo;
- i materiali soddisfano i requisiti indicati in § 4.3.3.1;
- le sezioni sono di classe 1;
- i collegamenti tra le membrature sono a completo ripristino di resistenza plastica e sono dotati di adeguata capacità di rotazione o di adeguata sovraresistenza.

Inoltre, nelle zone in cui è supposto lo sviluppo delle deformazioni plastiche (cerniere plastiche), è necessario che:

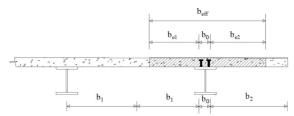
- i profili in acciaio siano simmetrici rispetto al piano dell'anima;
- la piattabanda compressa sia opportunamente vincolata;
- la capacità rotazionale della cerniera plastica sia sufficiente.

4.3.2.2.3 Analisi non lineare

L'analisi non lineare deve essere eseguita secondo le indicazioni in § 4.2.3.3.

I materiali devono essere modellati considerando tutte le loro non-linearità e deve essere tenuto in conto il comportamento della connessione a taglio tra gli elementi delle travi composte.

 $L'influenza\ delle\ deformazioni\ sulle\ sollecitazioni\ interne\ deve\ essere\ tenuta\ in\ conto\ quando\ rilevante.$


4.3.2.3 LARGHEZZE EFFICACI

La distribuzione delle tensioni normali negli elementi composti deve essere determinata mediante un modello che tenga conto della diffusione degli sforzi nelle ali della trave metallica e nella soletta in calcestruzzo.

La larghezza efficace, b_{eff}, di una soletta in calcestruzzo può essere determinata mediante l'espressione:

$$b_{eff} = b_0 + b_{e1} + b_{e2}$$
 [4.3.2]

dove b_0 è la distanza tra gli assi dei connettori e b_{ei} =min ($L_e/8$, b_i) è il valore della larghezza collaborante da ciascun lato della sezione composta (vedi fig. 4.3.1).

Fig. 4.3.1. - Definizione della larghezza efficace $b_{\rm eff}$ e delle aliquote $b_{\rm ei}$

Le indica approssimativamente la distanza tra due punti di nullo del diagramma dei momenti. Nel caso di travi continue con flessione determinata prevalentemente da carichi distribuiti uniformi si possono utilizzare le indicazioni di Fig.4.3.2 Per gli appoggi di estremità la formula diviene:

$$b_{\text{eff}} = b_0 + \beta_1 b_{e-1} + \beta_2 b_{e-2}$$
 [4.3.3] dove $\beta_i = \left(0,55 + 0,025 \cdot \frac{L_e}{b_{\text{eff},i}}\right) \le 1,0$

essendo Le e beff,i relativi alla campata di estremità.

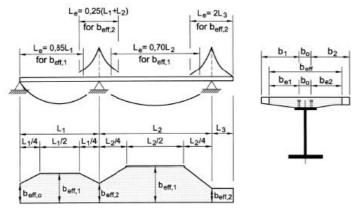


Fig. 4.3.2 - Larghezza efficace, $b_{\rm eff}$, e luci equivalenti, $L_{\rm e}$, per le travi continue

4.3.2.4 EFFETTI DELLE DEFORMAZIONI

In generale, è possibile effettuare:

- l'analisi del primo ordine, imponendo l'equilibrio sulla configurazione iniziale della struttura;
- l'analisi del secondo ordine, imponendo l'equilibrio sulla configurazione deformata della struttura.

Gli effetti della geometria deformata (effetti del secondo ordine) devono essere considerati se essi amplificano significativamente gli effetti delle azioni o modificano significativamente il comportamento strutturale. L'analisi del primo ordine può essere utilizzata quando l'incremento delle sollecitazioni dovuto agli effetti del secondo ordine è inferiore al 10%. Tale condizione è ritenuta soddisfatta se:

$$\alpha_{\rm cr} \ge 10$$
 [4.3.4]

dove α_{cr} è il fattore amplificativo dei carichi di progetto necessario per causare fenomeni di perdita della stabilità dell'equilibrio elastico.

Per i telai il valore di α_{cr} può essere calcolato utilizzando l'espressione valida per le costruzioni in acciaio di cui al punto \S 4.2.3.4.

4.3.2.5 EFFETTI DELLE IMPERFEZIONI

Nell'analisi strutturale si deve tenere conto, per quanto possibile, degli effetti delle imperfezioni.

A tal fine possono adottarsi adeguate imperfezioni geometriche equivalenti, a meno che tali effetti non siano inclusi implicitamente nel calcolo della resistenza degli elementi strutturali.

Si devono considerare nel calcolo:

- le imperfezioni globali per i telai o per i sistemi di controvento;
- le imperfezioni locali per i singoli elementi strutturali.

Nell'ambito dell'analisi globale della struttura, le imperfezioni degli elementi composti soggetti a compressione possono essere trascurate durante l'esecuzione dell'analisi del primo ordine. Le imperfezioni degli elementi strutturali possono essere trascurate anche nelle analisi al secondo ordine se:

$$\overline{\lambda} \leq 0.5 \cdot \sqrt{\frac{N_{\text{pl,Rk}}}{N_{\text{Ed}}}} \tag{4.3.5}$$

dove $\bar{\lambda}$ è la snellezza normalizzata dell'elemento, calcolata in § 4.3.5.2, $N_{pl,Rk}$ è la resistenza a compressione caratteristica dell'elemento, ottenuta considerando tutte le resistenze dei materiali senza coefficienti parziali di sicurezza e N_{Ed} è lo sforzo assiale di progetto.

Gli effetti delle imperfezioni globali devono essere tenuti in conto secondo quanto prescritto per le strutture in acciaio al punto § 4.2.3.5 della presente norma.

Le imperfezioni, rappresentate da una curvatura iniziale delle colonne composte e delle membrature composte in genere, sono già considerate nelle curve della Tab. 4.3.III. Per le travi di impalcato le imperfezioni sono riportate nella formula di verifica nei riguardi dell'instabilità flesso-torsionale.

Per gli elementi in acciaio le imperfezioni sono già considerate nelle formule di verifica per l'instabilità riportate in § 4.2.4.1.3 della presente norma.

4.3.3. RESISTENZE DI PROGETTO

La resistenza di progetto dei materiali f_d è definita mediante l'espressione:

$$f_{d} = \frac{f_{k}}{\gamma_{M}}$$
 [4.3.6]

dove f_k è la resistenza caratteristica del materiale.

In particolare, nelle verifiche agli stati limite ultimi si assume γ_M pari a :

 $\gamma_{\rm C}$ (calcestruzzo) = 1,5;

 γ_A (acciaio da carpenteria) = 1,05;

 γ_S (acciaio da armatura) = 1,15;

 γ_V (connessioni) = 1,25.

Nelle verifiche agli stati limite di esercizio si assume γ_M = 1.

Nelle verifiche in situazioni di progetto eccezionali si assume $\gamma_{\rm M}$ = 1.

Si assumono per i differenti materiali (acciaio da carpenteria, lamiere grecate, acciaio da armatura, calcestruzzo, ecc.) le resistenze caratteristiche f_k definite nel Capitolo 11 delle presenti norme. Nella presente sezione si indicano con f_{yk} , f_{sk} , f_{pk} e f_{ck} , rispettivamente, le resistenze caratteristiche dell'acciaio strutturale, delle barre d'armatura, della lamiera grecata e del calcestruzzo.

4.3.3.1 MATERIALI

4.3.3.1.1 Acciaio

Per le caratteristiche degli acciai (strutturali, da lamiera grecata e da armatura) utilizzati nelle strutture composte di acciaio e calcestruzzo si deve fare riferimento al § 11.3 delle presenti norme.

Le prescrizioni generali relative alle saldature, di cui al § 11.3 delle presenti norme, si applicano integralmente.

Per le procedure di saldatura dei connettori ed il relativo controllo si può fare riferimento a normative consolidate.

Nel caso si utilizzino connettori a piolo, l'acciaio deve rispettare le prescrizioni di cui al § 11.3.4.7.

4.3.3.1.2 Calcestruzzo

Le caratteristiche meccaniche del calcestruzzo devono risultare da prove eseguite in conformità alle indicazioni delle presenti norme sulle strutture di calcestruzzo armato ordinario o precompresso.

Nei calcoli statici non può essere considerata né una classe di resistenza del calcestruzzo inferiore a C20/25 né una classe di resistenza superiore a C60/75; per i calcestruzzi con aggregati leggeri, la cui densità non può essere inferiore a 1800 kg/m³, le classi limite sono LC20/22 e LC55/60.

Per classi di resistenza del calcestruzzo superiori a C45/55 e LC 40/44 si richiede che prima dell'inizio dei lavori venga eseguito uno studio adeguato e che la produzione segua specifiche procedure per il controllo qualità.

Qualora si preveda l'utilizzo di calcestruzzi con aggregati leggeri, si deve considerare che i valori sia del modulo di elasticità sia dei coefficienti di viscosità, ritiro e dilatazione termica dipendono dalle proprietà degli aggregati utilizzati; pertanto i valori da utilizzare sono scelti in base alle proprietà del materiale specifico.

Nel caso si utilizzino elementi prefabbricati, si rinvia alle indicazioni specifiche delle presenti norme.

4.3.4. TRAVI CON SOLETTA COLLABORANTE

4.3.4.1 TIPOLOGIA DELLE SEZIONI

Le sezioni resistenti in acciaio delle travi composte, Fig. 4.3.3, si classificano secondo i criteri di cui in § 4.2.3.1.

Qualora la trave di acciaio sia rivestita dal calcestruzzo, le anime possono essere trattate come vincolate trasversalmente ai fini della classificazione della sezione purché il calcestruzzo sia armato, collegato meccanicamente alla sezione di acciaio e in grado di prevenire l'instabilità dell'anima e di ogni parte della piattabanda compressa nella direzione dell'anima.

Fig. 4.3.3 - Tipologie di sezione composte per travi

4.3.4.2 RESISTENZA DELLE SEZIONI

Il presente paragrafo tratta sezioni composte realizzate con profili e soletta collaborante. Metodi e criteri di calcolo per la determinazione delle caratteristiche resistenti di sezione di travi composte rivestite possono essere trovati nel § 6.3 della UNI EN1994-1-1

4.3.4.2.1 Resistenza a flessione

Il momento resistente della sezione composta può essere ricavato utilizzando differenti metodi analogamente a quanto indicato per le costruzioni in acciaio.

La larghezza di soletta collaborante da utilizzare per le verifiche di resistenza delle sezioni può essere determinata secondo le indicazioni del punto 4.3.2.3

La lamiera grecata utilizzata per la realizzazione dei solai collaboranti e disposta con le greche parallelamente all'asse del profilo in acciaio non deve essere considerata nel calcolo del momento resistente.

4.3.4.2.1.1 Metodo elastico

Il momento resistente elastico è calcolato sulla base di una distribuzione elastica delle tensioni nella sezione. Si deve trascurare il contributo del calcestruzzo teso. Il momento resistente elastico, M_{eb} , è calcolato limitando le deformazioni al limite elastico della resistenza dei materiali: f_{cd} per il calcestruzzo, f_{vd} per l'acciaio strutturale e f_{sd} per le barre d'armatura.

4.3.4.2.1.2 Metodo plastico

Il momento plastico di progetto, $M_{pl,Rd'}$ si valuta assumendo tutti i materiali completamente plasticizzati, una tensione di compressione nel calcestruzzo pari a $0.85 f_{cd}$, e trascurando la resistenza a trazione del calcestruzzo.

4.3.4.2.1.3 Metodo elasto-plastico

Il momento resistente della sezione è ricavato attraverso una analisi non-lineare in cui sono impiegate le curve tensionideformazioni dei materiali. È assunta la conservazione delle sezioni piane. Il metodo è applicabile a sezioni di qualunque classe; è necessario quindi tenere in conto tutte le non linearità presenti, gli eventuali fenomeni di instabilità e il grado di connessione a taglio.

4.3.4.2.2 Resistenza a taglio

La resistenza a taglio verticale della membratura è affidata interamente alla trave metallica, la cui resistenza è calcolata secondo le formule riportate in §4.2.4.1.2.

4.3.4.3 SISTEMI DI CONNESSIONE ACCIAIO-CALCESTRUZZO

Nelle strutture composte si definiscono sistemi di connessione i dispositivi atti ad assicurare la trasmissione delle forze di scorrimento tra acciaio e calcestruzzo.

Per le travi, sull'intera lunghezza devono essere previsti connettori a taglio ed armatura trasversale in grado di trasmettere la forza di scorrimento tra soletta e trave di acciaio, trascurando l'effetto dell'aderenza tra le due parti.

Il presente paragrafo fornisce indicazioni generali sui sistemi di connessione tra la trave metallica e la soletta in calcestruzzo, e indicazioni specifiche per il calcolo della connessione con connettori duttili.

Il sistema di connessione si definisce duttile se possiede capacità deformativa sufficiente per giustificare l'ipotesi di comportamento plastico ideale nella struttura considerata; i connettori possono essere classificati "duttili" secondo quanto esposto in § 4.3.4.3.1.

Il concetto di connessione a completo o parziale ripristino si applica solo a travi nelle quali la verifica di resistenza delle sezioni critiche è effettuata con il metodo plastico. Un sistema di connessione si definisce a completo ripristino quando un incremento di resistenza della connessione non produce un incremento di capacità portante della trave. In caso contrario la connessione viene definita a parziale ripristino.

Il grado di connessione η è inteso, perciò, come il rapporto tra il numero effettivo di connettori a taglio presenti, N, e il numero di connettori che assicurano il completo sviluppo del momento resistente plastico della sezione composta, N_f .

Quando le sezioni di solo acciaio sono duttili o compatte (classe 1 e 2, secondo quanto definito ai §§ 4.2.3.1. e 4.3.4.1.) e sono progettate utilizzando il metodo plastico, si può utilizzare una connessione a taglio a parziale ripristino di resistenza solo se il carico ultimo di progetto è minore di quello che potrebbe essere sopportato dallo stesso elemento progettato con connessioni a completo ripristino di resistenza

Le diverse tipologie dei connettori possono essere classificate secondo le seguenti categorie:

- connessioni a taglio;
- connessioni a staffa;
- connessioni composte da connettori a taglio e a staffa;
- connessioni ad attrito.

Nel presente paragrafo sono esposti metodi di calcolo per connessioni a taglio che impiegano pioli con testa in cui la trazione agente sul singolo connettore a taglio risulta minore di 1/10 della sua resistenza ultima.

4.3.4.3.1 Connessioni a taglio con pioli

4.3.4.3.1.1 Disposizione e limitazioni

I connettori a piolo devono essere duttili per consentire l'adozione di un metodo di calcolo plastico della connessione e per applicare il calcolo plastico per la definizione del momento resistente della trave.

Tale requisito di duttilità della connessione si ritiene soddisfatto se essi hanno una capacità deformativa a taglio superiore a 6 mm, ma tale valore deve essere convalidato da apposite prove o comunque certificato dal produttore dei pioli. In alternativa, il comportamento dei pioli può essere assunto come "duttile" sull'intera luce di una trave d'impalcato se:

- i pioli hanno una altezza minima dopo la saldatura pari a 76 mm ed un diametro pari a 19 mm;
- la sezione in acciaio ad I o H è laminata a caldo;
- quando, nel caso si utilizzino lamiere grecate per il solaio, queste siano continue sulla trave;
- in ogni greca sia disposto un unico piolo;
- la lamiera grecata soddisfi le limitazioni $b_0/h_p{\geq}~2~e~h_p{\leq}~60~mm$ (vedi Figure 4.3.4.a e 4.3.4.b);
- la forza agente in soletta sia calcolata utilizzando il metodo per il calcolo del momento plastico.

In ogni caso il grado di connessione η , definito al § 4.3.4.3, deve soddisfare le seguenti limitazioni:

dove con L_e si è indicata la distanza, in metri, tra i punti di momento nullo nella parte di trave soggetta a momento positivo.

Alternativamente possono essere considerati come "duttili" i pioli aventi altezza non inferiore a 4 volte il loro diametro, un diametro compreso tra 16 mm e 25 mm, saldati su un profilo a piattabande uguali, ed un grado di connessione che rispetta le seguenti limitazioni:

$$\eta \ge \max \left\{ \left[1 - \left(\frac{355}{f_{yk}} \right) \cdot (0.75 - 0.03 \cdot L_e) \right]; 0.4 \right\} \text{ per } L_e \le 25m$$

$$n \ge 1 \qquad \text{per } L_e > 25m$$

Per una casistica più generale, si rimanda a normative di comprovata validità.

4.3.4.3.1.2 Resistenza dei connettori

La resistenza di progetto a taglio di un piolo dotato di testa, saldato in modo automatico, con collare di saldatura normale, posto in una soletta di calcestruzzo piena può essere assunta pari al minore dei seguenti valori:

$$P_{Rd,a} = 0.8 f_{tk} (\pi d^2 / 4) / \gamma_{v}$$
 [4.3.9]

$$P_{Rd,c} = 0.29 \,\alpha \,d^2 \left(f_{ck} \,E_{cm}\right)^{0.5} / \gamma_V$$
 [4.3.10]

dove:

 γ_V è il fattore parziale definito al § 4.3.3;

 f_{tk} è la resistenza caratteristica a rottura dell'acciaio del piolo (comunque $f_{tk} \le 500 \text{ MPa}$);

f_{ck} è la resistenza cilindrica caratteristica del calcestruzzo della soletta;

 E_{cm} è il valore medio del modulo elastico secante del calcestruzzo della soletta definito al § 11.2.10.3;

d è il diametro del piolo, compreso tra 16 e 25 mm;

h_{sc} è l'altezza del piolo dopo la saldatura;

$$\alpha = 0.2 (h_{sc} / d + 1) per 3 \le h_{sc} / d \le 4, [4.3.11 a]$$

$$\alpha = 1.0 per h_{sc} / d > 4. [4.3.11 b]$$

Nel caso di solette con lamiera grecata la resistenza di progetto dei connettori a piolo, calcolata per la soletta piena, deve essere convenientemente ridotta. Per lamiera disposta con le greche parallelamente all'asse del profilo, la resistenza della connessione a taglio è moltiplicata per il fattore riduttivo:

$$k_1 = 0.6 \cdot b_0 \cdot (h_{sc} - h_p) / h_p^2 \le 1.0$$
 [4.3.13]

dove h_{sc} è l'altezza del connettore, non maggiore di h_p +75mm, e h_{sc} , h_p e b_0 sono indicati in Fig.4.3.4(a).

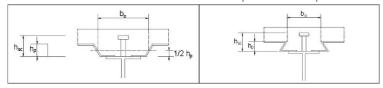


Fig. 4.3.4(a) - Disposizione della lamiera grecata rispetto al profilo in acciaio

Se le greche sono orientate trasversalmente al profilo in acciaio (fig. 4.3.4(b)), il fattore riduttivo è

$$k_t = 0.7 \cdot b_0 \cdot (h_{sc} - h_p) / h_p^2 / \sqrt{n_r}$$
 [4.3.14]

dove n_r è il numero dei pioli posti dentro ogni greca. La (4.3.14) può essere utilizzata solo se f_{tk} del connettore è inferiore a 450 MPa. Il valore di k_t deve essere sempre inferiore ai valori riportati nella Tab. 4.3.II; l'espressione di k_t è valida se $h_p \le 85$ mm e $b_0 \ge h_p$ e con connettori di diametro massimo pari a 20 mm nel caso di saldatura attraverso la lamiera e pari a 22 mm nel caso di lamiera forata.

Tab. 4.3.II - Limiti superiori del coefficiente k

Numero di pioli per greca	Spessore della lamiera	Connettori con ∳≤20mm e saldati attraverso la lamiera	Lamiera con fori e pioli saldati sul profilo – diametro pioli 19 o 22 mm
N1	≤1,0	0,85	0,75
Nr=1	>1,0	1,00	0,75
N2	≤1,0	0,70	0,60
Nr=2	>1,0	0,80	0,60



Fig. 4.3.4(b) - Disposizione della lamiera grecata rispetto al profilo in acciaio

4.3.4.3.2 Altri tipi di connettori

Per altri tipi di connettori, quali connettori a pressione, uncini e cappi, connettori rigidi nelle solette piene, la resistenza a taglio si deve valutare secondo normative di comprovata validità.

4.3.4.3.3 Valutazione delle sollecitazioni di taglio agenti sul sistema di connessione

Ai fini della progettazione della connessione, la forza di scorrimento per unità di lunghezza può essere calcolata impiegando l'analisi lineare elastica, l'analisi non lineare o, nel caso di connettori duttili, la teoria plastica.

Nel caso di analisi elastica, le verifiche devono essere condotte su ogni singolo connettore.

Per connessioni duttili a completo ripristino, la massima forza totale di scorrimento di progetto, V_{ld} che deve essere contrastata da connettori distribuiti tra le sezioni critiche, si determina con equazioni di equilibrio plastico.

Se si utilizza per le sezioni trasversali la teoria elastica, anche la forza di scorrimento per unità di lunghezza deve essere calcolata utilizzando la teoria elastica. Le proprietà statiche della sezione trasversale devono essere uguali a quelle utilizzate nel calcolo delle tensioni normali.

4.3.4.3.4 Dettagli costruttivi della zona di connessione a taglio

Il copriferro al di sopra dei connettori a piolo deve essere almeno 20 mm. Lo spessore del piatto a cui il connettore è saldato deve essere sufficiente per l'esecuzione della saldatura e per una efficace trasmissione delle azioni di taglio. La distanza minima tra il connettore e il bordo della piattabanda cui è collegato deve essere almeno 20 mm.

L'altezza complessiva del piolo dopo la saldatura deve essere almeno 3 volte il diametro del gambo del piolo d. La testa del piolo deve avere diametro pari ad almeno 1,5 d e spessore pari ad almeno 0,4 d. Quando i connettori a taglio sono soggetti ad azioni che inducono sollecitazioni di fatica, il diametro del piolo non deve eccedere 1,5 volte lo spessore del piatto a cui è collegato. Quando i connettori a piolo sono saldati sull'ala, in corrispondenza dell'anima del profilo in acciaio, il loro diametro non deve essere superiore a 2,5 volte lo spessore dell'ala.

Quando i connettori sono utilizzati con le lamiere grecate per la realizzazione degli impalcati negli edifici, l'altezza nominale del connettore deve sporgere non meno di 2 volte il diametro del gambo al di sopra della lamiera grecata. La larghezza minima della greca che può essere utilizzata negli edifici è di 50 mm.

4.3.4.3.5 Armatura trasversale

L'armatura trasversale della soletta deve essere progettata in modo da prevenire la rottura prematura per scorrimento o fessurazione longitudinale nelle sezioni critiche della soletta di calcestruzzo a causa delle elevate sollecitazioni di taglio create dai connettori. L'armatura deve essere dimensionata in modo da assorbire le tensioni di scorrimento agenti sulle superfici "critiche" di potenziale rottura, a-a, b-b, c-c, d-d, esemplificate in Fig. 4.3.5.

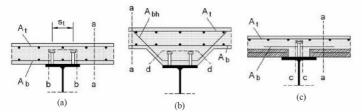


Fig. 4.3.5 - Tipiche superfici di collasso a taglio nelle piattabande di calcestruzzo

La sollecitazione di taglio agente lungo le superfici critiche deve essere determinata coerentemente con le ipotesi di calcolo assunte per la determinazione della resistenza della connessione.

L'area di armatura trasversale in una soletta piena non deve essere minore di 0,002 volte l'area del calcestruzzo e deve essere distribuita uniformemente. In solette con lamiera grecata aventi nervature parallele o perpendicolari all'asse della trave, l'area dell'armatura trasversale non deve essere minore di 0,002 volte l'area del calcestruzzo della soletta posta al di sopra dell'estradosso della lamiera grecata e deve essere uniformemente distribuita.

4.3.4.4 MODALITÀ ESECUTIVE

Le modalità esecutive devono essere conformi alle indicazioni di normative di comprovata validità.

4.3.4.5 SPESSORI MINIMI

Per gli elementi di acciaio della struttura composta valgono le regole stabilite al § 4.2.9.1. delle presenti norme.

Nelle travi composte da profilati metallici e soletta in c.a. lo spessore della soletta collaborante non deve essere inferiore a 50 mm e lo spessore della piattabanda della trave di acciaio cui è collegata la soletta non deve essere inferiore a 5 mm.

4.3.5. COLONNE COMPOSTE

4.3.5.1 GENERALITÀ E TIPOLOGIE

Si considerano colonne composte soggette a compressione centrata, presso-flessione e taglio, costituite dall'unione di profili metallici, armature metalliche e calcestruzzo:

- (a) sezioni completamente rivestite di calcestruzzo;
- (b) sezioni parzialmente rivestite di calcestruzzo;
- (c) sezioni scatolari rettangolari riempite di calcestruzzo;
- (d) sezioni circolari cave riempite di calcestruzzo.

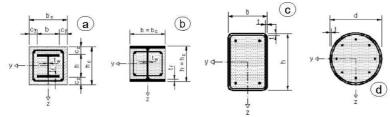


Fig. 4.3.6 - Tipi di sezioni per colonne composte, trattate nel presente paragrafo .

In generale è possibile concepire qualunque tipo di sezione trasversale, in cui gli elementi in acciaio e in calcestruzzo sono assemblati in modo da realizzare qualunque tipo di forma. Il progetto e le verifiche di tali elementi strutturali va eseguito utilizzando procedure numeriche affidabili che tengano in conto le non-linearità dei materiali e dei sistemi di connessione, i fenomeni di ritiro e viscosità, le non linearità legate alle imperfezioni.

Nel seguito vengono fornite indicazioni per verificare le colonne composte più comuni, vedi fig. 4.3.6, che rispettano i seguenti requisiti:

- 1. la sezione è doppiamente simmetrica;
- 2. la sezione è costante lungo l'altezza della colonna;
- 3. il contributo meccanico del profilato in acciaio δ , definito in \S 4.3.5.2, è compreso tra 0,2 e 0,9;
- 4. la snellezza normalizzata $\bar{\lambda}$, definita in § 4.3.5.2, è inferiore a 2.0;
- 5. per le sezioni interamente rivestite, fig. 4.3.6, i copriferri massimi che si possono considerare nel calcolo sono c_y =0,4 · b e c_z =0,3 · h;
- 6. il rapporto tra l'altezza h_c e la larghezza b_c della sezione deve essere $0.2 \le h_c / b_c \le 5.0$;
- 7. l'armatura longitudinale utilizzata nel calcolo non deve essere maggiore del 6% della sezione in calcestruzzo.

Nei criteri di verifica, inoltre, si deve distinguere il caso in cui le sollecitazioni siano affidate interamente alla struttura composta dal caso in cui la costruzione venga realizzata costruendo prima la parte in acciaio e poi completandola con il calcestruzzo.

4.3.5.2 RIGIDEZZA FLESSIONALE, SNELLEZZA E CONTRIBUTO MECCANICO DELL'ACCIAIO

Il contributo meccanico del profilato in acciaio è definito dalla formula:

$$\delta = \frac{A_a \cdot f_{yk}}{\gamma_A} \cdot \frac{1}{N_{pl,Rd}}$$
 [4.3.15]

dove con A_a è indicata l'area del profilo in acciaio e con $N_{pl,Rd}$ la resistenza plastica di progetto a sforzo normale della sezione composta, definita in § 4.3.5.3.1.

La rigidezza flessionale efficace della sezione composta, EJ_{eff} da utilizzarsi per la definizione del carico critico euleriano è data dalla formula:

$$(EJ)_{eff} = E_a J_a + E_s J_s + k_e E_{c \ eff} \cdot J_c$$
 [4.3.16]

dove k_e è un fattore correttivo pari a 0,6, mentre $J_{a'}$, J_s e J_c sono i momenti di inerzia rispettivamente del profilo in acciaio, delle barre d'armature e del calcestruzzo ed $E_{c,eff}$ è il modulo elastico efficace del calcestruzzo ottenuto tenendo conto degli effetti della viscosità in base alla relazione:

$$E_{c,eff} = E_{cm} \frac{1}{1 + (N_{G,Ed}/N_{Ed})\rho}$$
 [4.3.17]

dove

Ecm è il modulo elastico istantaneo del calcestruzzo

 ϕ è il coefficiente di viscosità definito al punto (11.2.10.7)

 N_{Ed} è la massima azione assiale di progetto

Ng, Edè l'aliquota di azione assiale dovuta alle azioni permanenti

La snellezza normalizzata della colonna è definita come:

$$\overline{\lambda} = \sqrt{\frac{N_{pl,Rk}}{N_{cr}}}$$
 [4.3.18]

dove N_{cr} è il carico critico euleriano definito in base alla rigidezza flessionale efficace della colonna composta e $N_{pl,Rk}$ è il valore caratteristico della resistenza a compressione dato da:

$$N_{pl.Rk} = A_a \cdot f_{vk} + 0.85 \cdot A_c \cdot f_{ck} + A_s \cdot f_{sk}$$
 [4.3.19]

Nel calcolo delle sollecitazioni allo stato limite ultimo la rigidezza flessionale dovrebbe essere determinata in base alla relazione seguente per tenere conto degli effetti del secondo ordine:

$$(EJ)_{eff,II} = k_0 \cdot (E_a J_a + E_s J_s + k_{e,II} E_{cm} \cdot J_c)$$
 [4.3.20]

dove k₀ vale 0,9 e k_{e,II} è assunto pari a 0,5.

Quando una colonna è particolarmente snella, oppure quando la costruzione richiede particolari livelli di sicurezza, è necessario considerare anche i fenomeni a lungo termine.

4.3.5.3 RESISTENZA DELLE SEZIONI

4.3.5.3.1 Resistenza della sezione per tensioni normali

La resistenza plastica di progetto della sezione composta a sforzo normale può essere valutata secondo la formula

$$N_{\text{pl,Rd}} = \frac{A_{\text{a}} \cdot f_{\text{yk}}}{\gamma_{\text{A}}} + \frac{A_{\text{c}} \cdot 0.85 \cdot f_{\text{ck}}}{\gamma_{\text{C}}} + \frac{A_{\text{s}} \cdot f_{\text{sk}}}{\gamma_{\text{S}}}$$
 [4.3.21]

dove $A_{a'}$, $A_{c'}$, A_{s} sono, rispettivamente, le aree del profilo in acciaio, della parte in calcestruzzo e delle barre d'armatura. Nel caso in cui si adottino sezioni riempite (Fig.4.3.6 c, d) è possibile sostituire il coefficiente 0.85 con il coefficiente 1.0, (fig. 4.3.6 c). Nelle colonne composte riempite realizzate con profili a sezione cava di forma circolare (fig.4.3.6 d) è possibile tenere in conto, nel calcolo della sforzo normale plastico resistente, degli effetti prodotti dal confinamento che il tubo in acciaio esercita sul calcestruzzo. In particolare, è possibile fare riferimento a vari modelli di confinamento presenti nelle normative e nella documentazione tecnico/scientifica di comprovata validità. In mancanza di più precise analisi e per elementi strutturali del tipo rappresentato nella Figura 4.3.7 è possibile utilizzare il seguente modello di confinamento.

La resistenza plastica di progetto della colonna circolare riempita di calcestruzzo, tenendo conto del confinamento, assume la seguente forma:

$$N_{pl,Rd} = \eta_a \frac{A_a \cdot f_{yk}}{\gamma_A} + \frac{A_c \cdot f_{ck}}{\gamma_C} \left(1 + \eta_c \cdot \frac{t}{d} \cdot \frac{f_{yk}}{f_{ck}} \right) + \frac{A_s \cdot f_{sk}}{\gamma_S}$$
 [4.3.22]

dove t è lo spessore del tubo di acciaio e d è il diametro esterno della colonna. Tale formula è valida nel caso in cui $\overline{\lambda} \leq 0,5$ e l'eccentricità massima del carico, $e = M_{Ed}/N_{Ed}$, sia minore di 0,1. I coefficienti η_a ed η_c sono dati dalle seguenti espressioni

$$\eta_{a} = \begin{cases} 0,25 \left(3+2 \cdot \overline{\lambda}\right) \leq 1,0 & e = 0 \\ 0,25 \left(3+2 \cdot \overline{\lambda}\right) + 10 \cdot \left(0,25-0,5 \cdot \overline{\lambda}\right) \cdot \frac{e}{d} & 0 < e/d \leq 0,1 \\ 1,0 & e > 0,1 \end{cases}$$
 [4.3.23]

$$\eta_c = \begin{cases} \left(4.9 - 18.5 \cdot \overline{\lambda} + 17 \cdot \overline{\lambda}^2\right) \ge 0 & e = 0 \\ \left(4.9 - 18.5 \cdot \overline{\lambda} + 17 \cdot \overline{\lambda}^2\right) \cdot \left(1 - 10 \frac{e}{d}\right) & 0 \le e/d \le 0, 1 \\ 0 & e \ge 0, 1 \end{cases}$$
 [4.3.24]

Figura 4.3.7 - Sezione tipo di colonna composta circolare riempita di calcestruzzo in cui è possibile considerare il confinamento del calcestruzzo

Il calcolo del momento resistente di progetto della colonna composta M_{Rd} in funzione dello sforzo normale N_{Ed} agente si ricava dal dominio di interazione M-N, che definisce la resistenza della sezione trasversale.

Per definire tale dominio di interazione N-M, è possibile utilizzare metodi presenti nelle normative e nella documentazione tecnica di comprovata validità oppure utilizzare apposite procedure e tecniche numeriche basate sull'integrazione dei legami costitutivi tensione-deformazione dell'acciaio e del calcestruzzo nella sezione composta.

È possibile, nel caso si utilizzino i tipi di sezione composta presentate nella Figura 4.3.6 e rispettose dei requisiti esposti in § 4.3.5.1, utilizzare un metodo semplificato per la definizione del dominio di interazione N-M (vedi Figura 4.3.8).

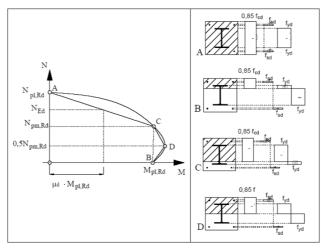


Figura 4.3.8 - Metodo semplificato per la valutazione del dominio di interazione N-M per le colonne composte

In tale metodo si assume il modello dello stress-block per il calcestruzzo, si trascura la resistenza a trazione del conglomerato e si adotta un metodo di calcolo plastico in cui le barre d'armatura sono assunte completamente snervate, così come il profilo in acciaio. Il dominio non è rappresentato completamente, ma approssimato secondo una poligonale passante per quattro punti: A, B, C e D.

I punti A e B corrispondono, rispettivamente, alle sollecitazioni di forza normale centrata e flessione pura.

I punti C e D sono ottenuti fissando lo sforzo normale al valore $N_{pm,Rd}$ e 0,5 $N_{pm,Rd}$, essendo $N_{pm,Rd}$ lo sforzo normale resistente di progetto della sola porzione di calcestruzzo della sezione composta:

$$N_{pm,Rd} = 0.85 \cdot \frac{f_{ck}}{\gamma_c} \cdot A_c$$
 [4.3.25]

dove $A_{\rm c}$ è l'area complessiva di calcestruzzo della sezione composta.

Dal dominio resistente si ricava il momento resistente plastico di progetto associato allo sforzo normale N_{Ed} della combinazione di calcolo come:

$$M_{pl,Rd}(N_{Ed}) = \mu_d \cdot M_{pl,Rd}$$
 [4.3.26]

dove $M_{\text{Pl,Rd}}$ è il momento resistente plastico di progetto e μ_{d} è un coefficiente di progetto a presso-flessione uniassiale.

Nel caso in cui la colonna sia soggetta a sollecitazioni di presso-flessione deviata, la verifica della colonna composta è condotta calcolando i coefficienti di progetto μ_{dy} e μ_{dz} indipendentemente per i due piani di flessione delle colonne, secondo il metodo presentato nella Figura 4.3.8, e controllando che:

$$\begin{split} &\frac{M_{y,Ed}}{\mu_{dy} \cdot M_{pl,y,Rd}} \leq \alpha_{M,y} \quad \frac{M_{z,Ed}}{\mu_{dz} \cdot M_{pl,z,Rd}} \leq \alpha_{M,z} \\ &\frac{M_{y,Ed}}{\mu_{dy} \cdot M_{pl,y,Rd}} + \frac{M_{z,Ed}}{\mu_{dz} \cdot M_{pl,z,Rd}} \leq 1,0 \end{split} \tag{4.3.27}$$

dove $M_{pl,y,Rd}$ e $M_{pl,z,Rd}$ sono i momenti resistenti plastici rispetto ai due piani di flessione, mentre $M_{y,Ed}$ ed $M_{z,Ed}$ sono i momenti sollecitanti derivanti dalle analisi strutturali, incrementati per tenere conto dei fenomeni del II ordine, come esposto in § 4.3.5.4.3 oppure calcolati secondo uno schema di calcolo in cui le imperfezioni dell'elemento sono state considerate utilizzando opportuni fattori di imperfezione. I coefficienti $\alpha_{M,y}$ e $\alpha_{M,z}$ sono quelli riportati in § 4.3.5.4.3.

4.3.5.3.2 Resistenza e taglio della sezione

La sollecitazione di taglio di progetto V_{Ed} agente sulla sezione deve essere distribuita tra la porzione in acciaio e la porzione in calcestruzzo in modo da risultare minore o uguale della resistenza di ognuna delle due parti della sezione. In assenza di analisi più accurate il taglio può essere suddiviso utilizzando la seguente formula:

$$\begin{split} V_{a,Ed} &= V_{Ed} \cdot \frac{M_{pl,a,Rd}}{M_{pl,Rd}} \\ V_{c,Ed} &= V_{Ed} - V_{a,Ed} \end{split} \tag{4.3.28}$$

dove

 $M_{pl,Rd}$ è il momento resistente di progetto della sezione composta mentre $M_{pl,a,Rd}$ è il momento resistente di progetto della sola sezione in acciaio. In generale la sollecitazione di taglio di progetto sulla parte in acciaio, $V_{a\nu Ed}$, non deve eccedere il 50% del taglio resistente di progetto della sola sezione in acciaio, $V_{a,Rd}$ (§ 4.2.4.1.2), per poterne così trascurare l'influenza sulla determinazione della curva di interazione N-M. In caso contrario è possibile tenerne in conto dell'interazione in base alle indicazioni del § 4.2.4.1.2.

Per semplicità è possibile procedere assegnando tutta l'azione di taglio $V_{\rm Ed}$ alla sola parte in acciaio.

4.3.5.4 STABILITÀ DELLE MEMBRATURE

4.3.5.4.1 Colonne compresse

La resistenza di progetto all'instabilità della colonna composta è data dalla formula:

$$N_{b,Rd} = \chi \cdot N_{pl,Rd} \tag{4.3.29}$$

dove $N_{pl,Rd}$ è la resistenza definita in § 4.3.5.3.1 e χ è il coefficiente riduttivo che tiene conto dei fenomeni di instabilità, definito in funzione della snellezza normalizzata dell'elemento $\overline{\lambda}$ con la formula:

$$\chi = \frac{1}{\Phi + \sqrt{\Phi^2 - \overline{\lambda}^2}} \le 1.0$$
 [4.3.30]

dove $\Phi=0.5\left[1+\alpha\left(\overline{\lambda}-0.2\right)+\overline{\lambda}^2\right]$ e α è il fattore di imperfezione, ricavato dalla Tab. 4.3.III.

Tab. 4.3.III - Curve di instabilità e fattori di imperfezione

Tab. 4.3.III - Curve di instabilità e			
Tipo sezione	Inflessione intorno all'asse	Curva di stabilità	Imperfezione
у←Т	у-у	ь	L/200
(a)	z-z	С	L/150
y- ED	у-у	b	L/200
) Ž (b)	Z-Z	С	L/150
		a (ρs<3%)	L/300
y • • • • • • • • • • • • • • • • • • •		b (3%<ρs<6%) ρs=As/Ac	L/200
(c) z		(As area armature, Ac area calcestruzzo)	
Curva di stabilità	a	b	С
Fattore di imperfezione α	0,21	0,34	0,49

4.3.5.4.2 Instabilità locale

I fenomeni di instabilità locale possono essere trascurati nel calcolo delle colonne se sono rispettate le seguenti disuguaglianze:

$$\frac{d}{t} \leq 90 \cdot \frac{235}{f_{\gamma}} \hspace{1cm} \text{per colonne circolari cave riempite;} \hspace{1cm} [4.3.31]$$

$$\frac{d}{t} \le 52 \cdot \sqrt{\frac{235}{f_v}}$$
 per colonne rettangolari cave riempite; [4.3.32]

$$\frac{b}{t_{\rm f}} \le 44 \cdot \sqrt{\frac{235}{f_{\rm v}}}$$
 per sezioni parzialmente rivestite; [4.3.33]

$$c \ge max \left| 40mm; \frac{b}{6} \right|$$
 per sezioni completamente rivestite; [4.3.34]

dove b e t_f sono rispettivamente la larghezza e lo spessore delle ali del profilo ad I o H; d e t sono invece il diametro e lo spessore della sezione dei profili cavi; c è il copriferro esterno delle sezioni interamente rivestite.

4.3.5.4.3 Colonne pressoinflesse

La verifica a presso-flessione della colonna composta è condotta controllando che:

$$M_{Ed} \le \alpha_M \cdot M_{pl,Rd}(N_{Ed})$$
 [4.3.35]

dove M_{Ed} , associato allo sforzo normale N_{Ed} , è il massimo valore del momento flettente nella colonna, calcolato considerando, se rilevanti, i difetti di rettilineità della colonna, vedi Tab. 4.3. III, e gli effetti del secondo ordine e $M_{pl,Rd}(N_{Ed})$ il momento resistente di progetto disponibile, funzione di N_{Ed} .

Il coefficiente α_M è assunto pari a 0,9 per gli acciai compresi tra le classi S235 ed S355, mentre per l'S420 e l'S460 è posto pari a 0,8. Gli effetti dei fenomeni del secondo ordine possono essere tenuti in conto incrementando i momenti ottenuti dall'analisi elastica tramite il coefficiente amplificativo:

$$k = \frac{\beta}{1 - \frac{N_{Ed}}{N_{cr}}} \ge 1,0$$
 [4.3.36]

in cui N_{cr} è il carico euleriano e β è un coefficiente che dipende dalla distribuzione del momento flettente lungo l'asse dell'elemento.

Il coefficiente β è assunto pari ad 1, quando l'andamento del momento flettente è parabolico o triangolare con valori nulli alle estremità della colonna, ed è dato da:

$$\beta = 0.66 + 0.44 \cdot \frac{M_{\text{min}}}{M_{\text{max}}} \ge 0.44$$
 [4.3.37]

quando l'andamento è lineare, con M_{max} e M_{min} i momenti alle estremità della colonna, concordi se tendono le fibre poste dalla stessa parte dell'elemento (se M è costante $M_{max}=M_{min}$ e $\beta=1,1$).

4.3.5.5 TRASFERIMENTO DEGLI SFORZI TRA COMPONENTE IN ACCIAIO E COMPONENTE IN CALCESTRUZZO

La lunghezza di trasferimento degli sforzi tra acciaio e calcestruzzo non deve superare il doppio della dimensione minore della sezione trasversale oppure, se minore, un terzo dell'altezza della colonna.

Qualora, nel trasferimento degli sforzi, si faccia affidamento sulla resistenza dovuta all'aderenza ed all'attrito, il valore puntuale della tensione tangenziale può calcolarsi mediante un'analisi elastica in fase non fessurata. Il valore puntuale massimo non deve superare le tensioni tangenziali limite di aderenza fornite nel paragrafo successivo.

Se si realizza un collegamento meccanico, utilizzando connettori duttili di cui al § 4.3.4.3.1, si può effettuare una valutazione in campo plastico degli sforzi trasferiti, ripartendoli in modo uniforme fra i connettori.

Nelle sezioni parzialmente rivestite composte con profili metallici a doppio T, il calcestruzzo tra le ali deve essere collegato all'anima mediante connettori individuando un chiaro meccanismo di trasferimento tra il calcestruzzo e l'anima se vi è flessione secondo l'asse debole; inoltre, se la resistenza a taglio non è attribuita al solo profilo in acciaio, le staffe necessarie a raggiungere la resistenza a taglio della parte in calcestruzzo armato devono essere passanti o saldate all'anima.

4.3.5.5.1 Resistenza allo scorrimento fra i componenti

La resistenza allo scorrimento fra profili in acciaio e calcestruzzo è dovuta alle tensioni di aderenza, all'attrito all'interfaccia acciaio-calcestruzzo nonché al collegamento meccanico; la resistenza deve essere tale da evitare scorrimenti rilevanti che possano inficiare i modelli di calcolo considerati.

Nell'ambito del metodo di verifica agli stati limiti si può assumere una tensione tangenziale di progetto dovuta all'aderenza ed all'attrito, fino ai seguenti limiti:

- 0,30 MPa, per sezioni completamente rivestite;
- 0,55 MPa, per sezioni circolari riempite di calcestruzzo;
- 0,40 MPa, per sezioni rettangolari riempite di calcestruzzo;
- 0,20 MPa, per le ali delle sezioni parzialmente rivestite;
- 0 (zero), per l'anima delle sezioni parzialmente rivestite.

Se tali limiti vengono superati, l'intero sforzo va affidato a collegamenti meccanici. Il collegamento meccanico tra il profilo in acciaio a doppio T ed il calcestruzzo può essere realizzato mediante staffe saldate all'anima del profilo oppure passanti; un altro

meccanismo di connessione può essere realizzato con pioli a taglio. In ogni caso è necessario definire un sistema di connessione dal chiaro funzionamento meccanico per il trasferimento delle sollecitazioni.

Qualora vi siano connettori a piolo sull'anima di sezioni in acciaio a doppio T o similari, le ali limitano l'espansione laterale del calcestruzzo incrementando la resistenza allo scorrimento dei pioli. Questa resistenza aggiuntiva si può assumere pari a $\mu P_{Rd}/2$, vedi Fig. 4.3.-9, su ogni ala per ogni fila di pioli, essendo P_{Rd} la resistenza di progetto del singolo connettore. Si può assumere μ =0,5. Tali valori delle resistenze meccaniche sono considerati validi se la distanza tra le ali rispetta le limitazioni (vedi Fig. 4.3.9):

- 300 mm, se è presente un connettore per fila;
- 400 mm, se sono presenti due connettori per fila;
- 600 mm, se sono presenti tre o più connettori per fila.

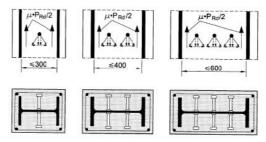


Fig. 4.3.9 -Disposizione dei pioli per la connessione meccanica acciaio-calcestruzzo

4.3.5.6 COPRIFERRO E MINIMI DI ARMATURA

Si devono rispettare le seguenti limitazioni:

- il copriferro dell'ala delle colonne completamente rivestite deve essere non minore di 40 mm, né minore di 1/6 della larghezza dell'ala;
- il copriferro delle armature deve essere in accordo con le disposizioni relative alle strutture in calcestruzzo armato ordinario.

Le armature devono essere realizzate rispettando le seguenti indicazioni:

- l'armatura longitudinale, nel caso che venga considerata nel calcolo, non deve essere inferiore allo 0,3% della sezione in calcestruzzo;
- l'armatura trasversale deve essere progettata seguendo le regole delle strutture in calcestruzzo armato ordinario;
- la distanza tra le barre ed il profilo può essere inferiore a quella tra le barre oppure nulla; in questi casi il perimetro efficace per l'aderenza acciaio-calcestruzzo deve essere ridotto alla metà o a un quarto, rispettivamente (fig. 4.3.10);
- le reti elettrosaldate possono essere utilizzate come staffe nelle colonne rivestite ma non possono sostituire l'armatura longitudinale

Nelle sezioni riempite di calcestruzzo generalmente l'armatura non è necessaria.

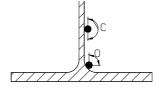


Fig. 4.3.10- Perimetro efficace delle barre di armatura.

4.3.6. SOLETTE COMPOSTE CON LAMIERA GRECATA

Si definisce come composta una soletta in calcestruzzo gettata su una lamiera grecata, in cui quest'ultima, ad avvenuto indurimento del calcestruzzo, partecipa alla resistenza dell'insieme costituendo interamente o in parte l'armatura inferiore.

La trasmissione delle forze di scorrimento all'interfaccia fra lamiera e calcestruzzo non può essere affidata alla sola aderenza, ma si devono adottare sistemi specifici che possono essere:

- a ingranamento meccanico fornito dalla deformazione del profilo metallico o ingranamento ad attrito nel caso di profili sagomati con forme rientranti, (a) e (b), Fig. 4.3.11;
- ancoraggi di estremità costituiti da pioli saldati o altri tipi di connettori, purché combinati a sistemi ad ingranamento (c), Fig. 4.3.11:
- ancoraggi di estremità ottenuti con deformazione della lamiera, purché combinati con sistemi a ingranamento per attrito, (d)
 Fig. 4.3.11.

Occorre in ogni caso verificare l'efficacia e la sicurezza del collegamento tra lamiera grecata e calcestruzzo.

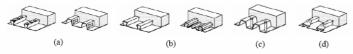


Fig. 4.3.11 -Tipiche forme di connessione per ingranamento delle solette composte

4.3.6.1 ANALISI PER IL CALCOLO DELLE SOLLECITAZIONI

Nel caso in cui le solette siano calcolate come travi continue si possono utilizzare i seguenti metodi di analisi, già presentati nel paragrafo § 4.3.2.2:

- (a) analisi lineare con o senza ridistribuzione;
- (b) analisi globale plastica, a condizione che, dove vi sono richieste di rotazione plastica, le sezioni abbiano sufficiente capacità rotazionale:
- (c) analisi elasto-plastica che tenga conto del comportamento non lineare dei materiali.

I metodi lineari di analisi sono idonei sia per gli stati limite ultimi, sia per gli stati limite di esercizio. I metodi plastici devono essere utilizzati solo nello stato limite ultimo.

Si può utilizzare, per lo stato limite ultimo, l'analisi plastica senza alcuna verifica diretta della capacità rotazionale se si utilizza acciaio da armatura B450C (di cui al § 11.3.2.1) e se le campate hanno luce minore di 3 m.

Se nell'analisi si trascurano gli effetti della fessurazione del calcestruzzo, i momenti flettenti negativi in corrispondenza degli appoggi interni possono essere ridotti fino al 30%, considerando i corrispondenti aumenti dei momenti flettenti positivi nelle campate adiacenti.

Una soletta continua può essere progettata come una serie di campate semplicemente appoggiate; in corrispondenza degli appoggi intermedi si raccomanda di disporre armature secondo le indicazioni del successivo § 4.3.6.3.1.

4.3.6.1.1 Larghezza efficace per forze concentrate o lineari

Forze concentrate o applicate lungo una linea parallela alle nervature della lamiera possono essere considerate ripartite su una larghezza b_m operando una diffusione a 45° sino al lembo superiore della lamiera, vedi Fig. 4.3.12, secondo la formula:

$$b_m = b_p + 2 (h_c + h_f)$$
 [4.3.38]

dove

b_p è la larghezza su cui agisce il carico,

 h_c è lo spessore della soletta sopra la nervatura e h_f è lo spessore delle finiture. Per stese di carico lineari disposte trasversalmente all'asse della greca si può utilizzare la medesima formula considerando come b_p l'estensione della linea di carico. Possono assumersi differenti larghezze efficaci b_m in presenza di differenti dettagli di armatura nella soletta così come indicato in altri riferimenti tecnici di cui al Capitolo 12.

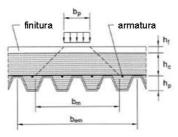


Fig. 4.3.12 - Diffusione del carico concentrato

4.3.6.2 VERIFICHE DI RESISTENZA ALLO STATO LIMITE ULTIMO

Si considereranno di regola le seguenti verifiche:

- resistenza a flessione;
- resistenza allo scorrimento;
- resistenza al punzonamento ed al taglio.

Ai fini della verifica allo scorrimento occorre conoscere la resistenza a taglio longitudinale di progetto $\tau_{u,Rd}$ tipica della lamiera grecata prevista, determinata secondo i criteri di cui al Capitolo 11 delle presenti norme.

La resistenza di una soletta composta alle sollecitazioni di taglio-punzonamento è di regola valutata sulla base di una adeguata sperimentazione, condotta in modo da riprodurre le effettive condizioni della superficie di contatto tra lamiere e getto in calce-struzzo riscontrabili in cantiere.

Qualora si consideri efficace la sola lamiera grecata, attribuendo al calcestruzzo esclusivamente la funzione di contrasto all'imbozzamento locale, la resistenza può essere verificata in accordo con le indicazioni di normative di comprovata validità sui profilati sottili di acciaio formati a freddo.

4.3.6.3 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO

4.3.6.3.1 Verifiche a fessurazione

L'ampiezza delle fessure del calcestruzzo nelle regioni di momento negativo di solette continue deve essere calcolata in accordo col § 4.1.2.2.4.

Qualora le solette continue siano progettate come semplicemente appoggiate in accordo con il precedente § 4.3.6.1, la sezione trasversale dell'armatura di controllo della fessurazione non deve essere minore di 0,2% dell'area della sezione trasversale del calcestruzzo posta al di sopra delle nervature nelle costruzioni non puntellate in fase di getto, e di 0,4% dell'area della sezione trasversale del calcestruzzo posta al di sopra delle nervature per le costruzioni puntellate in fase di getto.

4.3.6.3.2 Verifiche di deformazione

L'effetto dello scorrimento di estremità può essere trascurato se nei risultati sperimentali il carico che causa uno scorrimento di 0.5 mm è maggiore di 1.2 volte il carico della combinazione caratteristica considerata, oppure se la tensione tangenziale di scorrimento all'interfaccia è inferiore al 30% della tensione limite di aderenza $\tau_{u,Rd}$.

Il calcolo delle frecce può essere omesso se il rapporto tra luce ed altezza non supera i limiti indicati nel precedente \S 4.1 relativo alle strutture di c.a. e risulta trascurabile l'effetto dello scorrimento di estremità.

4.3.6.4 VERIFICHE DELLA LAMIERA GRECATA NELLA FASE DI GETTO

4.3.6.4.1 Verifica di resistenza

La verifica della lamiera grecata deve essere svolta in accordo con le indicazioni della normativa UNI EN1993-1-3 in materia di profilati sottili di acciaio formati a freddo. Gli effetti delle dentellature o delle bugnature devono essere opportunamente considerati nella valutazione della resistenza.

4.3.6.4.2 Verifiche agli stati limite di esercizio

L'inflessione della lamiera sotto il peso proprio ed il peso del calcestruzzo fresco, escludendo i carichi di costruzione, non deve essere maggiore di L/180 o 20 mm, essendo L la luce effettiva della campata fra due appoggi definitivi o provvisori.

Tali limiti possono essere aumentati qualora inflessioni maggiori non inficino la resistenza o l'efficienza del solaio e sia considerato nella progettazione del solaio e della struttura di supporto il peso addizionale dovuto all'accumulo del calcestruzzo. Nel caso in cui l'inflessione dell'estradosso possa condurre a problemi legati ai requisiti di funzionalità della struttura, i limiti deformativi debbono essere ridotti.

4.3.6.5 Dettagli costruttivi

4.3.6.5.1 Spessore minimo delle lamiere grecate

Lo spessore delle lamiere grecate impiegate nelle solette composte non deve essere inferiore a 0,8 mm. Lo spessore della lamiera potrà essere ridotto a 0,7 mm quando in fase costruttiva vengano studiati idonei provvedimenti atti a consentire il transito in sicurezza di mezzi d'opera e personale.

4.3.6.5.2 Spessore della soletta

L'altezza complessiva h del solaio composto non deve essere minore di 80 mm. Lo spessore del calcestruzzo h_c al di sopra dell'estradosso delle nervature della lamiera non deve essere minore di 40 mm.

Se la soletta realizza con la trave una membratura composta, oppure è utilizzata come diaframma orizzontale, l'altezza complessiva non deve essere minore di 90 mm ed h_c non deve essere minore di 50 mm.

43653 Inerti

La dimensione nominale dell'inerte dipende dalla più piccola dimensione dell'elemento strutturale nel quale il calcestruzzo è gettato.

4.3.6.5.4 Appoggi

Le solette composte sostenute da elementi di acciaio o calcestruzzo devono avere una larghezza di appoggio minima di 75 mm, con una dimensione di appoggio del bordo della lamiera grecata di almeno 50 mm.

Nel caso di solette composte sostenute da elementi in diverso materiale, tali valori devono essere portati rispettivamente a 100 mm e 70 mm.

Nel caso di lamiere sovrapposte o continue che poggiano su elementi di acciaio o calcestruzzo, l'appoggio minimo deve essere 75 mm e per elementi in altro materiale 100 mm.

I valori minimi delle larghezze di appoggio riportati in precedenza possono essere ridotti, in presenza di adeguate specifiche di progetto circa tolleranze, carichi, campate, altezza dell'appoggio e requisiti di continuità per le armature.

4.3.7. VERIFICHE PER SITUAZIONI TRANSITORIE

Per le situazioni costruttive transitorie, come quelle che si hanno durante le fasi della costruzione, dovranno adottarsi tecnologie costruttive e programmi di lavoro che non possano provocare danni permanenti alla struttura o agli elementi strutturali e che comunque non possano riverberarsi sulla sicurezza dell'opera.

Le entità delle azioni ambientali da prendere in conto saranno determinate in relazione alla durata della situazione transitoria e della tecnologia esecutiva.

4.3.8. VERIFICHE PER SITUAZIONI ECCEZIONALI

Per situazioni progettuali eccezionali, il progetto dovrà dimostrare la robustezza della costruzione mediante procedure di scenari di danno per i quali i fattori parziali γ_M dei materiali possono essere assunti pari ai valori precisati per il calcestruzzo nel § 4.1.4 e per l'acciaio nel § 4.2.6.

4.3.9. RESISTENZA AL FUOCO

Le verifiche di resistenza al fuoco potranno eseguirsi con riferimento a UNI EN 1994-1-2, utilizzando i coefficienti γ_M (vedi § 4.3.8) relativi alle combinazioni eccezionali.

4.3.10. PROGETTAZIONE INTEGRATA DA PROVE E VERIFICA MEDIANTE PROVE

La resistenza e la funzionalità di strutture e elementi strutturali può essere misurata attraverso prove su campioni di adeguata numerosità.

I risultati delle prove eseguite su opportuni campioni devono essere trattati con i metodi dell'analisi statistica, in modo tale da ricavare parametri significativi quali media, deviazione standard e fattore di asimmetria della distribuzione, sì da caratterizzare adeguatamente un modello probabilistico descrittore delle quantità indagate (variabili aleatorie).

Indicazioni più dettagliate al riguardo e metodi operativi completi per la progettazione integrata da prove possono essere reperiti nella Appendice D della UNI EN 1990:2006.

4.4. COSTRUZIONI DI LEGNO

Formano oggetto delle presenti norme le opere costituite da strutture portanti realizzate con elementi di legno strutturale o con prodotti strutturali a base di legno.

I materiali e i prodotti devono rispondere ai requisiti indicati nel § 11.7.

Tutto il legno per impieghi strutturali deve essere classificato secondo la resistenza, prima della sua messa in opera.

La presente norma può essere usata anche per le verifiche di strutture in legno esistenti purché si provveda ad una corretta valutazione delle caratteristiche del legno e, in particolare, degli eventuali stati di degrado.

4.4.1. VALUTAZIONE DELLA SICUREZZA

La valutazione della sicurezza deve essere effettuata secondo i principi fondamentali illustrati nel Capitolo 2.

La valutazione della sicurezza deve essere svolta secondo il metodo degli stati limite.

I requisiti richiesti di resistenza, rigidezza, funzionalità, durabilità e robustezza si garantiscono verificando gli stati limite ultimi e gli stati limite di esercizio della struttura, dei singoli componenti strutturali e dei collegamenti.

4.4.2. ANALISI STRUTTURALE

L'analisi della struttura si può effettuare assumendo un comportamento elastico lineare dei materiali e dei collegamenti considerando i valori pertinenti (medi o caratteristici) del modulo elastico dei materiali e della rigidezza delle unioni, in funzione dello stato limite e del tipo di verifica considerati.

I calcoli devono essere svolti usando appropriate schematizzazioni e, se necessario, supportati da prove. Lo schema adottato deve essere sufficientemente accurato per simulare con ragionevole precisione il comportamento strutturale della costruzione, anche in relazione alle modalità costruttive previste.

Nell'analisi globale della struttura, in quella dei sistemi di controvento e nel calcolo delle membrature si deve tener conto delle imperfezioni geometriche e strutturali.

A tal fine possono adottarsi adeguate imperfezioni geometriche equivalenti, il valore delle quali può essere reperito in normative di comprovata validità.

Per quelle tipologie strutturali in grado di ridistribuire le azioni interne, anche grazie alla presenza di giunti di adeguata duttilità, si può far uso di metodi di analisi non lineari.

In presenza di giunti meccanici si deve, di regola, considerare l'influenza della deformabilità degli stessi.

Per tutte le strutture, in particolare per quelle composte da parti con diverso comportamento reologico, le verifiche, per gli stati limite ultimi e di esercizio, devono essere effettuate con riferimento, oltre che alle condizioni iniziali, anche alle condizioni finali (a tempo infinito).

4.4.3. AZIONI E LORO COMBINAZIONI

Le azioni caratteristiche devono essere definite in accordo con quanto indicato nei Capitoli 3 e 2 delle presenti norme.

Per costruzioni civili o industriali per le quali non esistano regolamentazioni specifiche, le azioni di progetto si devono determinare secondo quanto indicato nel Capitolo 2.

4.4.4. CLASSI DI DURATA DEL CARICO

Le azioni di progetto devono essere assegnate ad una delle classi di durata del carico elencate nella Tab. 4.4.I.

Tab. 4.4.I - Classi di durata del carico

Classe di durata del carico	Durata del carico
Permanente	più di 10 anni
Lunga durata	6 mesi - 10 anni
Media durata	1 settimana – 6 mesi
Breve durata	meno di 1 settimana
Istantaneo	

Le classi di durata del carico si riferiscono a un carico costante attivo per un certo periodo di tempo nella vita della struttura. Per un'azione variabile la classe appropriata deve essere determinata in funzione dell'interazione fra la variazione temporale tipica del carico nel tempo e le proprietà reologiche dei materiali.

Ai fini del calcolo in genere si può assumere quanto segue:

- il peso proprio e i carichi non rimovibili durante il normale esercizio della struttura, appartengono alla classe di durata permanente:
- i carichi permanenti suscettibili di cambiamenti durante il normale esercizio della struttura e i carichi variabili relativi a magazzini e depositi, appartengono alla classe di lunga durata;
- i carichi variabili degli edifici, ad eccezione di quelli relativi a magazzini e depositi, appartengono alla classe di media durata;
- il sovraccarico da neve riferito al suolo qsk, calcolato in uno specifico sito ad una certa altitudine, è da attribuire ad una classe di durata del carico da considerarsi in funzione delle caratteristiche del sito per altitudini di riferimento as inferiori a 1000 m, mentre è da considerarsi almeno di media durata per altitudini as superiori o uguali a 1000 m;
- l'azione del vento medio appartiene alla classe di breve durata;
- l'azione di picco del vento e le azioni eccezionali in genere appartengono alla classe di durata istantanea;

4.4.5. CLASSI DI SERVIZIO

Le strutture (o parti di esse) devono essere assegnate ad una delle 3 classi di servizio elencate nella Tab. 4.4.II. Il sistema delle classi di servizio ha lo scopo di definire la dipendenza delle resistenze di progetto e dei moduli elastici del legno e materiali da esso derivati dalle condizioni ambientali.

Tab. 4.4.II - Classi di servizio

dove:

Classe di servizio 1	È caratterizzata da un'umidità del materiale in equilibrio con l'ambiente a una temperatura di 20 °C e un'umidità relativa dell'aria circostante che non superi il 65%, se non per poche settimane all'anno.
Classe di servizio 2	É caratterizzata da un'umidità del materiale in equilibrio con l'ambiente a una temperatura di 20 °C e un'umidità relativa dell'aria circostante che superi l'85% solo per poche settimane all'anno.

4.4.6. RESISTENZA DI PROGETTO

La durata del carico e l'umidità del legno influiscono sulle proprietà resistenti del legno.

I valori di progetto per le proprietà del materiale a partire dai valori caratteristici si assegnano quindi con riferimento combinato alle classi di servizio e alle classi di durata del carico.

Il valore di progetto X_d di una proprietà del materiale (o della resistenza di un collegamento) viene calcolato mediante la relazione:

 $X_{d} = \frac{k_{\text{mod}} X_{k}}{\gamma_{M}}$ [4.4.1]

X_k è il valore caratteristico della proprietà del materiale, come specificato al § 11.7, o della resistenza del collegamento. Il valore caratteristico X_k può anche essere determinato mediante prove sperimentali sulla base di prove svolte in condizioni definite dalle norme europee applicabili, come riportato nel paragrafo 11.7;

 γ_{M} è il coefficiente parziale di sicurezza relativo al materiale, i cui valori sono riportati nella Tab. 4.4.III;

 k_{mod} è un coefficiente correttivo che tiene conto dell'effetto, sui parametri di resistenza, sia della durata del carico sia dell'umidità della struttura. I valori di k_{mod} sono forniti nella Tab. 4.4.IV.

Se una combinazione di carico comprende azioni appartenenti a differenti classi di durata del carico si dovrà scegliere un valore di k_{mod} che corrisponde all'azione di minor durata.

Il coefficiente $\gamma_{\rm M}$ è valutato secondo la colonna A della tabella 4.4.III. Si possono assumere i valori riportati nella colonna B della stessa tabella, per produzioni continuative di elementi o strutture, soggette a controllo continuativo del materiale dal quale risulti un coefficiente di variazione (rapporto tra scarto quadratico medio e valor medio) della resistenza non superiore al 15%. Le suddette produzioni devono essere inserite in un sistema di qualità di cui al § 11.7.

 $\textbf{Tab. 4.4.III} \ \ \textbf{-} \textit{Coefficienti parziali } \gamma_{M} \textit{ per le proprietà dei materiali}$

Stati limite ultimi	Colonna A	Colonna B	
Stati innite utimi	γ_{M}	γ_{M}	
combinazioni fondamentali			
legno massiccio	1,50	1,45	
legno lamellare incollato	1,45	1,35	
pannelli di tavole incollate a strati incrociati	1,45	1,35	
pannelli di particelle o di fibre	1,50	1,40	
LVL, compensato, pannelli di scaglie orientate	1,40	1,30	
unioni	1,50	1,40	
combinazioni eccezionali	1,00	1,00	

Per i materiali non compresi nella Tabella si potrà fare riferimento ai pertinenti valori riportati nei riferimenti tecnici di comprovata validità indicati nel Capitolo 12, nel rispetto dei livelli di sicurezza delle presenti norme.

4.4.7. STATI LIMITE DI ESERCIZIO

Le deformazioni di una struttura, dovute agli effetti delle azioni applicate, degli stati di coazione, delle variazioni di umidità e degli scorrimenti nelle unioni, devono essere contenute entro limiti accettabili, sia in relazione ai danni che possono essere indotti ai materiali di rivestimento, ai pavimenti, alle tramezzature e, più in generale, alle finiture, sia in relazione ai requisiti estetici ed alla funzionalità dell'opera.

In generale nella valutazione delle deformazioni delle strutture si deve tener conto della deformabilità dei collegamenti.

Considerando il particolare comportamento reologico del legno e dei materiali derivati dal legno, si devono valutare sia la deformazione istantanea sia la deformazione a lungo termine.

La deformazione istantanea si calcola usando i valori medi dei moduli elastici per le membrature e il valore istantaneo del modulo di scorrimento dei collegamenti.

Tab. 4.4.IV -Valori di k_{mod} per legno e prodotti strutturali a base di legno

	l constituir and an experience and regine		Classe di servizio	Classe di durata del carico				
Materiale Riferin		ento		Permanente	Lunga	Media	Breve	Istanta- nea
Legno massiccio	UNI EN 14081-1		1	0,60	0,70	0,80	0,90	1,10
Legno lamellare incollato (*)	UNI EN 14080		2	0,60	0,70	0,80	0,90	1,10
LVL	UNI EN 14374, UNI	EN 14279	3	0,50	0,55	0,65	0,70	0,90
			1	0,60	0,70	0,80	0,90	1,10
Compensato	UNI EN 636:2015		2	0,60	0,70	0,80	0,90	1,10
			3	0,50	0,55	0,65	0,70	0,90
		OSB/2	1	0,30	0,45	0,65	0,85	1,10
Pannello di scaglie orientate (OSB)	UNI EN 300:2006	OSB/3 -	1	0,40	0,50	0,70	0,90	1,10
, , , , , , , , , , , , , , , , , , , ,		OSB/4	2	0,30	0,40	0,55	0,70	0,90
Pannello di particelle	UNI EN 312 :2010	Parti 4, 5	1	0,30	0,45	0,65	0,85	1,10
		Parte 5	2	0,20	0,30	0,45	0,60	0,80
(truciolare)		Parti 6, 7	1	0,40	0,50	0,70	0,90	1,10
		Parte 7	2	0,30	0,40	0,55	Breve	0,90
Pannello di fibre, pannelli duri	UNI EN 622-2:2005	HB.LA, HB.HLA 1 o 2	1	0,30	0,45	0,65	0,85	1,10
		HB.HLA 1 o 2	2	0,20	0,30	0,45	0,60	0,80
	UNI EN 622-3:2005	MBH.LA1 o 2	1	0,20	0,40	0,60	0,80	1,10
Pannello di fibre, pannelli semiduri		MBH.HLS1 o	1	0,20	0,40	0,60	0,80	1,10
		2	2	-	-	-	0,45	0,80
Pannello di fibra di legno, ottenuto per via secca (MDF) UNI EN 622-5	UNI EN 622-5:2010	MDF.LA, MDF.HLS	1	0,20	0,40	0,60	0,80	1,10
		MDF.HLS	2	-	-	-	0,45	0,80

Per i materiali non compresi nella Tabella si potrà fare riferimento ai pertinenti valori riportati nei riferimenti tecnici di comprovata validità indicati nel Capitolo 12, nel rispetto dei livelli di sicurezza delle presenti norme.

 $\begin{tabular}{l} \begin{tabular}{l} \begin{tab$

La deformazione a lungo termine può essere calcolata utilizzando i valori medi dei moduli elastici ridotti opportunamente mediante il fattore 1/(1+ k_{def}), per le membrature, e utilizzando un valore ridotto nello stesso modo del modulo di scorrimento dei

Il coefficiente k_{def} tiene conto dell'aumento di deformabilità con il tempo causato dall'effetto combinato della viscosità, dell'umidità del materiale e delle sue variazioni. I valori di $k_{\rm def}$ sono riportati nella Tab. 4.4.V.

La freccia (valore dello spostamento ortogonale all'asse dell'elemento) netta di un elemento inflesso è data dalla somma della freccia dovuta ai soli carichi permanenti, della freccia dovuta ai soli carichi variabili, dedotta dalla eventuale controfreccia (qualora presente)

Nei casi in cui sia opportuno limitare la freccia istantanea dovuta ai soli carichi variabili nella combinazione di carico rara, in mancanza di più precise indicazioni, si raccomanda che essa sia inferiore a L/300, essendo L la luce dell'elemento o, nel caso di mensole, il doppio dello sbalzo.

Nei casi in cui sia opportuno limitare la freccia finale, in mancanza di più precise indicazioni, si raccomanda che essa sia inferiore a L/200, essendo L la luce dell'elemento o, nel caso di mensole, il doppio dello sbalzo.

Per il calcolo della freccia finale si potrà fare utile riferimento ai documenti di comprovata validità cui al capitolo 12.

I limiti indicati per la freccia costituiscono solo requisiti minimi indicativi. Limitazioni più severe possono rivelarsi necessarie in casi particolari, ad esempio in relazione ad elementi portati non facenti parte della struttura. In generale, nel caso di impalcati, si raccomanda la verifica della compatibilità della deformazione con la destinazione d'uso.

 $\textbf{Tab. 4.4.V -} Valori \ di \ k_{def} \ per \ legno \ e \ prodotti \ strutturali \ a \ base \ di \ legno$

Materiale	Riferimer	Classe di servizio			
Materiale	Kiferimei	1	2	3	
Legno massiccio	UNI EN 14081-1		0,60	0,80	2,00
Legno lamellare incollato *	UNI EN 14080		0,60	0,80	2,00
LVL	UNI EN 14374, UNI I	EN 14279	0,60	0,80	2,00
Compensato			0,80	-	-
	UNI EN 636:2015		0,80	1,00	-
			0,80	1,00	2,50
Pannelli di scaglie orientate (OSB)	UNI EN 300:2006	OSB/2	2,25	-	-
		OSB/3 OSB/4	1,50	2,25	-
Pannello di particelle (truciolare)	UNI EN 312:2010	Parte 4	2,25	-	-
		Parte 5	2,25	3,00	-
		Parte 6	1,50	-	-
		Parte 7	1,50	2,25	-
		HB.LA	2,25	-	-
Pannello di fibre, pannelli duri	UNI EN 622-2::2005	HB.HLA1, HB.HLA2	2,25	3,00	-
Pannello di fibre, pannelli semiduri	LB H EN L (22 2 2005	MBH.LA1, MBH.LA2	3,00	-	-
	UNI EN 622-3:2005	MBH.HLS1, MBH.HLS2	3,00	4,00	-
Pannello di fibra di legno, ottenuto per		MDF.LA	2,25	-	=
via secca (MDF)	UNI EN 622-5:2010	MDF.HLS	2,25	3,00	-

Per materiale posto in opera con umidità prossima al punto di saturazione delle fibre, e che possa essere soggetto a essiccazione sotto carico, il valore di k_{def} dovrà, in assenza di idonei provvedimenti, essere aumentato a seguito di opportune valutazioni, sommando ai termini della tabella un valore comunque non inferiore a 2,0.

4.4.8. STATI LIMITE ULTIMI

4.4.8.1 VERIFICHE DI RESISTENZA

Le tensioni interne si possono calcolare nell'ipotesi di conservazione delle sezioni piane e di una relazione lineare tra tensioni e deformazioni fino alla rottura.

Le resistenze di progetto dei materiali X_d sono quelle definite al \S 4.4.6.

Per i materiali non compresi nella Tabella si potrà fare riferimento ai pertinenti valori riportati nei riferimenti tecnici di

comprovata validità indicati nel Capitolo 12, nel rispetto dei livelli di sicurezza delle presenti norme.

* I valori indicati si possono adottare anche per i pannelli di tavole incollate a strati incrociati, ma limitatamente alle classi di servizio 1 e 2

Le prescrizioni del presente paragrafo si riferiscono alla verifica di resistenza di elementi strutturali in legno massiccio o di prodotti derivati dal legno aventi direzione della fibratura coincidente sostanzialmente con il proprio asse longitudinale e sezione trasversale costante, soggetti a sforzi agenti prevalentemente lungo uno o più assi principali dell'elemento stesso (Fig. 4.4.1).

A causa dell'anisotropia del materiale, le verifiche degli stati tensionali di trazione e compressione si devono eseguire tenendo conto dell'angolo tra direzione della fibratura e direzione della tensione.

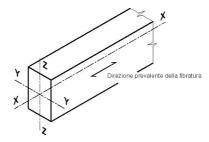


Fig. 4.4.1 - Assi dell'elemento

4.4.8.1.1 Trazione parallela alla fibratura

Deve essere soddisfatta la seguente condizione:

 $\sigma_{t,0,d} \le f_{t,0,d}$ [4.4.2]

dove:

 $\sigma_{t,0,d}$ è la tensione di progetto a trazione parallela alla fibratura valutata sulla sezione netta;

 $f_{t,0,d}$ è la corrispondente resistenza di progetto (formula 4.4.1), determinata tenendo conto anche delle dimensioni della sezione trasversale mediante il coefficiente k_{br} come definito al § 11.7.1.1.

Nelle giunzioni di estremità si dovrà tener conto dell'eventuale azione flettente indotta dall'eccentricità dell'azione di trazione attraverso il giunto: tali azioni secondarie potranno essere computate, in via approssimata, attraverso una opportuna riduzione della resistenza di progetto a trazione.

4.4.8.1.2 Trazione perpendicolare alla fibratura

Nella verifica degli elementi si dovrà opportunamente tener conto del volume effettivamente sollecitato a trazione. Per tale verifica si dovrà far riferimento a normative di comprovata validità.

Particolare attenzione dovrà essere posta nella verifica degli elementi soggetti a forze trasversali applicate in prossimità dei bordi della sezione in direzione tale da indurre tensione di trazione perpendicolare alla fibratura.

4.4.8.1.3 Compressione parallela alla fibratura

Deve essere soddisfatta la seguente condizione:

$$\sigma_{c,0,d} \le f_{c,0,d}$$
 [4.4.3]

dove

 $\sigma_{c0.d}$ è la tensione di progetto a compressione parallela alla fibratura;

 $f_{c,0,d}$ è la corrispondente resistenza di progetto (formula 4.4.1).

Deve essere inoltre effettuata la verifica di stabilità per elementi compressi, come definita al § 4.4.8.2.2.

4.4.8.1.4 Compressione perpendicolare alla fibratura

Deve essere soddisfatta la seguente condizione:

$$\sigma_{c,90,d} \le f_{c,90,d}$$
 [4.4.4]

dove

 $\sigma_{c,90,d}$ è la tensione di progetto a compressione ortogonale alla fibratura;

 $f_{c,90,d}$ è la corrispondente resistenza di progetto (formula 4.4.1).

Nella valutazione di $\sigma_{c,90,d}$ è possibile tenere conto della ripartizione del carico nella direzione della fibratura lungo l'altezza della sezione trasversale dell'elemento. È possibile, con riferimento a normative di comprovata validità, tener conto di una larghezza efficace maggiore di quella di carico.

4.4.8.1.5 Compressione inclinata rispetto alla fibratura

Nel caso di tensioni di compressione agenti lungo una direzione inclinata rispetto alla fibratura si deve opportunamente tener conto della sua influenza sulla resistenza, facendo riferimento a normative di comprovata validità.

4.4.8.1.6 Flessione

Devono essere soddisfatte entrambe le condizioni seguenti:

$$\frac{\mathbf{\sigma}_{\text{m,y,d}}}{\mathbf{f}_{\text{m,v,d}}} + \mathbf{k}_{\text{m}} \frac{\mathbf{\sigma}_{\text{m,z,d}}}{\mathbf{f}_{\text{m,z,d}}} \le 1$$
 [4.4.5a]

$$\begin{split} & \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \, \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1 \\ & k_m \, \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \leq 1 \end{split} \tag{4.4.5a}$$

dove

 $\sigma_{m,y,d} \, e \, \sigma_{m,z,d}$ sono le tensioni di progetto massime per flessione rispettivamente nei piani $xz \, e \, xy$ determinate assumendo una distribuzione elastico lineare delle tensioni sulla sezione (vedi Fig. 4.4.1);

 $f_{m,v,d} e f_{m,z,d}$ sono le corrispondenti resistenze di progetto a flessione (formula 4.4.1), determinate tenendo conto anche delle dimensioni della sezione trasversale mediante il coefficiente $k_{h\prime}$ come definito al § 11.7.1.1.

I valori da adottare per il coefficiente $k_{m'}$ che tiene conto convenzionalmente della ridistribuzione delle tensioni e della disomogeneità del materiale nella sezione trasversale, sono:

- k_m = 0,7 per sezioni trasversali rettangolari;
- k_m = 1,0 per altre sezioni trasversali.

Deve essere inoltre effettuata la verifica di stabilità per elementi inflessi (svergolamento o instabilità flesso-torsionale), come definita al § 4.4.8.2.1.

4.4.8.1.7 Tensoflessione

Nel caso di sforzo normale di trazione accompagnato da sollecitazioni di flessione attorno ai due assi principali dell'elemento strutturale, devono essere soddisfatte entrambe le seguenti condizioni:

$$\frac{\sigma_{t,0,d}}{f_{t,0,d}} + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1$$
 [4.4.6a]

$$\frac{\sigma_{t,0,d}}{f_{t,0,d}} + k_m \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1$$
 [4.4.6b]

I valori di k_m da utilizzare sono quelli riportati al § 4.4.8.1.6.

Deve essere inoltre effettuata la verifica di stabilità per elementi inflessi (svergolamento o instabilità flesso-torsionale), come definita al § 4.4.8.2.1.

4.4.8.1.8 Pressoflessione

Nel caso di sforzo normale di compressione accompagnato da sollecitazioni di flessione attorno ai due assi principali dell'elemento strutturale, devono essere soddisfatte entrambe le seguenti condizioni:

$$\left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^2 + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_m \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1$$
 [4.4.7a]

$$\left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^{2} + \frac{\sigma_{m,y,d}}{f_{m,y,d}} + k_{m} \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1$$

$$\left(\frac{\sigma_{c,0,d}}{f_{c,0,d}}\right)^{2} + k_{m} \frac{\sigma_{m,y,d}}{f_{m,y,d}} + \frac{\sigma_{m,z,d}}{f_{m,z,d}} \le 1$$

$$[4.4.7a]$$

I valori di k_m da utilizzare sono quelli riportati al precedente § 4.4.8.1.6.

Devono essere inoltre effettuate le verifiche di stabilità, come definite al § 4.4.8.2.

4.4.8.1.9 Taglio

Deve essere soddisfatta la condizione:

$$\tau_d \leq f_{v,d,} \tag{4.4.8}$$

dove:

è la massima tensione tangenziale di progetto, valutata secondo la teoria di Jourawski, considerando una larghezza di trave opportunamente ridotta per la presenza di eventuali fessurazioni;

è la corrispondente resistenza di progetto a taglio (formula 4.4.1).

Alle estremità della trave si potrà effettuare la verifica sopra indicata valutando in modo convenzionale $\tau_{d'}$ considerando nullo, ai fini del calcolo dello sforzo di taglio di estremità, il contributo di eventuali forze agenti all'interno del tratto di lunghezza pari all'altezza h della trave, misurato a partire dal bordo interno dell'appoggio, o all'altezza effettiva ridotta heff nel caso di travi con

Per la verifica di travi con intagli o rastremazioni di estremità si farà riferimento a normative di comprovata validità.

La resistenza a taglio per rotolamento delle fibre (rolling shear) si può assumere non maggiore di due volte la resistenza a trazione in direzione ortogonale alla fibratura.

4.4.8.1.10 Torsione

Deve essere soddisfatta la condizione:

 $\tau_{\text{tor d}} \le k_{\text{sh}} f_{\text{vd}} \tag{4.4.9}$

dove

 $\tau_{tor,d}$ è la massima tensione tangenziale di progetto per torsione;

 \mathbf{k}_{sh} è un coefficiente che tiene conto della forma della sezione trasversale;

 $f_{v,d}$ è la resistenza di progetto a taglio (formula 4.4.1).

Per il coefficiente k_{sh} si possono assumere i valori:

 $k_{sh} = 1.2$ per sezioni circolari piene;

 k_{sh} = 1+ 0,15 h/b \leq 2 per sezioni rettangolari piene, di lati b e h, b \leq h;

 $k_{sh} = 1$ per altri tipi di sezione.

4.4.8.1.11 Taglio e torsione

Nel caso di torsione accompagnata da taglio si può eseguire una verifica combinata adottando la formula di interazione:

$$\frac{\tau_{tor,d}}{k_{sh}f_{v,d}} + \left(\frac{\tau_d}{f_{v,d}}\right)^2 \le 1 \tag{4.4.10}$$

ove il significato dei simboli è quello riportato nei paragrafi corrispondenti alle verifiche a taglio e a torsione.

4.4.8.2 VERIFICHE DI STABILITÀ

Oltre alle verifiche di resistenza devono essere eseguite le verifiche necessarie ad accertare la sicurezza della struttura o delle singole membrature nei confronti di possibili fenomeni di instabilità, quali lo svergolamento delle travi inflesse (instabilità flessotorsionale) e lo sbandamento laterale degli elementi compressi o pressoinflessi.

Nella valutazione della sicurezza all'instabilità occorre tener conto, per il calcolo delle tensioni per flessione, anche della curvatura iniziale dell'elemento, dell'eccentricità del carico assiale e delle eventuali deformazioni (frecce o controfrecce) imposte.

Per queste verifiche si devono utilizzare i valori caratteristici al frattile 5% per i moduli elastici dei materiali.

4.4.8.2.1 Elementi inflessi (instabilità di trave)

Nel caso di flessione semplice, con momento flettente agente attorno all'asse forte y della sezione (cioè nel piano ortogonale a quello di possibile svergolamento), con riferimento alla tensione dovuta al massimo momento agente nel tratto di trave compreso tra due successivi ritegni torsionali, deve essere soddisfatta la relazione:

$$\frac{\sigma_{m,d}}{k_{crit,m} f_{m,d}} \le 1$$
 [4.4.11]

 $\sigma_{m,d}$ tensione di progetto massima per flessione;

k_{crit,m} coefficiente riduttivo di tensione critica per instabilità di trave, per tener conto della riduzione di resistenza dovuta allo sbandamento laterale;

 $f_{m,d}$ resistenza di progetto a flessione (formula 4.4.1), determinata tenendo conto anche delle dimensioni della sezione trasversale mediante il coefficiente k_h .

Per travi aventi una deviazione laterale iniziale rispetto alla rettilineità nei limiti di accettabilità del prodotto, si possono assumere i seguenti valori del coefficiente di tensione critica $k_{crit,m}$

$$k_{crit,m} = \begin{cases} 1 & \text{per } \lambda_{rel,m} \le 0.75 \\ 1.56 - 0.75\lambda_{rel,m} & \text{per } 0.75 < \lambda_{rel,m} \le 1.4 \\ 1/\lambda_{rel,m}^2 & \text{per } 1.4 < \lambda_{rel,m} \end{cases}$$
[4.4.12]

 $\lambda_{\text{rel,m}} = \sqrt{f_{\text{m,k}}/\sigma_{\text{m,crit}}}$ snellezza relativa di trave;

 $f_{m,k}$ resistenza caratteristica a flessione (paragrafo 11.7.1.1);

 $\sigma_{m,crit}$ tensione critica per flessione calcolata secondo la teoria classica della stabilità, con i valori dei moduli elastici caratteristici (frattile 5%) (paragrafo 11.7.1.1).

4.4.8.2.2 Elementi compressi (instabilità di colonna)

Nel caso di asta soggetta solo a sforzo normale deve essere soddisfatta la condizione:

$$\frac{\sigma_{c,0,d}}{k_{critc} f_{c,0,d}} \le 1 ag{4.4.13}$$

 $\sigma_{c,0,d}$ tensione di compressione di progetto per sforzo normale;

f_{c,0,d} resistenza di progetto a compressione;

k_{crit.c} coefficiente riduttivo di tensione critica per instabilità di colonna valutato per il piano in cui assume il valore minimo.

Il coefficiente riduttivo $k_{crit.c}$ si calcola in funzione della snellezza relativa di colonna $\lambda_{rel,c}$, che vale:

$$\lambda_{\rm rel,c} = \sqrt{\frac{f_{\rm c,0,k}}{\sigma_{\rm c,crit}}} = \frac{\lambda}{\pi} \sqrt{\frac{f_{\rm c,0,k}}{E_{0,05}}}$$
 [4.4.14]

 $f_{c,0,k}$ resistenza caratteristica a compressione parallela alla fibratura;

 $\sigma_{c,crit}$ tensione critica calcolata secondo la teoria classica della stabilità, con i valori dei moduli elastici caratteristici (frattile 5%) (paragrafo 11.7.1.1);

λ snellezza dell'elemento strutturale valutata per il piano in cui essa assume il valore massimo.

Quando $\lambda_{\text{rel,c}} \le 0.3$ si deve porre $k_{\text{crit,c}} = 1$, altrimenti

$$k_{crit,c} = \frac{1}{k + \sqrt{k^2 - \lambda_{rel,c}^2}}$$
 [4.4.15]

con

$$k = 0.5 \left(1 + \beta_c \left(\lambda_{rel,c} - 0.3 \right) + \lambda_{rel,c}^2 \right)$$
 [4.4.16]

- β_c coefficiente di imperfezione, che, se gli elementi rientrano nei limiti di rettilineità definiti al § 4.4.15, può assumere i seguenti valori:
 - per legno massiccio β_c = 0,2;
 - per legno lamellare β_c = 0,1.

4.4.9. COLLEGAMENTI

I collegamenti tra gli elementi strutturali devono essere progettati in numero, posizione, resistenza, rigidezza tali da garantire la trasmissione delle sollecitazioni di progetto allo stato limite considerato in coerenza ai criteri adottati nello svolgimento dell'analisi strutturale.

Le capacità portanti e le deformabilità dei mezzi di unione utilizzati nei collegamenti devono essere determinate sulla base di prove meccaniche, per il cui svolgimento può farsi utile riferimento alle norme UNI EN 1075, UNI EN 1380, UNI EN 1381, UNI EN 26891, UNI EN ISO 8970 e alle pertinenti norme europee.

La capacità portante e la deformabilità dei mezzi di unione possono essere valutate con riferimento a normative di comprovata validità.

Nel calcolo della capacità portante del collegamento realizzato con mezzi di unione del tipo a gambo cilindrico, si dovrà tener conto, tra l'altro, della tipologia e della capacità portante ultima del singolo mezzo d'unione, del tipo di unione (legno-legno, pannelli-legno, acciaio-legno), del numero di sezioni resistenti e, nel caso di collegamento organizzato con più unioni elementari, dell'allineamento dei singoli mezzi di unione.

È ammesso l'uso di sistemi di unione di tipo speciale purché il comportamento degli stessi sia chiaramente individuato su base teorica e/o sperimentale e purché sia comunque garantito un livello di sicurezza non inferiore a quanto previsto nella presente norma tecnica.

Giunti a dita incollati a tutta sezione non possono essere usati in classe di servizio 3.

In ogni caso i sistemi di unione devono essere verificati nelle reali condizioni di impiego in opera.

4.4.10. ELEMENTI STRUTTURALI

Ogni elemento strutturale, in legno massiccio o in materiali derivati dal legno, prevalentemente compresso, inflesso, teso o sottoposto a combinazioni dei precedenti stati di sollecitazione, può essere caratterizzato da un'unica sezione o da una sezione composta da più elementi, incollati o assemblati meccanicamente.

Le verifiche dell'elemento composto dovranno tener conto degli scorrimenti nelle unioni. A tale scopo è ammesso adottare per le unioni un legame lineare tra sforzo e scorrimento.

Nel caso di elementi strutturali realizzati mediante accoppiamento di elementi a base di legno o di altro materiale tramite connessioni o incollaggi, la verifica complessiva dell'elemento composto dovrà tenere conto dell'effettivo comportamento dell'unione,

definito con riferimento a normativa tecnica di comprovata validità ed eventualmente per via sperimentale. In ogni caso le sollecitazioni nei singoli elementi componenti dovranno essere confrontate con quelle specificate ai §§ 4.1, 4.2 in relazione a ciascun singolo materiale.

4.4.11. SISTEMI STRUTTURALI

Le strutture reticolari costituite da elementi lignei assemblati tramite collegamenti metallici, unioni di carpenteria o incollaggio, dovranno essere in genere analizzate come sistemi di travi, considerando la deformabilità e le effettive eccentricità dei collegamenti

La stabilità delle singole membrature nelle strutture intelaiate deve essere verificata, in generale, tenendo conto delle effettive condizioni dei vincoli nonché della deformabilità dei nodi e della presenza di eventuali sistemi di controventamento.

La stabilità delle strutture intelaiate deve essere verificata considerando, oltre agli effetti instabilizzanti dei carichi verticali, anche le imperfezioni geometriche e strutturali, inquadrando le corrispondenti azioni convenzionali nella stessa classe di durata dei carichi che le hanno provocate.

Nei casi in cui la stabilità laterale è assicurata dal contrasto di controventamenti adeguati, la lunghezza di libera inflessione dei piedritti, in mancanza di un'analisi rigorosa, si può assumere pari all'altezza d'interpiano.

Per gli archi, oltre alle usuali verifiche, vanno sempre eseguite le verifiche nei confronti dell'instabilità anche al di fuori del piano.

Per gli archi, come per tutte le strutture spingenti, i vincoli devono essere idonei ad assorbire le componenti orizzontali delle reazioni.

Le azioni di progetto sui controventi e/o diaframmi devono essere determinate tenendo conto anche delle imperfezioni geometriche strutturali, nonché delle deformazioni indotte dai carichi applicati, se significative.

Qualora le strutture dei tetti e dei solai svolgano anche funzioni di controventamento nel loro piano (diaframmi per tetti e solai), la capacità di esplicare tale funzione con un comportamento a lastra deve essere opportunamente verificata, tenendo conto delle modalità di realizzazione e delle caratteristiche dei mezzi di unione.

Qualora gli elementi di parete svolgano anche funzioni di controventamento nel loro piano (diaframma per pareti), la capacità di esplicare tale funzione con un comportamento a mensola verticale deve essere opportunamente verificata, tenendo conto delle modalità di realizzazione e delle caratteristiche dei mezzi di unione.

4.4.12. ROBUSTEZZA

I requisiti di robustezza strutturale di cui ai §§ 2.1 e 3.1.1 possono essere raggiunti anche mediante l'adozione di opportune scelte progettuali e di adeguati provvedimenti costruttivi che, per gli elementi lignei, devono riguardare almeno:

- la protezione della struttura e dei suoi elementi componenti nei confronti dell'umidità;
- l'utilizzazione di mezzi di collegamento intrinsecamente duttili o di sistemi di collegamento a comportamento duttile;
- l'utilizzazione di elementi composti a comportamento globalmente duttile;
- la limitazione delle zone di materiale legnoso sollecitate a trazione perpendicolarmente alla fibratura, soprattutto nei casi in cui tali stati di sollecitazione si accompagnino a tensioni tangenziali (come nel caso degli intagli) e, in genere, quando siano da prevedere elevati gradienti di umidità nell'elemento durante la sua vita utile.

4.4.13. DURABILITÀ

In relazione alla classe di servizio della struttura e alle condizioni di carico, dovrà essere predisposto in sede progettuale un programma delle operazioni di manutenzione e di controllo da effettuarsi durante la vita della struttura.

4.4.14. RESISTENZA AL FUOCO

Le verifiche di resistenza al fuoco potranno eseguirsi con riferimento a UNI EN 1995-1-2, utilizzando i coefficienti γ_M (vedi § 4.4.6, Tab. 4.4.III) relativi alle combinazioni eccezionali.

4.4.15. REGOLE PER L'ESECUZIONE

In assenza di specifiche prescrizioni contenute nelle pertinenti norme di prodotto, le tolleranze di lavorazione così come quelle di esecuzione devono essere definite in fase progettuale.

In assenza di specifiche prescrizioni contenute nelle pertinenti norme di prodotto, al fine di limitare la variazione dell'umidità del materiale e dei suoi effetti sul comportamento strutturale, le condizioni di stoccaggio, montaggio e le fasi di carico parziali, devono essere definite in fase progettuale.

Per tutte le membrature per le quali sia significativo il problema della instabilità, lo scostamento dalla configurazione geometrica teorica non dovrà superare 1/500 della distanza tra due vincoli successivi, nel caso di elementi lamellari incollati, e 1/300 della medesima distanza, nel caso di elementi di legno massiccio.

Il legno, i componenti derivati dal legno e gli elementi strutturali non dovranno di regola essere esposti a condizioni atmosferiche più severe di quelle previste per la struttura finita e che comunque producano effetti che ne compromettano l'efficienza strutturale.

Prima della costruzione o comunque prima della messa in carico, il legno dovrà essere portato ad una umidità il più vicino possibile a quella appropriata alle condizioni ambientali in cui si troverà nell'opera finita.

Qualora si operi con elementi lignei per i quali assumano importanza trascurabile gli effetti del ritiro, o comunque della variazione della umidità, si potrà accettare durante la posa in opera una maggiore umidità del materiale, purché sia assicurata al legno la possibilità di un successivo asciugamento, fino a raggiungere l'umidità prevista in fase progettuale senza che ne venga compromessa l'efficienza strutturale.

I sistemi di collegamento non devono presentare distorsioni permanenti in opera.

4.4.16. VERIFICHE PER SITUAZIONI TRANSITORIE. CONTROLLI E PROVE DI CARICO

Per situazioni costruttive transitorie, come quelle che si hanno durante le fasi della costruzione, dovranno adottarsi tecnologie costruttive e programmi di lavoro che non possono provocare danni permanenti alla struttura o agli elementi strutturali e che comunque non possano riverberarsi sulla sicurezza dell'opera.

Le entità delle azioni ambientali da prendere in conto saranno determinate in relazione alla durata della situazione transitoria e della tecnologia esecutiva.

L'assegnazione delle azioni di progetto ad una delle classi di durata del carico e delle classi di servizio dovrà essere congruente con la effettiva durata della situazione transitoria in esame.

In aggiunta a quanto previsto al Capitolo 9, l'esecuzione delle prove di carico per le strutture con elementi portanti di legno o con materiali derivati dal legno, dovrà tener conto della temperatura ambientale e dell'umidità del materiale.

L'applicazione del carico dovrà essere in grado di evidenziare la dipendenza del comportamento del materiale dalla durata e dalla velocità di applicazione del carico.

A tal fine, si possono adottare metodi e protocolli di prova riportati in normative di comprovata validità.

4.4.17. VERIFICHE PER SITUAZIONI PROGETTUALI ECCEZIONALI

Per situazioni progettuali eccezionali, il progetto dovrà dimostrare la robustezza della costruzione mediante procedure di scenari di danno per i quali i fattori parziali $\gamma_{\rm M}$ dei materiali possono essere assunti pari all'unità.

4.4.18. PROGETTAZIONE INTEGRATA DA PROVE E VERIFICA MEDIANTE PROVE

La resistenza e la funzionalità di strutture e elementi strutturali può essere misurata attraverso prove su campioni di adeguata numerosità.

I risultati delle prove eseguite su opportuni campioni devono essere trattati con i metodi dell'analisi statistica, in modo tale da ricavare parametri significativi quali media, deviazione standard e fattore di asimmetria della distribuzione, sì da caratterizzare adeguatamente un modello probabilistico descrittore delle quantità indagate (variabili aleatorie).

Indicazioni più dettagliate al riguardo e metodi operativi completi per la progettazione integrata da prove possono essere reperiti nella Appendice D della UNI EN 1990:2006.

4.5. COSTRUZIONI DI MURATURA

4.5.1. **DEFINIZIONI**

Formano oggetto delle presenti norme le costruzioni con struttura portante verticale realizzata con sistemi di muratura in grado di sopportare azioni verticali ed orizzontali, collegati tra di loro da strutture di impalcato, orizzontali ai piani ed eventualmente inclinate in copertura, e da opere di fondazione.

Per l'impiego di tipologie murarie o materiali diversi rispetto a quanto di seguito specificato si applica quanto previsto ai §§ 4.6 o 11.1.

4.5.2. MATERIALI E CARATTERISTICHE TIPOLOGICHE

4.5.2.1 MALTE

Le prescrizioni riguardanti le malte per muratura sono contenute nel § 11.10.2.

4.5.2.2 ELEMENTI RESISTENTI IN MURATURA

4.5.2.2.1 Elementi artificiali

Per gli elementi resistenti artificiali da impiegare con funzione resistente si applicano le prescrizioni riportate al § 11.10.1.

Gli elementi resistenti artificiali possono essere dotati di fori in direzione normale al piano di posa (foratura verticale) oppure in direzione parallela (foratura orizzontale) con caratteristiche di cui al § 11.10. Gli elementi possono essere rettificati sulla superficie di posa.

Per l'impiego nelle opere trattate dalla presente norma, gli elementi sono classificati in base alla percentuale di foratura ϕ ed all'area media della sezione normale di ogni singolo foro f.

I fori sono di regola distribuiti pressoché uniformemente sulla faccia dell'elemento.

La percentuale di foratura è espressa dalla relazione φ =100 F/A dove:

F è l'area complessiva dei fori passanti e profondi non passanti;

A è l'area lorda della faccia dell'elemento di muratura delimitata dal suo perimetro.

Nel caso dei blocchi in laterizio estrusi la percentuale di foratura ϕ coincide con la percentuale in volume dei vuoti come definita dalla norma UNI EN 772-9:2007.

Le Tab. 4.5.Ia-b riportano la classificazione per gli elementi in laterizio e calcestruzzo rispettivamente.

Tab. 4.5.Ia - Classificazione elementi in laterizio

Elementi	Percentuale di foratura φ	Area f della sezione normale del foro
Pieni	φ≤15%	f ≤9 cm²
Semipieni	15% < φ≤ 45%	f ≤12 cm²
Forati	45% < φ≤ 55%	f ≤15 cm²

Gli elementi possono avere incavi di limitata profondità destinati ad essere riempiti dal letto di malta.

Elementi di laterizio di area lorda A maggiore di 300 cm² possono essere dotati di un foro di presa di area massima pari a 35 cm², da computare nella percentuale complessiva della foratura, avente lo scopo di agevolare la presa manuale; per A superiore a 580 cm² sono ammessi due fori, ciascuno di area massima pari a 35 cm², oppure un foro di presa o per l'eventuale alloggiamento della armatura la cui area non superi 70 cm².

Tab. 4.5.Ib - Classificazione elementi in calcestruzzo

E1 .:	B 4 1 116 4	Area f della sezione normale del foro			
Elementi	Percentuale di foratura φ	$A \le 900 \text{ cm}^2$	A > 900 cm ²		
Pieni	φ≤ 15%	f ≤ 0,10 A	f ≤ 0,15 A		
Semipieni	$15\% < \varphi \le 45\%$	f ≤ 0,10 A	f ≤ 0,15 A		
Forati	45% < φ ≤ 55%	f ≤ 0,10 A	f ≤ 0,15 A		

Non sono soggetti a limitazione i fori degli elementi in laterizio e calcestruzzo destinati ad essere riempiti di calcestruzzo o malta. Lo spessore minimo dei setti interni (distanza minima tra due fori) è il seguente:

elementi in laterizio e di silicato di calcio: 7 mm; elementi in calcestruzzo: 18 mm:

Spessore minimo dei setti esterni (distanza minima dal bordo esterno al foro più vicino al netto dell'eventuale rigatura) è il se-

elementi in laterizio e di silicato di calcio: 10 mm; elementi in calcestruzzo: 18 mm;

Per i valori di adesività malta/elemento resistente si può fare riferimento a indicazioni di normative di riconosciuta validità.

4.5.2.2.2 Elementi naturali

Gli elementi naturali sono ricavati da materiale lapideo non friabile o sfaldabile, e resistente al gelo; essi non devono contenere in misura sensibile sostanze solubili, o residui organici e devono essere integri, senza zone alterate o rimovibili.

Gli elementi devono possedere i requisiti di resistenza meccanica ed adesività alle malte determinati secondo le modalità descritte nel § 11.10.3.

4.5.2.3 MURATURE

Le murature costituite dall'assemblaggio organizzato ed efficace di elementi e malta possono essere *a singolo paramento*, se la parete è senza cavità o giunti verticali continui nel suo piano, o *a paramento doppio*. In questo ultimo caso, qualora siano presenti le connessioni trasversali previste dall'Eurocodice UNI EN 1996-1-1, si farà riferimento agli stessi Eurocodici UNI EN 1996-1-1, oppure, in assenza delle connessioni trasversali previste dall'Eurocodice, si applica quanto previsto al § 4.6.

Nel caso di elementi naturali, le pietre di geometria pressoché parallelepipeda, poste in opera in strati regolari, formano le murature di *pietra squadrata*. L'impiego di materiale di cava grossolanamente lavorato è consentito per le nuove costruzioni, purché posto in opera in strati pressoché regolari: in tal caso si parla di muratura di *pietra non squadrata*; se la muratura in pietra non squadrata è intercalata, ad interasse non superiore a 1,6 m e per tutta la lunghezza e lo spessore del muro, da fasce di calcestruzzo semplice o armato oppure da ricorsi orizzontali costituiti da almeno due filari di laterizio pieno, si parla di *muratura listata*.

L'uso di giunti di malta sottili (spessore compreso tra 0.5 mm e 3 mm) e/o di giunti verticali a secco va limitato ad edifici con numero di piani fuori terra non superiore a quanto specificato al § 7.8.1.2 ed altezza interpiano massima di 3.5 m.

4.5.3. CARATTERISTICHE MECCANICHE DELLE MURATURE

Le proprietà fondamentali in base alle quali si classifica una muratura sono la resistenza caratteristica a compressione f_{kr} la resistenza caratteristica a taglio in assenza di azione assiale f_{vk0} , il modulo di elasticità normale secante E, il modulo di elasticità tangenziale secante G.

Le resistenze caratteristiche f_k e f_{vk0} sono determinate o per via sperimentale su campioni di muro o, con alcune limitazioni, in funzione delle proprietà dei componenti. Le modalità per determinare le resistenze caratteristiche sono indicate nel § 11.10.3, dove sono anche riportate le modalità per la valutazione dei moduli di elasticità.

In ogni caso i valori delle caratteristiche meccaniche utilizzate per le verifiche devono essere indicati nel progetto delle opere.

In ogni caso, quando è richiesto un valore di f_k maggiore o uguale a 8 MPa si deve controllare il valore di f_k , mediante prove sperimentali come indicato nel \S 11.10.

4.5.4. ORGANIZZAZIONE STRUTTURALE

L'edificio a muratura portante deve essere concepito come una struttura tridimensionale. I sistemi resistenti di pareti di muratura, gli orizzontamenti e le fondazioni devono essere collegati tra di loro in modo da resistere alle azioni verticali ed orizzontali.

I pannelli murari, di muratura non armata, sono considerati resistenti anche alle azioni orizzontali quando hanno una lunghezza non inferiore a 0,3 volte l'altezza di interpiano; i pannelli murari svolgono funzione portante, quando sono sollecitati prevalentemente da azioni verticali, e svolgono funzione di controvento, quando sollecitati prevalentemente da azioni orizzontali. Ai fini di un adeguato comportamento statico e dinamico dell'edificio, tutti le pareti devono assolvere, per quanto possibile, sia la funzione portante sia la funzione di controventamento.

Gli orizzontamenti sono generalmente solai piani, o con falde inclinate in copertura, che devono assicurare, per resistenza e rigidezza, la ripartizione delle azioni orizzontali fra i muri di controventamento.

L'organizzazione dell'intera struttura e l'interazione ed il collegamento tra le sue parti devono essere tali da assicurare appropriata resistenza e stabilità, ed un comportamento d'insieme "scatolare".

Per garantire un comportamento scatolare, muri ed orizzontamenti devono essere opportunamente collegati fra loro. Tutte le pareti devono essere collegate al livello dei solai mediante cordoli di piano di calcestruzzo armato e, tra di loro, mediante ammorsamenti lungo le intersezioni verticali. I cordoli di piano devono avere adeguata sezione ed armatura.

Devono inoltre essere previsti opportuni incatenamenti al livello dei solai, aventi lo scopo di collegare tra loro i muri paralleli della scatola muraria. Tali incatenamenti devono essere realizzati per mezzo di armature metalliche o altro materiale resistente a trazione, le cui estremità devono essere efficacemente ancorate ai cordoli. Per il collegamento nella direzione di tessitura del solaio possono essere omessi gli incatenamenti quando il collegamento è assicurato dal solaio stesso. Per il collegamento in direzione normale alla tessitura del solaio, si possono adottare opportuni accorgimenti che sostituiscano efficacemente gli incatenamenti costituiti da tiranti estranei al solaio.

Il collegamento fra la fondazione e la struttura in elevazione è generalmente realizzato mediante cordolo in calcestruzzo armato disposto alla base di tutte le murature verticali resistenti. È possibile realizzare la prima elevazione con pareti di calcestruzzo armato; in tal caso la disposizione delle fondazioni e delle murature sovrastanti deve essere tale da garantire un adeguato centraggio dei carichi trasmessi alle pareti della prima elevazione ed alla fondazione.

Lo spessore dei muri portanti non può essere inferiore ai seguenti valori:

muratura in elementi resistenti artificiali pieni 200 mm
 muratura in elementi resistenti artificiali semipieni 240 mm
 muratura in elementi resistenti artificiali forati 240 mm
 muratura di pietra squadrata 240 mm
 muratura di pietra listata 400 mm
 muratura di pietra non squadrata 500 mm

I fenomeni del secondo ordine possono essere controllati mediante la snellezza convenzionale della parete, definita dal rapporto:

$$\lambda = h_0 / t \tag{4.5.1}$$

dove h_0 è la lunghezza libera di inflessione della parete valutata in base alle condizioni di vincolo ai bordi espresse dalla [4.5.5] e t è lo spessore della parete.

Il valore della snellezza λ non deve risultare superiore a 20.

4.5.5. ANALISI STRUTTURALE

La risposta strutturale è calcolata usando:

- analisi semplificate.
- analisi lineari, assumendo i valori secanti dei moduli di elasticità
- analisi non lineari

Per la valutazione di effetti locali è consentito l'impiego di modelli di calcolo relativi a parti isolate della struttura.

Per il calcolo dei carichi trasmessi dai solai alle pareti e per la valutazione su queste ultime degli effetti delle azioni fuori dal piano, è consentito l'impiego di modelli semplificati, basati sullo schema dell'articolazione completa alle estremità degli elementi strutturali.

4.5.6. VERIFICHE

Le verifiche sono condotte con l'ipotesi di conservazione delle sezioni piane e trascurando la resistenza a trazione per flessione della muratura

Oltre alle verifiche sulle pareti portanti, si deve eseguire anche la verifica di travi di accoppiamento in muratura ordinaria, quando prese in considerazione dal modello della struttura. Tali verifiche si eseguono in analogia a quanto previsto per i pannelli murari verticali.

4.5.6.1 RESISTENZE DI PROGETTO

Le resistenze di progetto da impiegare, rispettivamente, per le verifiche a compressione, pressoflessione e a carichi concentrati (f_d) , e a taglio (f_{vd}) valgono:

$$f_{d} = f_{k} / \gamma_{M}$$
 [4.5.2]
$$f_{vd} = f_{vk} / \gamma_{M}$$
 [4.5.3]

dove

 f_k è la resistenza caratteristica a compressione della muratura;

 f_{vk} è la resistenza caratteristica a taglio della muratura in presenza delle effettive tensioni di compressione, valutata secondo quanto indicato al §11.10.3.3, in cui γ_M è il coefficiente parziale di sicurezza sulla resistenza a compressione della muratura, comprensivo delle incertezze di modello e di geometria, fornito dalla Tab. 4.5.II, in funzione delle classi di esecuzione più avanti precisate, e a seconda che gli elementi resistenti utilizzati siano di categoria I o di categoria II (vedi § 11.10.1).

 $\textbf{Tab. 4.5.II.} \ \textit{Valori del coefficiente} \ \gamma_{M} \ \textit{in funzione della classe di esecuzione e della categoria degli elementi resistenti$

Materiale		Classe di esecuzione	
		2	
Muratura con elementi resistenti di categoria I, malta a prestazione garantita	2,0	2,5	
Muratura con elementi resistenti di categoria I, malta a composizione prescritta	2,2	2,7	
Muratura con elementi resistenti di categoria II, ogni tipo di malta	2,5	3,0	

L'attribuzione delle Classi di esecuzione 1 e 2 viene effettuata adottando quanto di seguito indicato.

In ogni caso occorre (Classe 2):

- disponibilità di specifico personale qualificato e con esperienza, dipendente dell'impresa esecutrice, per la supervisione del lavoro (capocantiere);
- disponibilità di specifico personale qualificato e con esperienza, indipendente dall'impresa esecutrice, per il controllo ispettivo del lavoro (direttore dei lavori).

La Classe 1 è attribuita qualora siano previsti, oltre ai controlli di cui sopra, le seguenti operazioni di controllo:

- controllo e valutazione in loco delle proprietà della malta e del calcestruzzo;
- dosaggio dei componenti della malta "a volume" con l'uso di opportuni contenitori di misura e controllo delle operazioni di miscelazione o uso di malta premiscelata certificata dal produttore.

4.5.6.2 VERIFICHE AGLI STATI LIMITE ULTIMI

Gli stati limite ultimi da verificare sono:

- presso flessione per carichi laterali (resistenza e stabilità fuori dal piano);
- presso flessione nel piano del muro;
- taglio per azioni nel piano del muro;
- carichi concentrati;
- flessione e taglio di travi di accoppiamento.

Le verifiche vanno condotte con riferimento a normative di comprovata validità.

Per la verifica a presso flessione per carichi laterali, nel caso di adozione dell'ipotesi di articolazione completa delle estremità della parete (vedi § 4.5.5), è consentito far riferimento al metodo semplificato di seguito riportato.

La resistenza unitaria di progetto ridotta $f_{d,rid}$ riferita all'elemento strutturale si assume pari a

$$f_{d,rid} = \Phi f_d$$
 [4.5.4]

in cui Φ è il coefficiente di riduzione della resistenza del materiale, riportato in Tab. 4.5.III in funzione della snellezza convenzionale λ e del coefficiente di eccentricità m definito più avanti (equazione [4.5.6]).

Per valori non contemplati in tabella è ammessa l'interpolazione lineare; in nessun caso sono ammesse estrapolazioni.

Tab. 4.5.III -Valori del coefficiente Φ con l'ipotesi della articolazione (a cerniera)

Snellezza λ	Coefficiente di eccentricità m = 6 e/t						
	0 0,5 1,0 1,5 2,0						
0	1,00	0,74	0,59	0,44	0,33		
5	0,97	0,71	0,55	0,39	0,27		
10	0,86	0,61	0,45	0,27	0,16		
15	0,69	0,48	0,32	0,17			
20	0,53	0,36	0,23				

Per la valutazione della snellezza convenzionale λ della parete secondo l'espressione [4.5.1] la lunghezza libera d'inflessione del muro h_0 è data dalla relazione

$$h_0 = \varrho h$$
 [4.5.5]

in cui il fattore ϱ tiene conto dell'efficacia del vincolo fornito dai muri ortogonali e h è l'altezza interna di piano; ϱ assume il valore 1 per muro isolato, e i valori indicati nella Tab. 4.5.IV, quando il muro non ha aperture ed è irrigidito con efficace vincolo da due muri trasversali di spessore non inferiore a 200 mm, e di lunghezza l non inferiore a 1/5 h, posti ad interasse a.

Tab. 4.5.IV - Fattore laterale di vincolo

h/a	ρ
h/a ≤ 0,5	1
0,5 < h/a ≤ 1,0	3/2 – h/a
1,0 < h/a	1/[1+(h/a) ²]

Se un muro trasversale ha aperture, si ritiene convenzionalmente che la sua funzione di irrigidimento possa essere espletata quando lo stipite delle aperture disti dalla superficie del muro irrigidito almeno 1/5 dell'altezza del muro stesso; in caso contrario si assume $\varrho = 1$.

Nella lunghezza I del muro di irrigidimento si intende compresa anche metà dello spessore del muro irrigidito. Il coefficiente di eccentricità m è definito dalla relazione:

$$m = 6 e/t$$
 [4.5.6

essendo e l'eccentricità totale e t lo spessore del muro. Le eccentricità dei carichi verticali sullo spessore della muratura sono dovute alle eccentricità totali dei carichi verticali, alle tolleranze di esecuzione ed alle azioni orizzontali. Esse possono essere determinate convenzionalmente con i criteri che seguono.

a) eccentricità totale dei carichi verticali:

$$e_{s1} = \frac{N_1 d_1}{N_1 + \sum N_2}; \qquad e_{s2} = \frac{\sum N_2 d_2}{N_1 + \sum N_2} \tag{4.5.7}$$

dove

 e_{s1} eccentricità della risultante dei carichi trasmessi dai muri dei piani superiori rispetto al piano medio del muro da verificare:

 $e_{s2}\,$ eccentricità delle reazioni di appoggio dei solai soprastanti la sezione di verifica;

 N_1 carico trasmesso dal muro sovrastante supposto centrato rispetto al muro stesso;

N₂ reazione di appoggio dei solai sovrastanti il muro da verificare;

 $d_1\;$ eccentricità di $N_1\;$ rispetto al piano medio del muro da verificare;

d₂ eccentricità di N₂ rispetto al piano medio del muro da verificare;

tali eccentricità possono essere positive o negative;

b) eccentricità dovuta a tolleranze di esecuzione, e_a.

Considerate le tolleranze morfologiche e dimensionali connesse alle tecnologie di esecuzione degli edifici in muratura si deve tener conto di una eccentricità e_a che è assunta almeno uguale a $e_a = h/200$ [4.5.8] con h altezza interna di piano.

c) eccentricità e_v dovuta alle azioni orizzontali considerate agenti in direzione normale al piano della muratura,

$$e_v = M_v/N ag{4.5.9}$$

dove M_v ed N sono, rispettivamente, il massimo momento flettente dovuto alle azioni orizzontali e lo sforzo normale nella relativa sezione di verifica. Il muro è supposto incernierato al livello dei piani e, in mancanza di aperture, anche in corrispondenza dei muri trasversali, se questi hanno interasse minore di 6 m.

Le eccentricità e_s, e_a e e_v vanno convenzionalmente combinate tra di loro secondo le due espressioni:

$$e_1 = |e_s| + e_a;$$
 $e_2 = \frac{e_1}{2} + |e_v|$ [4.5.10]

Il valore di $e=e_1$ è adottato per la verifica dei muri nelle loro sezioni di estremità; il valore di $e=e_2$ è adottato per la verifica della sezione ove è massimo il valore di M_v . L'eccentricità di calcolo e non può comunque essere assunta inferiore ad e_a .

In ogni caso dove risultare:

$$e_1 \le 0.33t$$
; $e_2 \le 0.33t$ [4.5.11]

4.5.6.3 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO

Non è generalmente necessario eseguire verifiche nei confronti di stati limite di esercizio di strutture di muratura, quando siano soddisfatte le verifiche nei confronti degli stati limite ultimi.

Nel caso della muratura armata, e per particolari situazioni della muratura non armata, si farà riferimento a norme tecniche di comprovata validità.

4.5.6.4 VERIFICHE SEMPLIFICATE

Per edifici semplici è consentito eseguire le verifiche, in via semplificativa, adottando le azioni previste nelle presenti Norme Tecniche, con resistenza del materiale di cui al § 4.5.6.1, ponendo il coefficiente γ_M = 4,2 ed utilizzando il dimensionamento semplificato di seguito riportato con le corrispondenti limitazioni:

- a) le pareti strutturali della costruzione siano continue dalle fondazioni alla sommità;
- b) nessuna altezza interpiano sia superiore a 3,5 metri;
- c) il numero di piani in muratura non sia superiore a 3 (entro e fuori terra) per costruzioni in muratura ordinaria ed a 4 per costruzioni in muratura armata;
- d) la planimetria dell'edificio sia inscrivibile in un rettangolo con rapporti fra lato minore e lato maggiore non inferiore a 1/3;
- e) la snellezza della muratura, secondo l'espressione [4.5.1], non sia in nessun caso superiore a 12;
- f) il carico variabile per i solai non sia superiore a 3,00 kN/m².
- g) devono essere rispettate le percentuali minime, calcolate coperta rispetto alla superficie totale in pianta dell'edificio, di sezione resistente delle pareti, calcolate nelle due direzioni ortogonali, specificate in Tab. 7.8.II.

La verifica si intende soddisfatta se risulta:

$$\sigma = N/(0.65 \text{ A}) \le f_k / \gamma_M$$
 [4.5.12]

in cui N è il carico verticale totale alla base di ciascun piano dell'edificio corrispondente alla somma dei carichi permanenti e variabili (valutati ponendo $\gamma_G = \gamma_Q = 1$) della combinazione caratteristica e A è l'area totale dei muri portanti allo stesso piano.

4.5.7. MURATURA ARMATA

La muratura armata è costituita da elementi resistenti artificiali pieni e semipieni idonei alla realizzazione di pareti murarie incorporanti apposite armature metalliche verticali e orizzontali, annegate nella malta o nel conglomerato cementizio.

Le barre di armatura possono essere costituite da acciaio al carbonio, o da acciaio inossidabile o da acciaio con rivestimento speciale, conformi alle pertinenti indicazioni di cui al § 11.3.

È ammesso, per le armature orizzontali, l'impiego di armature a traliccio elettrosaldato o l'impiego di altre armature conformate in modo da garantire adeguata aderenza ed ancoraggio, nel rispetto delle pertinenti normative di comprovata validità.

In ogni caso dovrà essere garantita una adeguata protezione dell'armatura nei confronti della corrosione.

Le barre di armatura devono avere un diametro minimo di 5 mm. Nelle pareti che incorporano armatura nei letti di malta al fine di fornire un aumento della resistenza ai carichi fuori piano, per contribuire al controllo della fessurazione o per fornire duttilità, l'area totale dell'armatura non deve essere minore dello 0,03% dell'area lorda della sezione trasversale della parete (cioè 0,015% per ogni faccia nel caso della resistenza fuori piano).

Qualora l'armatura sia utilizzata negli elementi di muratura armata per aumentare la resistenza nel piano, o quando sia richiesta armatura a taglio, la percentuale di armatura orizzontale, calcolata rispetto all'area lorda della muratura, non potrà essere inferiore allo 0,04% né superiore allo 0,5%, e non potrà avere interasse superiore a 60 cm. La percentuale di armatura verticale, calcolata rispetto all'area lorda della muratura, non potrà essere inferiore allo 0,05%, né superiore allo 1,0%. In tal caso, armature verticali con sezione complessiva non inferiore a 2 cm² dovranno essere collocate a ciascuna estremità di ogni parete portante, ad ogni intersezione tra pareti portanti, in corrispondenza di ogni apertura e comunque ad interasse non superiore a 4 m.

La lunghezza d'ancoraggio, idonea a garantire la trasmissione degli sforzi alla malta o al calcestruzzo di riempimento, deve in ogni caso essere in grado di evitare la fessurazione longitudinale o lo sfaldamento della muratura. L'ancoraggio deve essere otte-

nuto mediante una barra rettilinea, mediante ganci, piegature o forcelle o, in alternativa, mediante opportuni dispositivi meccanici di comprovata efficacia.

La lunghezza di ancoraggio richiesta per barre dritte può essere calcolata in analogia a quanto usualmente fatto per le strutture di calcestruzzo armato.

L'ancoraggio dell'armatura a taglio, staffe incluse, deve essere ottenuto mediante ganci o piegature, con una barra d'armatura longitudinale inserita nel gancio o nella piegatura. Le sovrapposizioni devono garantire la continuità nella trasmissione degli sforzi di trazione, in modo che lo snervamento dell'armatura abbia luogo prima che venga meno la resistenza della giunzione. In mancanza di dati sperimentali relativi alla tecnologia usata, la lunghezza di sovrapposizione deve essere di almeno 60 diametri.

La malta o il conglomerato di riempimento dei vani o degli alloggi delle armature deve avvolgere completamente l'armatura. Lo spessore di ricoprimento deve essere tale da garantire la trasmissione degli sforzi tra la muratura e l'armatura e tale da costituire un idoneo copriferro ai fini della durabilità degli acciai. L'armatura verticale dovrà essere collocata in apposite cavità o recessi, di dimensioni tali che in ciascuno di essi risulti inscrivibile un cilindro di almeno 6 cm di diametro.

La resistenza a compressione minima richiesta per la malta è di 10 MPa, mentre la classe minima richiesta per il conglomerato cementizio è C12/15. Per i valori di resistenza di aderenza caratteristica dell'armatura si può fare riferimento a risultati di prove sperimentali o a indicazioni normative di comprovata validità.

La resistenza di progetto della muratura da impiegare per le verifiche a taglio (f_{vd}) , può essere calcolata ignorando il contributo di qualsiasi armatura a taglio incorporata nell'elemento, qualora non sia fornita l'area minima di armatura sopra specificata per elementi di muratura armata atti ad aumentare la resistenza nel piano, oppure prendendo in considerazione il contributo dell'armatura a taglio, qualora sia presente almeno l'area minima prevista, secondo quanto riportato in normative di riconosciuta validità.

Le verifiche di sicurezza vanno condotte assumendo per l'acciaio γ_S = 1,15.

4.5.8. MURATURA CONFINATA

La muratura confinata è una muratura costituita da elementi resistenti artificiali pieni e semipieni, dotata di elementi di confinamento in calcestruzzo armato o muratura armata. Il progetto della muratura confinata può essere svolto applicando integralmente quanto previsto negli Eurocodici strutturali ed in particolare nelle norme della serie UNI EN 1996 e UNI EN 1998 con le relative appendici nazionali.

4.5.9. VERIFICHE PER SITUAZIONI TRANSITORIE

Per le situazioni costruttive transitorie, come quelle che si hanno durante le fasi della costruzione, dovranno adottarsi tecnologie costruttive e programmi di lavoro che non possano provocare danni permanenti alla struttura o agli elementi strutturali e che comunque non possano riverberarsi sulla sicurezza dell'opera.

Le entità delle azioni ambientali da prendere in conto saranno determinate in relazione al tempo della situazione transitoria e della tecnologia esecutiva.

4.5.10. VERIFICHE PER SITUAZIONI ECCEZIONALI

Per situazioni progettuali eccezionali, il progetto dovrà dimostrare la robustezza della costruzione mediante procedure di scenari di danno per i quali i fattori parziali γ_M dei materiali possono essere assunti pari a ½ di quelli delle situazioni ordinarie (vedi Tab. 4.5.II).

4.5.11. RESISTENZA AL FUOCO

Le verifiche di resistenza al fuoco potranno eseguirsi con riferimento a UNI EN 1996-1-2, utilizzando i coefficienti γ_M (vedi § 4.5.10) relativi alle combinazioni eccezionali.

4.5.12. PROGETTAZIONE INTEGRATA DA PROVE E VERIFICA MEDIANTE PROVE

La resistenza e la funzionalità di strutture e elementi strutturali può essere misurata attraverso prove su campioni di adeguata numerosità.

I risultati delle prove eseguite su opportuni campioni devono essere trattati con i metodi dell'analisi statistica, in modo tale da ricavare parametri significativi quali media, deviazione standard e fattore di asimmetria della distribuzione, sì da caratterizzare adeguatamente un modello probabilistico descrittore delle quantità indagate (variabili aleatorie).

Indicazioni più dettagliate al riguardo e metodi operativi completi per la progettazione integrata da prove possono essere reperiti nella Appendice D della UNI EN 1990:2006.

4.6. ALTRI SISTEMI COSTRUTTIVI

Qualora vengano usati sistemi costruttivi diversi da quelli disciplinati dalle presenti norme tecniche, la loro idoneità deve essere comprovata da una dichiarazione rilasciata, ai sensi dell'articolo 52, comma 2, del D.P.R. 380/01, dal Presidente del Consiglio superiore dei lavori pubblici su conforme parere dello stesso Consiglio e previa istruttoria del Servizio Tecnico Centrale.

Si intendono per "sistemi costruttivi diversi da quelli disciplinati dalle presenti norme tecniche" quelli per cui le regole di progettazione ed esecuzione non siano previste nelle presenti norme tecniche o nei riferimenti tecnici e nei documenti di comprovata validità di cui al Capitolo 12, nel rispetto dei livelli di sicurezza previsti dalle presenti norme tecniche.

In ogni caso, i materiali o prodotti strutturali utilizzati nel sistema costruttivo devono essere conformi ai requisiti di cui al Capitolo 11.

Per singoli casi specifici le amministrazioni territorialmente competenti alla verifica dell'applicazione delle norme tecniche per le costruzioni ai sensi del DPR 380/2001 o le amministrazioni committenti possono avvalersi dell'attività consultiva, ai sensi dell'articolo 2, comma 1, lettera b), del D.P.R. 204/2006, del Consiglio Superiore dei Lavori Pubblici, che si esprime previa istruttoria del Servizio Tecnico Centrale.

CAPITOLO 5.

PONTI

5.1. PONTI STRADALI

5.1.1. OGGETTO

Il presente capitolo contiene i criteri generali e le indicazioni tecniche per la progettazione e l'esecuzione dei ponti stradali.

Nel seguito col termine "ponti" si intendono anche tutte quelle opere che, in relazione alle loro diverse destinazioni, vengono normalmente indicate con nomi particolari, quali: viadotti, sottovia o cavalcavia, sovrappassi, sottopassi, strade sopraelevate, ecc.

Le prescrizioni fornite, per quanto applicabili, riguardano anche i ponti mobili.

5.1.2. PRESCRIZIONI GENERALI

5.1.2.1 GEOMETRIA DELLA SEDE STRADALE

Ai fini della presente normativa, per larghezza della sede stradale del ponte si intende la distanza misurata ortogonalmente all'asse stradale tra i punti più esterni dell'impalcato.

La sede stradale sul ponte è composta dalla piattaforma, eventualmente divisa da uno spartitraffico e composta dalle corsie e dalle banchine, dai cordoli e laddove previsti dai marciapiedi, a seconda dell'importanza, della funzione e delle caratteristiche della strada.

La superficie carrabile del ponte è composta dalla piattaforma e da eventuali marciapiedi sormontabili, di altezza inferiore a 20 cm e non protetti da barriere di sicurezza stradale o da altri dispositivi di ritenuta.

5.1.2.2 ALTEZZA LIBERA

Nel caso di un ponte che scavalchi una strada ordinaria, l'altezza libera al di sotto del ponte non deve essere in alcun punto minore di 5 m, tenendo conto anche delle pendenze della strada sottostante.

Nei casi di strada a traffico selezionato è ammesso, per motivi validi e comprovati, derogare da quanto sopra, purché l'altezza minima non sia minore di 4 m.

Eccezionalmente, ove l'esistenza di vincoli non eliminabili imponesse di scendere al di sotto di tale valore, si può adottare un'altezza minima, in ogni caso non inferiore a 3,20 m. Tale deroga è vincolata al parere favorevole dei Comandi Militare e dei Vigili del Fuoco competenti per territorio.

I ponti sui corsi d'acqua classificati navigabili devono avere il tirante corrispondente alla classe dei natanti previsti.

Per tutti i casi in deroga all'altezza minima prescritta di 5 m, si devono adottare opportuni dispositivi segnaletici di sicurezza (ad es. controsagome), collocati a conveniente distanza dall'imbocco dell'opera.

Nel caso di sottopassaggi pedonali l'altezza libera non deve essere inferiore a 2,50 m.

5.1.2.3 COMPATIBILITÀ IDRAULICA

Quando il ponte interessa un corso d'acqua naturale o artificiale, il progetto deve essere corredato da uno studio di compatibilità idraulica costituito da una relazione idrologica e da una relazione idraulica riguardante le scelte progettuali, la costruzione e l'esercizio del ponte.

L'ampiezza e l'approfondimento dello studio e delle indagini che ne costituiscono la base devono essere commisurati all'importanza del problema e al livello di progettazione. Deve in ogni caso essere definita una piena di progetto caratterizzata da un tempo di ritorno Tr pari a 200 anni (Tr=200).

Coerentemente al livello di progettazione, lo studio di compatibilità idraulica deve riportare:

- l'analisi idrologica degli eventi di massima piena e stima della loro frequenza probabile;
- la definizione dei mesi dell'anno durante i quali siano da attendersi eventi di piena, con riferimento alla prevista successione delle fasi costruttive;
- la definizione della scala delle portate nelle condizioni attuali, di progetto, e nelle diverse fasi costruttive previste, corredata dal calcolo del profilo di rigurgito indotto dalla presenza delle opere in alveo, tenendo conto della possibile formazione di ammassi di detriti galleggianti;
- la valutazione dello scavo localizzato con riferimento alle forme ed alle dimensioni di pile, spalle e relative fondazioni, nonché di altre opere in alveo provvisionali e definitive, tenendo conto della possibile formazione di ammassi di detriti galleggianti oltre che dei fenomeni erosivi generalizzati conseguenti al restringimento d'alveo;
- l'esame delle conseguenze di urti e abrasioni dovuti alla presenza di natanti e corpi flottanti.

Il manufatto non dovrà interessare con spalle, pile e rilevati la sezione del corso d'acqua interessata dalla piena di progetto e, se arginata, i corpi arginali.

Qualora fosse necessario realizzare pile in alveo, la luce netta minima tra pile contigue, o fra pila e spalla del ponte, non deve essere inferiore a 40 m misurati ortogonalmente al filone principale della corrente. Per i ponti esistenti, eventualmente interessati da luci nette di misura inferiore, è ammesso l'allargamento della piattaforma, a patto che questo non comporti modifiche dimensio-

nali delle pile, delle spalle o della pianta delle fondazioni di queste, e nel rispetto del franco idraulico come nel seguito precisato. In tutti gli altri casi deve essere richiesta l'autorizzazione all'Autorità competente, che si esprime previo parere del Consiglio Superiore dei Lavori Pubblici.

Nel caso di pile e/o spalle in alveo, cura particolare è da dedicare al problema delle escavazioni in corrispondenza delle fondazioni e alla protezione delle fondazioni delle pile e delle spalle tenuto anche conto del materiale galleggiante che il corso d'acqua può trasportare. In tali situazioni, una stima anche speditiva dello scalzamento è da sviluppare fin dai primi livelli di progettazione.

Il franco idraulico, definito come la distanza fra la quota liquida di progetto immediatamente a monte del ponte e l'intradosso delle strutture, è da assumersi non inferiore a 1,50 m, e comunque dovrà essere scelto tenendo conto di considerazioni e previsioni sul trasporto solido di fondo e sul trasporto di materiale galleggiante, garantendo una adeguata distanza fra l'intradosso delle strutture e il fondo alveo.

Quando l'intradosso delle strutture non sia costituito da un'unica linea orizzontale tra gli appoggi, il franco idraulico deve essere assicurato per una ampiezza centrale di 2/3 della luce, e comunque non inferiore a 40 m.

Il franco idraulico necessario non può essere ottenuto con il sollevamento del ponte durante la piena.

Lo scalzamento e le azioni idrodinamiche associate al livello idrico massimo che si verifica mediamente ogni anno (si assuma Tr = 1,001) devono essere combinate con le altre azioni variabili adottando valori del coefficiente ψ_0 unitario.

Lo scalzamento e le azioni idrodinamiche associati all'evento di piena di progetto devono essere combinate esclusivamente con le altre azioni variabili da traffico, adottando per queste ultime i coefficienti di combinazione ψ_1 .

5.1.3. AZIONI SUI PONTI STRADALI

Le azioni da considerare nella progettazione dei ponti stradali sono:

- le azioni permanenti;
- distorsioni e deformazioni impresse;
- le azioni variabili da traffico;
- le azioni variabili (variazioni termiche, spinte idrodinamiche, vento, neve e le azioni sui parapetti);
- le resistenze passive dei vincoli;
- gli urti sulle barriere di sicurezza stradale di veicoli in svio;
- le azioni sismiche;
- le azioni eccezionali.

5.1.3.1 AZIONI PERMANENTI

- 1. Peso proprio degli elementi strutturali: g₁
- 2. Carichi permanenti portati: g₂ (pavimentazione stradale, marciapiedi, barriere acustiche, barriere di sicurezza stradale, parapetti, finiture, sistema di smaltimento acque, attrezzature stradali, rinfianchi e simili).
- 3. Altre azioni permanenti: g₃ (spinta delle terre, spinte idrauliche, ecc.).

5.1.3.2 DISTORSIONI E DEFORMAZIONI IMPRESSE

- 1. Distorsioni e presollecitazioni di progetto: ε_1 .
 - Ai fini delle verifiche si devono considerare gli effetti delle distorsioni e delle presollecitazioni eventualmente previste in progetto.
- 2. Effetti reologici: ritiro ε_2 e viscosità ε_3 ;
 - Il calcolo degli effetti del ritiro del calcestruzzo e della viscosità deve essere effettuato in accordo al carattere ed all'intensità di tali distorsioni definiti nelle relative sezioni delle presenti Norme Tecniche.
- 3. Cedimenti vincolari: ε_4
 - Devono considerarsi gli effetti di cedimenti vincolari quando, sulla base delle indagini e delle valutazioni geotecniche, questi risultino significativi per le strutture.

5.1.3.3 AZIONI VARIABILI DA TRAFFICO. CARICHI VERTICALI: Q1

5.1.3.3.1 Premessa

I carichi verticali da traffico sono definiti dagli Schemi di Carico descritti nel § 5.1.3.3.3, disposti su corsie convenzionali.

5.1.3.3.2 Definizione delle corsie convenzionali

Le larghezze w_1 delle corsie convenzionali sulla superficie carrabile ed il massimo numero (intero) possibile di tali corsie su di essa sono indicati nel prospetto seguente (Fig. 5.1.1 e Tab. 5.1.I).

Se non diversamente specificato, qualora la piattaforma di un impalcato da ponte sia divisa in due parti separate da una zona spartitraffico centrale, si distinguono i casi seguenti:

- a) se le parti sono separate da una barriera di sicurezza fissa, ciascuna parte, incluse tutte le corsie di emergenza e le banchine, è autonomamente divisa in corsie convenzionali.
- se le parti sono separate da barriere di sicurezza mobili o da altro dispositivo di ritenuta, l'intera carreggiata, inclusa la zona spartitraffico centrale, è divisa in corsie convenzionali.

Fig. 5.1.1 - Esempio di numerazione delle corsie

Tab. 5.1.I - Numero e larghezza delle corsie

Larghezza della superficie carrabile "w" Numero di corsie convenzionali		Larghezza di una corsia convenzionale [m]	Larghezza della zona rimanente [m]
w < 5,40 m	n _l = 1	3,00	(w-3,00)
5,4 ≤ w < 6,0 m	$n_l = 2$	w/2	0
6,0 m ≤ w	$n_l = Int(w/3)$	3,00	w - (3,00 x n _l)

La disposizione e la numerazione delle corsie va determinata in modo da indurre le più sfavorevoli condizioni di progetto. Per ogni singola verifica il numero di corsie da considerare caricate, la loro disposizione sulla superficie carrabile e la loro numerazione vanno scelte in modo che gli effetti della disposizione dei carichi risultino i più sfavorevoli. La corsia che, caricata, dà l'effetto più sfavorevole è numerata come corsia Numero 1; la corsia che dà il successivo effetto più sfavorevole è numerata come corsia Numero 2, ecc.

Quando la superficie carrabile è costituita da due parti separate portate da uno stesso impalcato, le corsie sono numerate considerando l'intera superficie carrabile, cosicché vi è solo una corsia 1, solo una corsia 2 ecc., che possono appartenere alternativamente ad una delle due parti.

Quando la superficie carrabile consiste di due parti separate portate da due impalcati indipendenti, per il progetto di ciascun impalcato si adottano numerazioni indipendenti. Quando, invece, gli impalcati indipendenti sono portati da una singola pila o da una singola spalla, per il progetto della pila o della spalla si adotta un'unica numerazione per le due parti.

Per ciascuna singola verifica e per ciascuna corsia convenzionale si applicano gli Schemi di Carico definiti nel seguito per una lunghezza e per una disposizione longitudinale tali da ottenere l'effetto più sfavorevole.

5.1.3.3.3 Schemi di Carico

Le azioni variabili del traffico, comprensive degli effetti dinamici, sono definite dai seguenti Schemi di Carico:

Schema di Carico 1:	è costituito da carichi concentrati su due assi in tandem, applicati su impronte di pneumatico di forma quadrata e lato 0,40 m, e da carichi uniformemente distribuiti come mostrato in Fig. 5.1.2. Questo schema è da assumere a riferimento sia per le verifiche globali, sia per le verifiche locali, considerando un solo carico tandem per corsia, disposto in asse alla corsia stessa. Il carico tandem, se presente, va considerato per intero.
Schema di Carico 2:	è costituito da un singolo asse applicato su specifiche impronte di pneumatico di forma rettangolare, di larghezza 0,60 m ed altezza 0,35 m, come mostrato in Fig. 5.1.2. Questo schema va considerato autonomamente con asse longitudinale nella posizione più gravosa ed è da assumere a riferimento solo per verifiche locali. Qualora sia più gravoso si considererà il peso di una singola ruota di 200 kN.
Schema di Carico 3:	è costituito da un carico isolato da $150~\rm{kN}$ con impronta quadrata di lato $0,40~\rm{m}$. Si utilizza per verifiche locali su marciapiedi non protetti da sicurvia.
Schema di Carico 4:	è costituito da un carico isolato da 10 kN con impronta quadrata di lato 0,10 m. Si utilizza per verifiche locali su marciapiedi protetti da sicurvia e sulle passerelle pedonali.
Schema di Carico 5:	costituito dalla folla compatta, agente con intensità nominale, comprensiva degli effetti dinamici, di $5.0 \mathrm{kN/m^2}$. Il valore di combinazione è invece di $2.5 \mathrm{kN/m^2}$. Il carico folla deve essere applicato su tutte le zone significative della superficie di influenza, inclusa l'area dello spartitraffico centrale, ove rilevante.
Schemi di Carico 6.a, b, c:	In assenza di studi specifici ed in alternativa al modello di carico principale, generalmente cautelativo, per opere di luce maggiore di 300 m, ai fini della statica complessiva del ponte, si può far riferimento ai seguenti carichi $q_{L,a'}$ $q_{L,b}$ e $q_{L,c}$

$$q_{L,a} = 128,95 \left(\frac{1}{L}\right)^{0.25}$$
 [KN/m] [5.1.1]

$$q_{L,b} = 88,71 \left(\frac{1}{L}\right)^{0.38}$$
 [KN/m] [5.1.2]

$$q_{L,c} = 77,12 \left(\frac{1}{L}\right)^{0.38}$$
 [KN/m] [5.1.3]

essendo L la lunghezza della zona caricata in m.

5.1.3.3.4 Categorie Stradali

Sulla base dei carichi mobili ammessi al transito, i ponti stradali si suddividono nelle due seguenti categorie:

ponti per il transito dei carichi mobili sopra indicati con il loro intero valore;

ponti per il transito dei soli carichi associati allo Schema 5 (ponti pedonali).

L'accesso ai ponti pedonali di carichi diversi da quelli di progetto deve essere materialmente impedito.

Se necessario, il progetto potrà specificatamente considerare uno o più veicoli speciali rappresentativi, per geometria e carichi-asse, dei veicoli eccezionali previsti sul ponte. Detti veicoli speciali e le relative regole di combinazione possono essere appositamente specificati caso per caso o dedotti da normative di comprovata validità.

5.1.3.3.5 Disposizione dei carichi mobili per realizzare le condizioni di carico più gravose

Il numero delle colonne di carichi mobili da considerare nel calcolo è quello massimo compatibile con la larghezza della superficie carrabile, tenuto conto che la larghezza di ingombro convenzionale è stabilita per ciascuna corsia in 3,00 m.

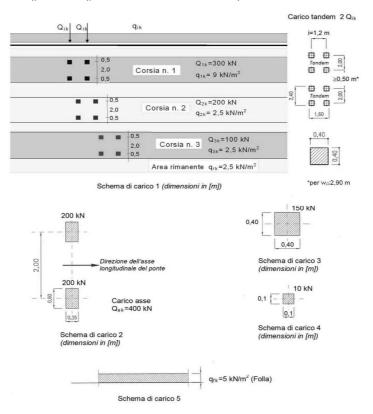


Fig. 5.1.2 - Schemi di carico 1-5 (dimensioni in m)

In ogni caso il numero delle corsie non deve essere inferiore a 2, a meno che la larghezza della superficie carrabile sia inferiore a 5,40 m.

La disposizione dei carichi ed il numero delle corsie sulla superficie carrabile saranno volta per volta quelli che determinano le condizioni più sfavorevoli di sollecitazione per la struttura, membratura o sezione considerata.

Si devono considerare, compatibilmente con le larghezze precedentemente definite, le seguenti intensità dei carichi (Tab. 5.1.II):

Tab. 5.1.II - Intensità dei carichi Qik e qik per le diverse corsie

Posizione	Carico asse Q _{ik} [kN]	q _{ik} [kN/m²]
Corsia Numero 1	300	9,00
Corsia Numero 2	200	2,50
Corsia Numero 3	100	2,50
Altre corsie	0,00	2,50

Per i ponti pedonali si considera il carico associato allo Schema 5 (folla compatta) applicato con la disposizione più gravosa per le singole verifiche.

Ai fini delle verifiche globali di opere singole di luce maggiore di 300 m, in assenza di studi specifici ed in alternativa al modello di carico principale, si disporrà sulla corsia n. 1 un carico $q_{L,e}$ sulla corsia n. 2 un carico $q_{L,b}$, sulla corsia n. 3 un carico $q_{L,e}$ e sulle altre corsie e sull'area rimanente un carico distribuito di intensità 2,5 kN/m².

I carichi q_{L,a}, q_{L,b} e q_{L,c} si dispongono in asse alle rispettive corsie convenzionali.

5.1.3.3.6 Strutture secondarie di impalcato

Diffusione dei carichi locali

I carichi concentrati da considerarsi ai fini delle verifiche locali ed associati agli Schemi di Carico 1, 2, 3 e 4 si assumono uniformemente distribuiti sulla superficie della rispettiva impronta. La diffusione attraverso la pavimentazione e lo spessore della soletta si considera avvenire secondo un angolo di 45°, fino al piano medio della struttura della soletta sottostante (Fig. 5.1.3.a). Nel caso di piastra ortotropa la diffusione va considerata fino al piano medio della lamiera superiore d'impalcato (Fig. 5.1.3.b).

Calcolo delle strutture secondarie di impalcato

Ai fini del calcolo delle strutture secondarie dell'impalcato (solette, marciapiedi, traversi, ecc.) si devono prendere in considerazione i carichi già definiti in precedenza, nelle posizioni di volta in volta più gravose per l'elemento considerato. In alternativa si considera, se più gravoso, il carico associato allo Schema 2, disposto nel modo più sfavorevole e supposto viaggiante in direzione longitudinale.

Per i marciapiedi non protetti da sicurvia si considera il carico associato allo Schema 3.

Per i marciapiedi protetti da sicurvia e per i ponti pedonali si considera il carico associato allo Schema 4.

Nella determinazione delle combinazioni di carico si indica come carico q_1 la disposizione dei carichi mobili che, caso per caso, risulta più gravosa ai fini delle verifiche.

Fig. 5.1.3.a - Diffusione dei carichi concentrati nelle solette

Fig. 5.1.3.b - Diffusione dei carichi concentrati negli impalcati a piastra ortotropa

5.1.3.4 AZIONI VARIABILI DA TRAFFICO. ÎNCREMENTO DINAMICO ADDIZIONALE ÎN PRESENZA DI DISCONTINUITÀ STRUTTURALI: q2

I carichi mobili includono gli effetti dinamici per pavimentazioni di media rugosità. In casi particolari, come ad esempio in prossimità dei giunti di dilatazione, può essere necessario considerare un coefficiente dinamico addizionale q_2 , da valutare in riferimento alla specifica situazione considerata.

5.1.3.5 AZIONI VARIABILI DA TRAFFICO. AZIONE LONGITUDINALE DI FRENAMENTO O DI ACCELERAZIONE: q_3

La forza di frenamento o di accelerazione q_3 è funzione del carico verticale totale agente sulla corsia convenzionale n. 1 ed è uguale a

$$180 \text{ kN} \le q_3 = 0.6 (2Q_{1k}) + 0.10q_{1k} \cdot w_1 \cdot L \le 900 \text{ kN}$$
 [5.1.4]

essendo w_1 la larghezza della corsia e L la lunghezza della zona caricata. La forza, applicata a livello della pavimentazione ed agente lungo l'asse della corsia, è assunta uniformemente distribuita sulla lunghezza caricata e include gli effetti di interazione.

5.1.3.6 AZIONI VARIABILI DA TRAFFICO. AZIONE CENTRIFUGA: q_4

Nei ponti con asse curvo di raggio R (in metri) l'azione centrifuga corrispondente ad ogni colonna di carico si valuta convenzionalmente come indicato in Tab. 5.1.III, essendo $Q_v = \sum_i 2Q_{ik}$ il carico totale dovuto agli assi tandem dello schema di carico 1 agenti sul ponte.

Il carico concentrato q4, applicato a livello della pavimentazione, agisce in direzione normale all'asse del ponte.

Tab. 5.1.III - Valori caratteristici delle forze centrifughe

Raggio di curvatura [m]	q ₄ [kN]
R < 200	0,2 Q _v
200 ≤ R ≤ 1500	40 Q _v /R
1500 ≤ R	0

5.1.3.7 AZIONI DI NEVE E DI VENTO: q_5

Per le azioni da neve e vento vale quanto specificato al Capitolo 3.

L'azione del vento può essere convenzionalmente assimilata ad un sistema di carichi statici, la cui componente principale è orizzontale e diretta ortogonalmente all'asse del ponte e/o diretta nelle direzioni più sfavorevoli per alcuni dei suoi elementi (ad es. le pile). Tale componente principale si considera agente sulla proiezione nel piano verticale delle superfici investite, ivi compresi i parapetti, le barriere di sicurezza stradale e le barriere acustiche, ove previsti; al riguardo può farsi utile riferimento a documenti di comprovata validità di cui al Capitolo 12.

La superficie dei carichi transitanti sul ponte esposta al vento si assimila ad una parete rettangolare continua dell'altezza di 3 m a partire dal piano stradale.

L'azione del vento si può valutare come sopra specificato nei casi in cui essa non possa destare fenomeni dinamici nelle strutture del ponte o quando l'orografia non possa dar luogo ad azioni anomale del vento.

Per i ponti particolarmente sensibili all'eccitazione dinamica del vento si deve procedere alla valutazione della risposta strutturale in galleria del vento e, se necessario, alla formulazione di un modello matematico dell'azione del vento dedotto da misure sperimentali.

Il carico di neve si considera non concomitante con i carichi da traffico, salvo che per ponti coperti.

5.1.3.8 AZIONI IDRODINAMICHE: q₆

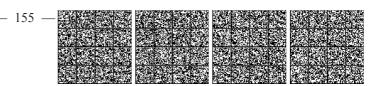
Le azioni idrodinamiche sulle pile poste nell'alveo dei fiumi devono essere calcolate secondo le prescrizioni del § 5.1.2.3 tenendo conto, oltre che dell'orientamento e della forma della pila, anche degli effetti di modificazioni locali dell'alveo, dovute, per esempio, allo scalzamento.

5.1.3.9 AZIONI DELLA TEMPERATURA: q_7

Il calcolo degli effetti delle variazioni termiche deve essere effettuato in accordo al carattere ed all'intensità di tali variazioni definite nel Capitolo 3. Per situazioni di particolare complessità può anche farsi utile riferimento a documenti di comprovata validità, di cui al Capitolo 12.

5.1.3.10 AZIONI SUI PARAPETTI E URTO DI VEICOLO IN SVIO: q_8

L'altezza dei parapetti non può essere inferiore a 1,10 m. I parapetti devono essere calcolati in base ad un'azione orizzontale di 1,5 kN/m applicata al corrimano.


Le barriere di sicurezza stradali e gli elementi strutturali ai quali sono collegate devono essere dimensionati in funzione della classe di contenimento richiesta, per l'impiego specifico, dalle norme nazionali applicabili.

Nel progetto dell'impalcato deve essere considerata una combinazione di carico nella quale al sistema di forze orizzontali, equivalenti all'effetto dell'azione d'urto sulla barriera di sicurezza stradale, si associa un carico verticale isolato sulla sede stradale costituito dallo Schema di Carico 2, posizionato in adiacenza alla barriera stessa e disposto nella posizione più gravosa.

Tale sistema di forze orizzontali potrà essere valutato dal progettista, alternativamente, sulla base:

- delle risultanze sperimentali ottenute nel corso di prove d'urto al vero, su barriere della stessa tipologia e della classe di
 contenimento previste in progetto, mediante l'utilizzo di strumentazione idonea a registrare l'evoluzione degli effetti
 dinamici;
- del riconoscimento di equivalenza tra il sistema di forze e le azioni trasmesse alla struttura, a causa di urti su barriere
 della stessa tipologia e della classe di contenimento previste in progetto, laddove tale equivalenza risulti da valutazioni
 teoriche e/o modellazioni numerico-sperimentali;

In assenza delle suddette valutazioni, il sistema di forze orizzontali può essere determinato con riferimento alla resistenza caratteristica degli elementi strutturali principali coinvolti nel meccanismo d'insieme della barriera e deve essere applicato ad una quota h, misurata dal piano viario, pari alla minore delle dimensioni h1 e h2, dove h1 = (altezza della barriera - 0,10m) e h2 = 1,00 m. Nel dimensionamento degli elementi strutturali ai quali è collegata la barriera si deve tener conto della eventuale sovrapposizione delle zone di diffusione di tale sistema di forze, in funzione della geometria della barriera e delle sue condizioni di vincolo. Per il dimen-

sionamento dell'impalcato, le forze orizzontali così determinate devono essere amplificate di un fattore pari a 1,50.

Il coefficiente parziale di sicurezza per la combinazione di carico agli SLU per l'urto di veicolo in svio deve essere assunto unitario.

5.1.3.11 RESISTENZE PASSIVE DEI VINCOLI: q₉

Nel calcolo delle pile, delle spalle, delle fondazioni, degli stessi apparecchi di appoggio e, se del caso, dell'impalcato, si devono considerare le forze che derivano dalle resistenze parassite dei vincoli.

Nel caso di appoggi in gomma dette forze devono essere valutate sulla base delle caratteristiche dell'appoggio e degli spostamenti previsti.

Le resistenze passive dei vincoli devono essere considerate associate a quelle azioni per le quali danno effetto.

Il coefficiente parziale di sicurezza per le combinazioni di carico agli SLU deve essere assunto come per le azioni variabili.

5.1.3.12 AZIONI SISMICHE: E

Per le azioni sismiche si devono rispettare le prescrizioni di cui ai §§ 2.5.3 e 3.2.

Nelle espressioni [2.5.5] e [2.5.7] si assume, di regola, per i carichi dovuti al transito dei mezzi ψ_{2i} = 0,0.

Ove necessario, per esempio per ponti in zona urbana di intenso traffico, si assume per i carichi dovuti al transito dei mezzi ψ_{2j} = 0,2, quando rilevante, sia nella combinazione delle azioni, sia per la definizione dell'effetto dell'azione sismica.

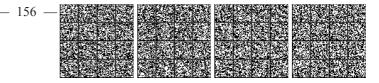
5.1.3.13 AZIONI ECCEZIONALI: A

Le azioni eccezionali da considerare nel progetto sono valutate sulla base delle indicazioni contenute nel § 3.6, in generale, ed al § 3.6.3, in particolare.

Con riferimento al § 3.6.3.1, si puntualizza che le azioni d'urto agenti sugli elementi strutturali orizzontali al disopra della strada, sono da impiegarsi per la verifica di sicurezza globale dell'impalcato nel suo insieme inteso come corpo rigido (sollevamento/ribaltamento); al verificarsi di tali eventi sono ammessi danni localizzati agli elementi strutturali che non comportino il collasso dell'impalcato.

I piedritti dei ponti ubicati a distanza ≤5,0 m dalla sede stradale devono essere protetti contro il pericolo di urti di veicoli stradali mediante adeguate opere chiaramente destinate alla protezione dei piedritti stessi.

5.1.3.14 COMBINAZIONI DI CARICO

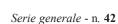

Le combinazioni di carico da considerare ai fini delle verifiche devono essere stabilite in modo da garantire la sicurezza in conformità a quanto prescritto al Cap. 2.

Ai fini della determinazione dei valori caratteristici delle azioni dovute al traffico, si devono considerare, generalmente, le combinazioni riportate in Tab. 5.1.IV.

Tab. 5.1.IV – Valori caratteristici delle azioni dovute al traffico

	Carichi sulla superficie carrabile			Carichi su marciapiedi e piste ciclabili non sormontabili		
		Carichi vertical	i	Carichi orizzontali		Carichi verticali
Gruppo di azioni	Modello principale (schemi di carico 1, 2, 3, 4 e 6)	Veicoli spe- ciali	Folla (Sche- ma di carico 5)	Frenatura	Forza centrifuga	Carico uniformemente distribuito
1	Valore carat- teristico					Schema di carico 5 con valore di combinazione 2,5KN/m²
2a	Valore fre- quente			Valore carat- teristico		
2b	Valore fre- quente				Valore caratteri- stico	
3 (*)						Schema di carico 5 con valore caratteristico 5,0KN/m²
4 (**)			Schema di carico 5 con valore carat- teristico 5,0KN/m²			Schema di carico 5 con valore caratteristico 5,0KN/m²
5 (***)	Da definirsi per il singo- lo progetto	Valore carat- teristico o nominale				

^(*) Ponti pedonali



^(**) Da considerare solo se richiesto dal particolare progetto (ad es. ponti in zona urbana)

^(***) Da considerare solo se si considerano veicoli speciali

20-2-2018

scaricato da www.soft.lab.it

La Tab. 5.1.V, con riferimento al § 2.6.1, fornisce i valori dei coefficienti parziali delle azioni da assumere nell'analisi per la determinazione degli effetti delle azioni nelle verifiche agli stati limite ultimi.

Altri valori di coefficienti parziali sono riportati nel Capitolo 4 con riferimento a particolari azioni specifiche dei diversi materiali. I valori dei coefficienti di combinazione ψ_{0j} , ψ_{1j} e ψ_{2j} per le diverse categorie di azioni sono riportati nella Tab. 5.1.VI.

Tab. 5.1.V – Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

		Coefficiente	EQU(1)	A1	A2
Azioni permanenti g ₁ e g ₃	favorevoli sfavorevoli	γ _{G1} e γ _{G3}	0,90 1,10	1,00 1,35	1,00 1,00
Azioni permanenti non strutturali ⁽²⁾ g ₂	favorevoli sfavorevoli	YG2	0,00 1,50	0,00 1,50	0,00 1,30
Azioni variabili da traffico	favorevoli sfavorevoli	ΥQ	0,00 1,35	0,00 1,35	0,00 1,15
Azioni variabili	favorevoli sfavorevoli	Ϋ́Qi	0,00 1,50	0,00 1,50	0,00 1,30
Distorsioni e presollecita- zioni di progetto	favorevoli sfavorevoli	Υε1	0,90 1,00 ⁽³⁾	1,00 1,00 ⁽⁴⁾	1,00 1,00
Ritiro e viscosità, Cedimenti vincolari	favorevoli sfavorevoli	Υε2, Υε3, Υε4	0,00 1,20	0,00 1,20	0,00 1,00

⁽i) Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

 $extbf{Tab. 5.1.VI}$ - Coefficienti ψ per le azioni variabili per ponti stradali e pedonali

Azioni	Gruppo di azioni (Tab. 5.1.IV)	Coefficiente Ψ ₀ di combi- nazione	Coefficiente ψ_1 (valori frequenti)	Coefficiente Ψ ₂ (valori quasi permanenti)
	Schema 1 (carichi tandem)	0,75	0,75	0,0
	Schemi 1, 5 e 6 (carichi distribuiti	0,40	0,40	0,0
Azioni da traffico	Schemi 3 e 4 (carichi concentrati)	0,40	0,40	0,0
(Tab. 5.1.IV)	Schema 2	0,0	0,75	0,0
	2	0,0	0,0	0,0
	3	0,0	0,0	0,0
	4 (folla)		0,75	0,0
	5	0,0	0,0	0,0
	a ponte scarico SLU e SLE	0,6	0,2	0,0
Vento	in esecuzione	0,8	0,0	0,0
	a ponte carico SLU e SLE	0,6	0,0	0,0
Neve	SLU e SLE	0,0	0,0	0,0
TYCYC	in esecuzione	0,8	0,6	0,5
Temperatura	SLU e SLE	0,6	0,6	0,5

Per le opere di luce maggiore di 300 m è possibile modificare i coefficienti indicati in tabella previa autorizzazione del Servizio tecnico centrale del Consiglio superiore dei lavori pubblici, sentito lo stesso Consiglio.

⁽²⁾ Nel caso in cui l'intensità dei carichi permanenti non strutturali, o di una parte di essi (ad esempio carichi permanenti portati), sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti validi per le azioni permanenti.

 $^{^{\}scriptscriptstyle{(3)}}1,\!30$ per instabilità in strutture con precompressione esterna

5.1.4. VERIFICHE DI SICUREZZA

Le verifiche di sicurezza sulle varie parti dell'opera devono essere effettuate sulla base dei criteri definiti dalle presenti norme tecniche.

In particolare devono essere effettuate le verifiche allo stato limite ultimo, ivi compresa la verifica allo stato limite di fatica, ed a-gli stati limite di esercizio riguardanti gli stati di fessurazione e di deformazione.

Le combinazioni di carico da considerare ai fini delle verifiche devono essere stabilite in modo da garantire la sicurezza secondo quanto definito nei criteri generali enunciati al Capitolo 2 delle presenti norme tecniche.

5.1.4.1 VERIFICHE AGLI STATI LIMITE ULTIMI

Si deve verificare che sia: $E_d \le R_{d'}$ dove E_d è il valore di progetto degli effetti delle azioni ed R_d è la corrispondente resistenza di progetto.

5.1.4.2 STATI LIMITE DI ESERCIZIO

Per gli Stati Limite di Esercizio si dovrà verificare che sia: $E_d \le C_d$, dove C_d è un valore nominale o una funzione di certe proprietà materiali legate agli effetti progettuali delle azioni considerate, E_d è il valore di progetto dell'effetto dell'azione determinato sulla base delle combinazioni di carico.

5.1.4.3 VERIFICHE ALLO STATO LIMITE DI FATICA

Per strutture, elementi strutturali e dettagli sensibili a fenomeni di fatica devono essere eseguite opportune verifiche.

Le verifiche devono essere condotte considerando spettri di carico differenziati, a seconda che si conduca una verifica per vita illimitata o una verifica a danneggiamento.

In assenza di studi specifici, volti alla determinazione dell'effettivo spettro di carico che interessa il ponte, si può far riferimento ai modelli descritti nel seguito.

Verifiche per vita illimitata

Le verifiche a fatica per vita illimitata possono essere condotte, per dettagli caratterizzati da limite di fatica ad ampiezza costante, controllando che la massima differenza di tensione $\Delta\sigma_{max}$ =(σ_{max} - σ_{min}) indotta nel dettaglio stesso dallo spettro di carico significativo risulti minore del limite di fatica del dettaglio stesso. Ai fini del calcolo del $\Delta\sigma_{max}$ si possono impiegare, in alternativa, i modelli di carico di fatica 1 e 2, disposti sul ponte nelle due configurazioni che determinano la tensione massima e minima, rispettivamente, nel dettaglio considerato.

Modello di carico 1

Il modello di carico di fatica 1 è costituito dallo Schema di Carico 1 assumendo il 70% dei carichi concentrati ed il 30% di quelli distribuiti (vedi fig. 5.1.4), applicati in asse alle corsie convenzionali individuate secondo i criteri individuati al §5.1.3.3.5

Per verifiche locali si deve considerare, se più gravoso, il modello costituito dall'asse singolo dello schema di carico 2, isolato e con carico al 70% (vedi fig.5.1.4).

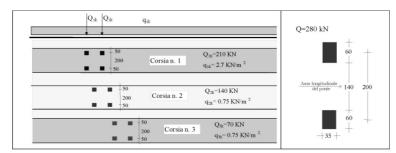


Fig. 5.1.4 - Modello di carico di fatica 1

Modello di carico 2

Quando siano necessarie valutazioni più precise, in alternativa al modello di carico di fatica semplificato 1, derivato dal modello di carico principale, si può impiegare il modello di carico di fatica 2, rappresentato nella Tab. 5.1.VII; applicato al centro della corsia convenzionale n. 1, che è quella che determina gli effetti più severi nel dettaglio in esame

Il modello di carico 2 non considera gli effetti di più corsie caricate sull'impalcato in esame. Nel caso in cui siano da prevedere significativi effetti di interazione tra veicoli, per l'applicazione di questo modello si deve disporre di dati supplementari, reperibili o da letteratura tecnica consolidata o a seguito di studi specifici.

Tab. 5.1.VII - Modello di carico di fatica 2 – veicoli frequenti

Sagoma del veicolo	Distanza tra gli assi (m)	Carico frequente per asse (kN)	Tipo di ruota (Tab. 5.1.IX)
	4,50	90 190	A B
0	4,20 1,30	80 140 140	A B B
0 000	3,20 5,20 1,30 1,30	90 180 120 120 120	A B C C
	3,40 6,00 1,80	90 190 140 140	A B B
0 0 00	4,80 3,60 4,40 1,30	90 180 120 110 110	A B C C

Verifiche a danneggiamento

Le verifiche a danneggiamento consistono nel verificare che nel dettaglio considerato lo spettro di carico produca un danneggiamento $D \le 1$.

Il danneggiamento D è valutato mediante la legge di Palmgren-Miner, considerando la curva S-N caratteristica del dettaglio e la vita nominale dell'opera.

Le verifiche devono essere condotte considerando lo spettro di tensione indotto nel dettaglio dal modello di carico di fatica semplificato 3, riportato in Fig. 5.1.5, costituito da un veicolo di fatica simmetrico a 4 assi, ciascuno di peso 120 kN, o, in alternativa, quando siano necessarie valutazioni più precise, dallo spettro di carico equivalente costituente il modello di carico di fatica 4, riportato in Tab. 5.1.VIII, ove è rappresentata anche la percentuale di veicoli da considerare, in funzione del traffico interessante la strada servita dal ponte.

I veicoli dei modelli di carico di fatica 3 o 4 possono essere applicati in asse alle corsie convenzionali determinate in accordo con il §5.1.3.3.5. È possibile, tuttavia, adottare disposizioni più favorevoli dei veicoli, considerando che il flusso avvenga per il 10% sulle corsie convenzionali e per il 90% sulle corsie fisiche. La posizione dei veicoli sulle corsie fisiche dovrà essere tale da determinare gli effetti più severi nel dettaglio in esame.

I tipi di pneumatico da considerare per i diversi veicoli e le dimensioni delle relative impronte sono riportati nella Tab. 5.1.IX.

In assenza di studi specifici, per verifiche di danneggiamento, si deve considerare sulla corsia lenta il flusso annuo di veicoli di peso superiore a 100 kN, rilevanti ai fini della verifica a fatica, dedotto dalla Tab. 5.1.X.

Nel caso in cui siano da prevedere significativi effetti di interazione tra veicoli, si deve far riferimento a studi specifici o a metodologie consolidate.

Il modello di carico di fatica 3, considerato in asse alla corsia convenzionale, può essere utilizzato per le verifiche col metodo λ , o metodo dei coefficienti di danneggiamento equivalente. Per la determinazione dei coefficienti di danneggiamento equivalente, che devono essere specificamente calibrati sul predetto modello di carico di fatica 3, si può far riferimento alle norme UNI EN1992-2, UNI EN1993-2 ed UNI EN1994-2.

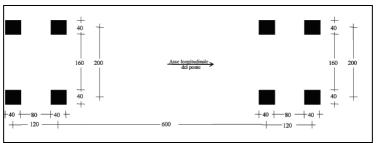


Fig. 5.1.5 - Modello di carico di fatica. 3

 $\textbf{Tab. 5.1.VIII} - Modello \ di \ carico \ di \ fatica \ 4-veicoli \ equivalenti$

					COMPOSIZIONE DEL TRAFFICO		
Sagoma del veicolo	Tipo di pneumatico (Tab.5.1-IX)	Interassi [m]	Valori equi- valenti dei ca- richi asse [kN]	Lunga percorrenza	Media percorrenza	Traffico Iocale	
	A B	4,50	70 130	20,0	40,0	80,0	
0 00	A B B	4,20 1,30	70 120 120	5,0	10,0	5,0	
0 000	A B C C	3,20 5,20 1,30 1,30	70 150 90 90 90	50,0	30,0	5,0	
0 00	A B B	3,40 6,00 1,80	70 140 90 90	15,0	15,0	5,0	
0 0 00	A B C C	4,80 3,60 4,40 1,30	70 130 90 80 80	10,0	5,0	5,0	

Tab. 5.1.IX - Dimensioni degli assi e delle impronte per i veicoli equivalenti

Tipo di pneumatico	Dimensioni dell'asse e delle impronte		
A	0,32 m Asse della corsia 0,32 m 0,22 m 0,22 m		
В	0,54 m Asse della corsia 0,32 m 0,32 m 0,32 m 0,32 m 0,22 m 0,22 m 0,22 m		
С	2,00 m Asse della corsia 0,32 m 0,32 m 0,27 m 0,27 m		

Tab. 5.1.X – Flusso annuo di veicoli pesanti sulla corsia di marcia lenta

Categorie di traffico	Flusso annuo di veicoli di peso superiore a 100 kN sulla corsia di marcia lenta
1 - Strade ed autostrade con 2 o più corsie per senso di mar- cia, caratterizzate da intenso traffico pesante	2,0x10 ⁶
2 - Strade ed autostrade caratterizzate da traffico pesante di media intensità	0,5x10 ⁶
3 - Strade principali caratterizzate da traffico pesante di mo- desta intensità	0,125x10 ⁶
4 - Strade locali caratterizzate da traffico pesante di intensità molto ridotta	0,05x10 ⁶

5.1.4.4 Verifiche allo stato limite di fessurazione

Per assicurare la funzionalità e la durata delle strutture viene prefissato uno stato limite di fessurazione, commisurato alle condizioni ambientali e di sollecitazione, nonché alla sensibilità delle armature alla corrosione.

Strutture in calcestruzzo armato ordinario

Per le strutture in calcestruzzo armato ordinario, devono essere rispettate le limitazioni di cui alla Tab. 4.1.IV per armatura poco sensibile.

Strutture in calcestruzzo armato precompresso

 $Valgono\ le\ limitazioni\ della\ Tab.\ 4.1. IV\ per\ armature\ sensibili.$

5.1.4.5 Verifiche allo stato limite di deformazione

L'assetto di una struttura, da valutarsi in base alle combinazioni di carico precedentemente indicate, deve risultare compatibile con la geometria della struttura stessa in relazione alle esigenze del traffico, nonché con i vincoli ed i dispositivi di giunto previsti in progetto.

 $Le \ deformazioni \ della \ struttura \ non \ devono \ arrecare \ disturbo \ al \ transito \ dei \ carichi \ mobili \ alle \ velocit\`a \ di \ progetto \ della \ strada.$

5.1.4.6 Verifiche delle azioni sismiche

Le verifiche nei riguardi delle azioni sismiche vanno svolte secondo i criteri ed i metodi esposti nelle relative sezioni delle presenti Norme.

5.1.4.7 Verifiche in fase di costruzione

Le verifiche di sicurezza vanno svolte anche per le singole fasi di costruzione dell'opera, tenendo conto dell'evoluzione dello schema statico e dell'influenza degli effetti differiti nel tempo.

Vanno verificate anche le eventuali centine e le altre attrezzature provvisionali previste per la realizzazione dell'opera.

5.1.5. STRUTTURE PORTANTI

5.1.5.1 IMPALCATO

5.1.5.1.1 Spessori minimi

Gli spessori minimi delle diverse parti costituenti l'impalcato devono tener conto dell'influenza dei fattori ambientali sulla durabilità dell'opera e rispettare le prescrizioni delle norme relative ai singoli elementi strutturali.

5.1.5.1.2 Strutture ad elementi prefabbricati

Nelle strutture costruite in tutto o in parte con elementi prefabbricati, al fine di evitare sovratensioni, distorsioni o danneggiamenti dovuti a difetti esecutivi o di montaggio, deve essere assicurata la compatibilità geometrica tra le diverse parti assemblate, tenendo anche conto delle tolleranze costruttive.

Gli elementi di connessione tra le parti collegate devono essere conformati in modo da garantire la corretta trasmissione degli sforzi.

Nel caso di elementi in calcestruzzo armato normale e precompresso e di strutture miste acciaio-calcestruzzo vanno considerate le redistribuzioni di sforzo differite nel tempo che si manifestano tra parti realizzate o sottoposte a carico in tempi successivi e le analoghe redistribuzioni che derivano da variazioni dei vincoli.

5.1.5.2 PILE

5.1.5.2.1 Spessori minimi

Vale quanto già indicato al comma precedente per le strutture dell'impalcato.

5.1.5.2.2 Schematizzazione e calcolo

Nella verifica delle pile snelle, particolare attenzione deve essere rivolta alla valutazione delle effettive condizioni di vincolo, specialmente riguardo l'interazione con le opere di fondazione.

Le sommità delle pile deve essere verificata nei confronti degli effetti locali derivanti dalle azioni concentrate trasmesse dagli apparecchi di appoggio.

Si deve verificare che gli spostamenti consentiti dagli apparecchi di appoggio siano compatibili con gli spostamenti massimi alla sommità delle pile, provocati dalle combinazioni delle azioni più sfavorevoli e, nelle pile alte, dalla differenza di temperatura tra le facce delle pile stesse.

5.1.6. VINCOLI

I dispositivi di vincolo dell'impalcato alle sottostrutture (pile, spalle, fondazioni) devono possedere le caratteristiche previste dallo schema statico e cinematico assunto in sede di progetto, sia con riferimento alle azioni, sia con riferimento alle distorsioni.

Per strutture realizzate in più fasi, i vincoli devono assicurare un corretto comportamento statico e cinematico in ogni fase dell'evoluzione dello schema strutturale, adeguandosi, se del caso, ai cambiamenti di schema.

Le singole parti del dispositivo di vincolo ed i relativi ancoraggi devono essere dimensionati in base alle forze vincolari trasmesse.

I dispositivi di vincolo devono essere tali da consentire tutti gli spostamenti previsti con un margine di sicurezza maggiore rispetto a quello assunto per gli altri elementi strutturali.

Particolare attenzione va rivolta al funzionamento dei vincoli in direzione trasversale rispetto all'asse longitudinale dell'impalcato, la cui configurazione deve corrispondere ad uno schema statico e cinematico ben definito.

La scelta e la disposizione dei vincoli nei ponti a pianta speciale (ponti in curva, ponti in obliquo, ponti con geometria in pianta irregolare) devono derivare da un adeguato studio di capacità statica e di compatibilità cinematica.

5.1.6.1 Protezione dei vincoli

Le varie parti dei dispositivi di vincolo devono essere adeguatamente protette, al fine di garantirne il regolare funzionamento per il periodo di esercizio previsto.

5.1.6.2 CONTROLLO, MANUTENZIONE E SOSTITUZIONE

I vincoli del ponte devono essere accessibili al fine di consentirne il controllo, la manutenzione e l'eventuale sostituzione senza eccessiva difficoltà.

5.1.6.3 VINCOLI IN ZONA SISMICA

Per i ponti in zona sismica, i vincoli devono essere progettati in modo che, tenendo conto del comportamento dinamico dell'opera, risultino idonei:

- a trasmettere le forze conseguenti alle azioni sismiche
- ad evitare sconnessioni tra gli elementi componenti il dispositivo di vincolo
- ad evitare la fuoriuscita dei vincoli dalle loro sedi.

5.1.7. OPERE ACCESSORIE

Le opere di impermeabilizzazione e di pavimentazione, i giunti e tutte le opere accessorie, devono essere eseguiti con materiali di qualità e con cura esecutiva tali da garantire la massima durata e tali da ridurre interventi di manutenzione e rifacimenti.

5.1.7.1 IMPERMEABILIZZAZIONE

Le opere di impermeabilizzazione devono essere tali da evitare che infiltrazioni d'acqua possano arrecare danno alle strutture portanti.

5.1.7.2 PAVIMENTAZIONI

La pavimentazione stradale deve essere tale da sottrarre all'usura ed alla diretta azione del traffico l'estradosso del ponte e gli strati di impermeabilizzazione che proteggono le strutture portanti.

5.1.7.3 GIUNTI

In corrispondenza delle interruzioni strutturali si devono adottare dispositivi di giunto atti ad assicurare la continuità del piano viabile. Le caratteristiche dei giunti e le modalità del loro collegamento alla struttura devono essere tali da ridurre il più possibile le sovrasollecitazioni di natura dinamica dovute ad irregolarità locali e da assicurare la migliore qualità dei transiti.

In corrispondenza dei giunti si deve impedire la percolazione delle acque meteoriche o di lavaggio attraverso i giunti stessi. Nel caso di giunti che consentano il passaggio delle acque, queste devono confluire in appositi dispositivi di raccolta, collocati immediatamente sotto il giunto, e devono essere convogliate a scaricarsi senza possibilità di ristagni o dilavamenti che interessino le strutture.

5.1.7.4 SMALTIMENTO DEI LIQUIDI PROVENIENTI DALL'IMPALCATO

Lo smaltimento dei liquidi provenienti dall'impalcato deve effettuarsi in modo da non arrecare danni o pregiudizio all'opera stessa, alla sicurezza del traffico e ad eventuali opere ed esercizi sottostanti il ponte. A tale scopo il progetto del ponte deve essere corredato dallo schema delle opere di convogliamento e di scarico. Per opere di particolare importanza, o per la natura dell'opera stessa o per la natura dell'ambiente circostante, si deve prevedere la realizzazione di un apposito impianto di depurazione e/o di decantazione.

5.1.7.5 DISPOSITIVI PER L'ISPEZIONABILITÀ E LA MANUTENZIONE DELLE OPERE

In sede di progettazione e di esecuzione devono essere previste opere di camminamento (piattaforme, scale, passi d'uomo, ecc.) commisurate all'importanza del ponte e tali da consentire l'accesso alle parti più importanti sia ai fini ispettivi, sia ai fini manutentivi. Le zone nell'intorno di parti destinate alla sostituzione periodica, quali ad esempio gli appoggi, devono essere corredate di punti di forza, chiaramente individuabili e tali da consentire le operazioni di sollevamento e di vincolamento provvisorio.

5.1.7.6 VANI PER CONDOTTE E CAVIDOTTI

La struttura del ponte dovrà comunque prevedere la possibilità di passaggio di cavi e di una condotta di acquedotto; le dimensioni dei vani dovranno essere rapportate alle prevedibili esigenze da valutare con riferimento a quanto presente in prossimità del ponte.

5.2. PONTI FERROVIARI

Le presenti norme si applicano per la progettazione e l'esecuzione dei nuovi ponti ferroviari.

Il gestore dell'infrastruttura in base alle caratteristiche funzionali e strategiche delle diverse infrastrutture ferroviarie stabilisce i parametri indicati al Capitolo 2: vita nominale, classe d'uso.

5.2.1. PRINCIPALI CRITERI PROGETTUALI E MANUTENTIVI

La progettazione dei manufatti sotto binario deve essere eseguita in modo da conseguire il migliore risultato globale dal punto di vista tecnico-economico, con particolare riguardo alla durabilità dell'opera stessa.

5.2.1.1 ISPEZIONABILITÀ E MANUTENZIONE

Fin dalla fase di progettazione deve essere posta la massima cura nella concezione generale dell'opera e nella definizione delle geometrie e dei particolari costruttivi in modo da rendere possibile l'accessibilità e l'ispezionabilità, nel rispetto delle norme di sicurezza, di tutti gli elementi strutturali. Deve essere garantita la piena ispezionabilità degli apparecchi d'appoggio e degli eventuali organi di ritegno. Deve inoltre essere prevista la possibilità di sostituire questi elementi con la minima interferenza con

l'esercizio ferroviario; a tale scopo i disegni di progetto devono fornire tutte le indicazioni al riguardo (numero, posizione e portata dei martinetti per il sollevamento degli impalcati, procedure da seguire anche per la sostituzione degli stessi apparecchi, ecc.).

5.2.1.2 COMPATIBILITÀ IDRAULICA

Si rimanda integralmente al paragrafo 5.1.2.3.

5.2.1.3 ALTEZZA LIBERA

Si rimanda integralmente al paragrafo 5.1.2.2.

5.2.2. AZIONI SULLE OPERE

Nell'ambito della presente norma sono indicate tutte le azioni che devono essere considerate nella progettazione dei ponti ferroviari, secondo le combinazioni indicate nei successivi paragrafi.

Le azioni definite in questo documento si applicano alle linee ferroviarie a scartamento normale e ridotto.

5.2.2.1 AZIONI PERMANENTI

Le azioni permanenti che devono essere considerate sono: pesi propri, carichi permanenti portati, spinta delle terre, spinte idrauliche, ecc.

5.2.2.1.1 Carichi permanenti portati

Ove non si eseguano valutazioni più dettagliate, la determinazione dei carichi permanenti portati relativi al peso della massicciata, dell'armamento e della impermeabilizzazione (inclusa la protezione) potrà effettuarsi assumendo, convenzionalmente, per linea in rettifilo, un peso di volume pari a 18,0 kN/m³ applicato su tutta la larghezza media compresa fra i muretti paraballast, per una altezza media fra piano del ferro (P.F.) ed estradosso impalcato pari a 0,80 m. Per ponti su linee in curva, oltre al peso convenzionale sopraindicato va aggiunto il peso di tutte le parti di massicciata necessarie per realizzare il sovralzo, valutato con la sua reale distribuzione geometrica e con un peso di volume pari a 20 kN/m³.

Nel caso di armamento senza massicciata devono essere valutati i pesi dei singoli componenti e le relative distribuzioni.

Nella progettazione di nuovi ponti ferroviari dovranno essere sempre considerati i pesi, le azioni e gli ingombri associati all'introduzione delle barriere antirumore, anche nei casi in cui non sia originariamente prevista la realizzazione di questo genere di elementi.

Sono da considerare tra i carichi permanenti portati anche il peso delle eventuali finiture, il sistema di smaltimento acque, etc..

5.2.2.2 AZIONI VARIABILI VERTICALI

5.2.2.2.1 Modelli di carico

I carichi verticali associati al transito dei convogli ferroviari sono definiti per mezzo di diversi modelli di carico rappresentativi delle diverse tipologie di traffico ferroviario: normale e pesante.

I valori dei suddetti carichi dovranno essere moltiplicati per un coefficiente di adattamento " α ", variabile in ragione della tipologia dell'infrastruttura (ferrovie ordinarie, ferrovie leggere, metropolitane, ecc.). Per le ferrovie ordinarie il valore del coefficiente di adattamento " α " da adottarsi per i diversi modelli di carico è definito nei relativi paragrafi; per le ferrovie leggere, metropolitane, ecc., il valore del coefficiente " α " è definito in funzione della specificità dell'infrastruttura stessa. Sono considerate tre tipologie di carico i cui valori caratteristici sono definiti nei successivi paragrafi. Nel seguito, i riferimenti ai modelli di carico LM 71, SW/0 e SW/2 ed alle loro componenti si intendono, in effetti, pari al prodotto dei coefficienti α per i carichi indicati nelle Fig. 5.2.1 e Fig. 5.2.2.

5.2.2.2.1.1 Modello di carico LM 71

Questo modello di carico schematizza gli effetti statici prodotti dal traffico ferroviario normale come mostrato nella Fig. 5.2.1 e risulta costituito da:

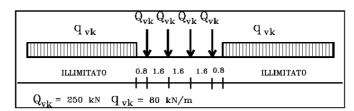
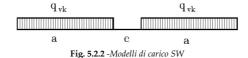


Fig. 5.2.1 - Modello di carico LM71

- quattro assi da 250 kN disposti ad interasse di 1,60 m;
- carico distribuito di 80 kN/m in entrambe le direzioni, a partire da 0,8 m dagli assi d'estremità e per una lunghezza illimitata.


Per questo modello di carico è prevista una eccentricità del carico rispetto all'asse del binario, dipendente dallo scartamento s, per tenere conto dello spostamento dei carichi; pertanto, essa è indipendente dal tipo di struttura e di armamento. Tale eccentricità è calcolata sulla base del rapporto massimo fra i carichi afferenti a due ruote appartenenti al medesimo asse

$$Q_{V2}/Q_{V1}=1,25$$
 [5.2.1]

essendo Q_{V1} e Q_{V2} i carichi verticali delle ruote di un medesimo asse, e risulta quindi pari a s/18 con s= 1435 mm; questa eccentricità deve essere considerata nella direzione più sfavorevole.

Il carico distribuito presente alle estremità del treno tipo LM 71 deve segmentarsi al di sopra dell'opera andando a caricare solo quelle parti che forniscono un incremento del contributo ai fini della verifica dell'elemento per l'effetto considerato. Questa operazione di segmentazione non va effettuata per i successivi modelli di carico SW che devono essere considerati sempre agenti per tutta la loro estensione. Il valore del coefficiente di adattamento " α " da adottarsi per il modello di carico LM71 nella progettazione di ferrovie ordinarie è pari a 1,1.

5.2.2.2.1.2 Modelli di carico SW

Il modello di carico SW è illustrato in Fig. 5.2.2; per tale modello di carico, sono considerate due distinte configurazioni denominate SW/0 ed SW/2.

Il modello di carico SW/0 schematizza gli effetti statici prodotti dal traffico ferroviario normale per travi continue (esso andrà utilizzato solo per le travi continue qualora più sfavorevole dell'LM71).

Il modello di carico SW/2 schematizza gli effetti statici prodotti dal traffico ferroviario pesante.

Le caratterizzazioni di entrambe queste configurazioni sono indicate in Tab. 5.2.I.

Tab. 5.2.I - Caratteristiche Modelli di Carico SW

Tipo di Carico	q _{vk} [kN/m]	a [m]	c [m]
SW/0	133	15,0	5,3
SW/2	150	25,0	7,0

Il valore del coefficiente di adattamento " α " da adottarsi nella progettazione delle ferrovie ordinarie è pari, rispettivamente, a 1,1 per il modello di carico SW/0 ed a 1,0 per il modello di carico SW/2.

5.2.2.2.1.3 Treno scarico

Per alcune particolari verifiche è previsto un ulteriori particolare modello di carico denominato "Treno scarico" rappresentato da un carico uniformemente distribuito pari a 10,0 kN/m.

5.2.2.2.1.4 Ripartizione locale dei carichi.

Distribuzione longitudinale del carico per mezzo del binario

Un carico assiale Q_{vi} può essere distribuito su tre traverse consecutive poste ad interasse uniforme "a", ripartendolo fra la traversa che la precede, quella su cui insiste e quella successiva, nelle seguenti proporzioni 25%, 50%, 25% (Fig. 5.2.3).

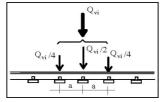


Fig. 5.2.3 - Distribuzione longitudinale dei carichi assiali

Distribuzione longitudinale del carico per mezzo delle traverse e del ballast

In generale, i carichi assiali del modello di carico LM71 possono essere distribuiti uniformemente nel senso longitudinale.

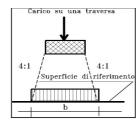


Fig. 5.2.4 - Distribuzione longitudinale dei carichi attraverso il ballast

Tuttavia, per il progetto di particolari elementi strutturali quali le solette degli impalcati da ponte, la distribuzione longitudinale del carico assiale al di sotto delle traverse è indicata in Fig. 5.2.4 ove, per superficie di riferimento è da intendersi la superficie di appoggio del ballast.

Per la ripartizione nella struttura sottostante valgono gli usuali criteri progettuali.

In particolare, per le solette, salvo diverse e più accurate determinazioni, potrà considerarsi una ripartizione a 45° dalla superficie di estradosso fino al piano medio delle stesse.

Distribuzione trasversale delle azioni per mezzo delle traverse e del ballast

Salvo più accurate determinazioni, per ponti con armamento su ballast in rettifilo, le azioni possono distribuirsi trasversalmente secondo lo schema di Fig. 5.2.5.

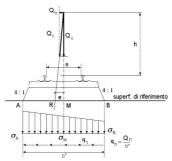


Fig. 5.2.5 - Distribuzione trasversale in rettifilo delle azioni per mezzo delle traverse e del ballast. In figura, Q_h rappresenta la forza centrifuga definita al successivo §5.2.2.3.1

Per ponti con armamento su ballast in curva, con sovralzo "u", le azioni possono distribuirsi trasversalmente secondo lo schema di Fig. 5.2.6.

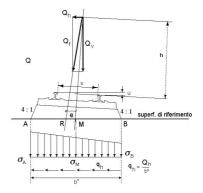


Fig. 5.2.6 - Distribuzione trasversale in curva delle azioni per mezzo delle traverse e del ballast. In figura, Q_h rappresenta la forza centrifuga definita al successivo §5.2.2.3.1

5.2.2.2.1.5 Distribuzione dei carichi verticali per i rilevati a tergo delle spalle

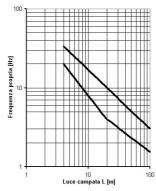
In assenza di calcoli più accurati, il carico verticale a livello del piano di regolamento (posto a circa 0,70 m al di sotto del piano del ferro) su rilevato a tergo della spalla può essere assunto uniformemente distribuito su una larghezza di 3,0 m.

Per questo tipo di carico distribuito non deve applicarsi l'incremento dinamico.

5.2.2.2.2 Carichi sui marciapiedi

I marciapiedi non aperti al pubblico possono essere utilizzati solo dal personale autorizzato.

I carichi accidentali devono essere schematizzati da un carico uniformemente ripartito del valore di 10 kN/m². Questo carico non deve considerarsi contemporaneo al transito dei convogli ferroviari e deve essere applicato sopra i marciapiedi in modo da dare luogo agli effetti locali più sfavorevoli.


Per questo tipo di carico distribuito non deve applicarsi l'incremento dinamico.

5.2.2.2.3 Effetti dinamici

Le sollecitazioni e gli spostamenti determinati sulle strutture del ponte dall'applicazione statica dei modelli di carico debbono essere incrementati per tenere conto della natura dinamica del transito dei convogli.

Nella progettazione dei ponti ferroviari gli effetti di amplificazione dinamica dovranno valutarsi nel modo seguente:

- per le usuali tipologie di ponti e per velocità di percorrenza non superiore a 200 km/h, quando la frequenza propria della struttura ricade all'interno del fuso indicato in Fig. 5.2.7, è sufficiente utilizzare i coefficienti dinamici Φ definiti nel presente paragrafo:
- per le usuali tipologie di ponti, ove la velocità di percorrenza sia superiore a 200 km/h e quando la frequenza propria della struttura non ricade all'interno del fuso indicato in Fig. 5.2.7 e comunque per le tipologie non convenzionali (ponti strallati, ponti sospesi, ponti di grande luce, ponti metallici difformi dalle tipologie in uso in ambito ferroviario, ecc.) dovrà effettuarsi una analisi dinamica adottando convogli "reali" e parametri di controllo specifici dell'infrastruttura e del tipo di traffico ivi previsto.

 ${f Fig.\,5.2.7}$ - Limiti delle frequenze proprie n_o in Hz in funzione della luce della campata

In Fig. 5.2.7 il "fuso" è caratterizzato da:

un limite superiore pari a: $n_o = 94,76 \cdot L^{-0,748}$ [5.2.2] un limite inferiore pari a: $n_o = 80/L$ per $4 \text{ m} \le L \le 20 \text{ m}$ [5.2.3]

 $n_o = 23.58 \cdot L^{-0.592}$ per 20 m $\leq L \leq 100$ m [5.2.4]

Per una trave semplicemente appoggiata, sottoposta a flessione, la prima frequenza flessionale può valutarsi con la formula:

$$n_o = \frac{17,75}{\sqrt{\delta_o}}$$
 [Hz] [5.2.5]

dove: δ_0 rappresenta la freccia, espressa in mm, valutata in mezzeria e dovuta alle azioni permanenti.

Per ponti in calcestruzzo δ_0 deve calcolarsi impiegando il modulo elastico secante, in accordo con la breve durata del passaggio del treno

Per travi continue, salvo più precise determinazioni, L è da assumersi pari alla L_{ϕ} definita come di seguito.

I coefficienti di incremento dinamico Φ che aumentano l'intensità dei modelli di carico definiti in 5.2.2.2.1 si assumono pari a $Φ_2$ o $Φ_3$, in dipendenza del livello di manutenzione della linea. In particolare, si assumerà:

(a) per linee con elevato standard manutentivo:

$$\Phi_2 = \frac{1,44}{\sqrt{L_{\phi}} - 0.2} + 0.82$$
 con la limitazione $1,00 \le \Phi_2 \le 1.67$ [5.2.6]

(b) per linee con ridotto standard manutentivo:

$$\Phi_3 = \frac{2,16}{\sqrt{L_{\phi}} - 0.2} + 0.73$$
 con la limitazione $1.00 \le \Phi_3 \le 2.00$ [5.2.7]

dove:

 L_{φ} rappresenta la lunghezza "caratteristica" in metri, così come definita in Tab. 5.2.II.

Tab. 5.2.II - Lunghezza caratteristica L_{φ}

Caso	Elemento strutturale	Lunghezza L _o		
IMPAI	CATO DI PONTE IN ACCIAIO CON BALLAST (LASTRA ORTO	TROPA O STRUTTURA EQUIVALENTE)		
	Piastra con nervature longitudinali e trasversali, o	-		
	solo longitudinali:			
1	1.1 Piastra (in entrambe le direzioni)	3 volte l'interasse delle travi trasversali		
	1.2 Nervature longitudinali (comprese mensole	3 volte l'interasse delle travi trasversali		
	fino a 0,50 m)0;	3 voite i interasse delle travi trasversali		
	1.3 Travi trasversali: intermedie e di estremità	2 volte la luce delle travi trasversali		
	Piastre con sole nervature trasversali			
2	2.1 Piastra (per entrambe le direzioni)	2 volte l'interasse delle travi trasversali + 3 m		
_	2.2 Travi trasversali intermedie	2 volte la luce delle travi trasversali		
	2.3 Travi trasversali d'estremità	luce della trave trasversale		
IMPAI	CATO DI PONTE IN ACCIAIO SENZA BALLAST (PER TENSION	NI LOCALI)		
	3.1 Sostegni per rotaie (longherine)			
	- come elemento di un grigliato	3 volte l'interasse delle travi trasversali		
	 come elemento semplicemente appoggiato 	distanza fra le travi trasversali + 3 m		
3	3.2 Sostegni per rotaie a mensola (longherine a	Φ_3 = 2,0, ove non meglio specificato		
	mensola) per travi trasversali di estremità	* *		
	3.3 Travi trasversali intermedie	2 volte la luce delle travi trasversali		
	3.4 Travi trasversali d'estremità	luce della trave trasversale		
IMPAL	CATO DI PONTE IN CALCESTRUZZO CON BALLAST (PER IL C	ALCOLO DEGLI EFFETTI LOCALI E TRASVERSALI)		
	4.1 Solette superiori <i>e traversi</i> di impalcati a sezione			
	scatolare o a graticcio di travi			
	 nella direzione trasversale alle travi principali 	3 volte la luce della soletta		
	- nella direzione longitudinale	3 volte la luce della soletta d'impalcato o, se		
		minore, la lunghezza caratteristica della trave		
		principale		
	 mensole trasversali supportanti carichi ferrovia- 	3 volte la distanza fra le anime della struttura		
	ri: se e>0,50 m, essendo e la distanza fra l'asse	principale longitudinale		
	della rotaia più esterna e il filo esterno			
	dell'anima più esterna della struttura principale			
4	longitudinale, occorre uno studio specifico.	2 1 10 1 11		
	4.2 Soletta continua su travi trasversali (nella dire-	2 volte l'interasse delle travi trasversali		
	zione delle travi principali)			
	4.3 Solette per ponti a via inferiore:	2 malta la lucas della caletta		
	- ordite perpendicolarmente alle travi principali	2 volte la luce della soletta		
	- ordite parallelamente alle travi principali	2 volte la luce della soletta o, se minore, la		
	4.4 Immelesti e trani in componete tecesate enterenel	lunghezza caratteristica delle travi principali;		
	4.4 Impalcati a travi incorporate tessute ortogonal-	2 volte la lunghezza caratteristica in direzione		
	mente all'asse del binario	longitudinale		
	4.5 Mensole longitudinali supportanti carichi ferro-	se e≤0,5: m Φ ₂ =1,67; per e>0,5 m v.(4.1)		
	viari (per le azioni in direzione longitudinale)			

TRAVI	TRAVI PRINCIPALI					
	5.1 Travi e solette semplicemente appoggiate (compresi i solettoni a travi incorporate)	luce nella direzione delle travi principali				
	5.2 Travi e solette continue su n luci, indicando con:	$L_{\phi} = kL_m$ dove:				
		$n = 2 - 3 - 4 - \ge 5$				
	$L_{\rm m} = 1/{\rm n} \cdot ({\rm L}1 + {\rm L}2 + + {\rm L}{\rm n})$	k = 1,2 -1,3 -1,4 -1,5				
	5.3 Portali:					
5	- a luce singola	da considerare come trave continua a tre luci (usando la 5.2 considerando le altezze dei piedritti e la lunghezza del traverso)				
	- a luci multiple	da considerare come trave continua a più luci (usando la 5.2 considerando le altezze dei piedritti terminali e la lunghezza di tutti i traversi)				
	5.4 Solette ed altri elementi di scatolari per uno o più binari (sottovia di altezza libera ≤ 5,0 m e luce libera ≤ 8,0 m).	$\Phi_2 = 1,20; \Phi_3 = 1,35$				
	Per gli scatolari che non rispettano i precedenti limiti vale il punto 5.3, trascurando la presen- za della soletta inferiore e considerando un coefficiente riduttivo del Φ pari a 0,9, da ap- plicare al coefficiente Φ					
	5.5 Travi ad asse curvilineo, archi a spinta eliminata, archi senza riempimento.	metà della luce libera				
	5.6 Archi e serie di archi con riempimento	due volte la luce libera				

	5.7 Strutture di sospensione (di collegamento a travi di irrigidimento)	4 volte la distanza longitudinale fra le strutture di sospensione
SUPPO	ORTI STRUTTURALI	
	6.1 Pile con snellezza λ>30	somma delle lunghezze delle campate adia- centi la pila
6	6.2 Appoggi, calcolo delle tensioni di contatto al di sotto degli stessi e tiranti di sospensione	lunghezza degli elementi sostenuti

I coefficienti di incremento dinamico sono stabiliti con riferimento a travi semplicemente appoggiate. La lunghezza L_{ϕ} permette di estendere l'uso di questi coefficienti anche ad altre tipologie strutturali.

Ove le sollecitazioni agenti in un elemento strutturale dipendessero da diversi termini ciascuno dei quali afferente a componenti strutturali distinti, ognuno di questi termini dovrà calcolarsi utilizzando la lunghezza caratteristica L_{ϕ} appropriata.

Questo coefficiente dinamico Φ non dovrà essere usato con i seguenti carichi:

- treno scarico;
- treni "reali".

Per i ponti metallici con armamento diretto occorrerà considerare un ulteriore coefficiente di adattamento dell'incremento dinamico β (inserito per tener conto del maggiore incremento dinamico dovuto al particolare tipo di armamento), variabile esclusivamente in funzione della lunghezza caratteristica L_{ϕ} dell'elemento, dato da:

$$\beta$$
= 1,0 per L_{ϕ} <8 m ed L_{ϕ} > 90 m

$$β$$
= 1,1 per 8 m < $L_{Φ}$ ≤90 m

Nei casi di ponti ad arco o scatolari, con o senza solettone di fondo, aventi copertura "h" maggiore di 1,0 m, il coefficiente dinamico può essere ridotto nella seguente maniera:

$$\Phi_{rid} = \Phi - \frac{h - 1,00}{10} \ge 1,0$$
 [5.2.8]

dove h, in metri, è l'altezza della copertura dall'estradosso della struttura alla faccia superiore delle traverse.

Per le strutture dotate di una copertura maggiore di 2,50 m può assumersi un coefficiente di incremento dinamico unitario.

Pile con snellezza $\lambda \le 30$, spalle, fondazioni, muri di sostegno e spinte del terreno possono essere calcolate assumendo coefficienti dinamici unitari.

Qualora debbano eseguirsi verifiche con treni reali, agli stessi dovranno essere associati coefficienti dinamici reali.

5.2.2.3 AZIONI VARIABILI ORIZZONTALI

5.2.2.3.1 Forza centrifuga

Nei ponti ferroviari al di sopra dei quali il binario presenta un tracciato in curva deve essere considerata la forza centrifuga agente su tutta l'estensione del tratto in curva.

La forza centrifuga si considera agente verso l'esterno della curva, in direzione orizzontale ed applicata alla quota di 1,80 m al di sopra del P.F..

I calcoli si basano sulla massima velocità compatibile con il tracciato della linea. Ove siano considerati gli effetti dei modelli di carico SW, si assumerà una velocità di 100 km/h.

Il valore caratteristico della forza centrifuga si determinerà in accordo con la seguente espressione:

$$Q_{ik} = \frac{v^2}{g \cdot r} \cdot \left(f \cdot \alpha Q_{vk} \right) = \frac{V^2}{127 \cdot r} \cdot \left(f \cdot \alpha Q_{vk} \right)$$
 [5.2.9.a]

$$q_{ik} = \frac{v^2}{g \cdot r} \cdot \left(f \cdot \alpha q_{vk} \right) = \frac{V^2}{127 \cdot r} \cdot \left(f \cdot \alpha q_{vk} \right)$$
 [5.2.9.b]

dove:

 Q_{tk} - q_{tk} = valore caratteristico della forza centrifuga [kN -kN/m];

 Q_{vk} - q_{vk} = valore caratteristico dei carichi verticali [kN -kN/m];

 α = coefficiente di adattamento;

v = velocità di progetto espressa in m/s;

V = velocità di progetto espressa in km/h;

f = fattore di riduzione (definito in seguito nella 5.2.10);

g = accelerazione di gravità in m/s²;

= raggio di curvatura in m.

Nel caso di curva policentrica come valore del raggio r dovrà essere assunto un opportuno valore medio fra i raggi di curvatura che interessano la campata in esame.

La forza centrifuga sarà sempre combinata con i carichi verticali supposti agenti nella generica configurazione di carico, e non sarà incrementata dai coefficienti dinamici.

f è un fattore di riduzione dato in funzione della velocità V e della lunghezza L_f di binario carico.

$$f = \left[1 - \frac{V - 120}{1000} \left(\frac{814}{V} + 1,75\right) \cdot \left(1 - \sqrt{\frac{2,88}{L_f}}\right)\right]$$
 [5.2.10]

dove.

L_f = lunghezza di influenza, in metri, della parte curva di binario carico sul ponte, che è la più sfavorevole per il progetto del generico elemento strutturale;

 $f = 1 \text{ per } V \le 120 \text{ km/h o } L_f \le 2,88 \text{ m};$

 $f < 1 \text{ per } 120 \le V \le 300 \text{ km/h e L}_f > 2,88 \text{ m};$

f(V) = f(300) per V > 300 km/h.

Per il modello di carico LM 71 e per velocità di progetto superiori ai 120 km/h, saranno considerati due casi:

- (a) Modello di carico LM 71 e forza centrifuga per V = 120 km/h in accordo con le formule precedenti dove f = 1;
- (b) Modello di carico LM 71 e forza centrifuga calcolata secondo le precedenti espressioni per la massima velocità di progetto.

Inoltre, per ponti situati in curva, dovrà essere considerato anche il caso di assenza di forza centrifuga (convogli fermi).

Per i modelli di carico LM71 e SW/0 l'azione centrifuga si dovrà determinare partendo dalle equazioni [5.2.9] e [5.2.10] considerando i valori di V, α , e f definiti nella seguente Tab. 5.2 II.b.

Tab. 5.2.II.b. - Parametri per determinazione della forza centrifuga

Massima velo- Azione centrifuga ba			rifuga basata su:	Carico verticale		
Valore di α	cità della linea [Km/h]	v	α	f		associato
	≥ 100	100	1	1	1 x 1 x SW/2	
SW/2	< 100	V	1	1	1 x 1 x SW/2	Φ x 1 x SW/2
		V	1	f	1 x f x (LM71"+"SW/0)	Φ x 1 x 1 x (LM71"+"SW/0)
LM71 e SW/0	> 120	120	α	1	α x 1 x (LM71"+"SW/0)	Φχαχ1χ
	≤ 120	V	α	1	α x 1 x (LM71"+"SW/0)	(LM71"+"SW/0)

5.2.2.3.2 Azione laterale (Serpeggio)

La forza laterale indotta dal serpeggio si considera come una forza concentrata agente orizzontalmente, applicata alla sommità della rotaia più alta, perpendicolarmente all'asse del binario. Tale azione si applicherà sia in rettifilo che in curva.

Il valore caratteristico di tale forza sarà assunto pari a Q_{sk} = 100 kN. Tale valore deve essere moltiplicato per α , (se α >1), ma non per il coefficiente Φ .

Questa forza laterale deve essere sempre combinata con i carichi verticali.

5.2.2.3.3 Azioni di avviamento e frenatura

Le forze di frenatura e di avviamento agiscono sulla sommità del binario, nella direzione longitudinale dello stesso. Dette forze sono da considerarsi uniformemente distribuite su una lunghezza di binario L determinata per ottenere l'effetto più gravoso sull'elemento strutturale considerato.

I valori caratteristici da considerare sono i seguenti:

avviamento: $Q_{la,k} = 33 \text{ [kN/m]} \cdot \text{L[m]} \le 1000 \text{ kN}$ per modelli di carico LM 71, SW/0,

SW/2

frenatura: $Q_{lb,k} = 20 \text{ [kN/m]} \cdot \text{L[m]} \le 6000 \text{ kN}$ per modelli di carico LM 71, SW/0

 $Q_{lb,k} = 35 [kN/m] \cdot L[m]$ per modelli di carico SW/2

Questi valori caratteristici sono applicabili a tutti i tipi di binario, sia con rotaie saldate, sia con rotaie giuntate, con o senza dispositivi di espansione.

Le azioni di frenatura ed avviamento saranno combinate con i relativi carichi verticali (per modelli di carico SW/0 e SW/2 saranno tenute in conto solo le parti di struttura che sono caricate in accordo con la Fig 5.2.2 e con la Tab. 5.2.1).

Quando la rotaia è continua ad una o ad entrambe le estremità del ponte solo una parte delle forze di frenatura ed avviamento è trasferita, attraverso l'impalcato, agli apparecchi di appoggio, la parte rimanente di queste forze è trasmessa, attraverso le rotaie, ai rilevati a tergo delle spalle. La percentuale di forze trasferite attraverso l'impalcato agli apparecchi di appoggio è valutabile con le modalità riportate nel paragrafo relativo agli effetti di interazione statica.

Nel caso di ponti a doppio binario si devono considerare due treni in transito in versi opposti, uno in fase di avviamento, l'altro in fase di frenatura.

Nel caso di ponti a più di due binari si deve considerare:

- un primo binario con la massima forza di frenatura;
- un secondo binario con la massima forza di avviamento nello stesso verso della forza di frenatura;
- un terzo ed un quarto binario con il 50% della forza di frenatura, concorde con le precedenti;
- altri eventuali binari privi di forze orizzontali.

Per il treno scarico la frenatura e l'avviamento possono essere trascurate.

Per lunghezze di carico superiori a 300 m dovranno essere eseguiti appositi studi per valutare i requisiti aggiuntivi da tenere in conto ai fini degli effetti di frenatura ed avviamento.

Per la determinazione delle azioni di frenatura e avviamento relative a ferrovie diverse da quelle ordinarie (ferrovie leggere, metropolitane, a scartamento ridotto, ecc.) dovranno essere eseguiti appositi studi in relazione alla singola tipologia di infrastruttura.

I valori caratteristici dell'azione di frenatura e di quella di avviamento devono essere moltiplicati per α e non devono essere moltiplicati per Φ .

5.2.2.4 AZIONI VARIABILI AMBIENTALI

5.2.2.4.1 Azione del vento

Le azioni del vento sono definite al § 3.3 delle presenti Norme Tecniche.

Nelle stesse norme sono individuate le metodologie per valutare l'effetto dell'azione sia come effetto statico che dinamico. Le strutture andranno progettate e verificate nel rispetto di queste azioni.

Nei casi ordinari il treno viene individuato come una superficie piana continua convenzionalmente alta 4 m dal P.F., indipendentemente dal numero dei convogli presenti sul ponte.

Nel caso in cui si consideri il ponte scarico, l'azione del vento dovrà considerarsi agente sulle barriere antirumore presenti, così da individuare la situazione più gravosa.

5.2.2.4.2 Temperatura

Le azioni della temperatura sono definite al § 3.5 delle presenti Norme Tecniche.

Nelle stesse norme sono individuate le metodologie per valutare l'effetto dell'azione. Le strutture andranno progettate e verificate nel rispetto di queste azioni.

Variazione termica non uniforme

In aggiunta alla variazione termica uniforme, andrà considerato un gradiente di temperatura di 5 °C fra estradosso ed intradosso di impalcato con verso da determinare caso per caso.

Nel caso di impalcati a cassone in calcestruzzo, andrà considerata una differenza di temperatura di 5 °C con andamento lineare nello spessore delle pareti e nei due casi di temperatura interna maggiore/minore dell'esterna.

Nei ponti a struttura mista acciaio-calcestruzzo, andrà considerata anche una differenza di temperatura di 5 °C tra la soletta in calcestruzzo e la trave in acciaio.

Anche per le pile si dovrà tenere conto degli effetti dovuti ai fenomeni termici e di ritiro differenziale.

Per le usuali tipologie di pile cave, salvo più accurate determinazioni, si potranno adottare le ipotesi approssimate di seguito descritte:

- differenza di temperatura tra interno ed esterno pari a 10 °C (con interno più caldo dell'esterno o viceversa), considerando un modulo elastico E non ridotto;
- variazione termica uniforme tra fusto, pila e zattera interrata pari a 5 °C (zattera più fredda della pila e viceversa) con variazione lineare tra l'estradosso zattera di fondazione ed una altezza da assumersi, in mancanza di determinazioni più precise, pari a 5 volte lo spessore della parete della pila.

Per la verifica delle deformazioni orizzontali e verticali degli impalcati, con l'esclusione delle analisi di comfort, dovranno considerarsi delle differenze di temperatura fra estradosso ed intradosso e fra le superfici laterali più esterne degli impalcati di 10 °C. Per tali differenze di temperatura potrà assumersi un andamento lineare fra i detti estremi, considerando gli stessi gradienti termici diretti sia in un verso che nell'altro.

Per il calcolo degli effetti di interazione statica binario-struttura, si potranno considerare i seguenti effetti termici sul binario:

- in assenza di apparecchi di dilatazione del binario, si potrà considerare nulla la variazione termica nel binario, essendo essa ininfluente ai fini della valutazione delle reazioni nei vincoli fissi e delle tensioni aggiuntive nelle rotaie e non generando essa scorrimenti relativi binario impalcato:
- in presenza di apparecchi di dilatazione del binario, si assumeranno variazioni termiche del binario pari a +30 °C e -40 °C rispetto alla temperatura di regolazione del binario stesso. Nel caso di impalcato in acciaio esse dovranno essere applicate contemporaneamente alle variazioni termiche dell'impalcato e con lo stesso segno. Nel caso di impalcati in c.a.p. o misti in acciaio-calcestruzzo, occorrerà considerare, tra le due seguenti, la condizione più sfavorevole nella combinazione con le altre azioni: nella prima è nulla la variazione termica nell'impalcato e massima (positiva o negativa) quella nella rotaia, nella seconda è nulla la variazione termica nella rotaia e massima (positiva o negativa) quella nell'impalcato.

Ai fini delle verifiche di interazione, le massime variazioni termiche dell'impalcato rispetto alla temperatura dello stesso all'atto della regolazione del binario, possono essere assunte pari a quelle indicate in precedenza, in funzione dei materiali costituenti l'opera e della tipologia di armamento. Quanto innanzi esplicitato trova applicazione quando la regolazione del binario viene eseguita nei periodi stagionali nei quali il ponte viene a trovarsi approssimativamente in condizioni di temperatura media. In generale si possono ritenere trascurabili, e comunque in favore di sicurezza, gli effetti del gradiente termico lungo l'altezza dell'impalcato.

5.2.2.5 EFFETTI DI INTERAZIONE STATICA TRENO-BINARIO-STRUTTURA

Nei casi in cui si abbia continuità delle rotaie tra il ponte ed il rilevato a tergo delle spalle ad una o ad entrambe le estremità del ponte (ipotesi di assenza, ad uno o ad entrambi gli estremi del ponte, di apparecchi di dilatazione del binario) si dovrà tenere conto degli effetti di interazione tra binario e struttura che inducono forze longitudinali nella rotaia e nella sottostruttura del ponte (sistemi fondazione-pila-apparecchio di appoggio, fondazione-spalla-apparecchio di appoggio) e scorrimenti longitudinali tra binario e impalcato che interessano il mezzo di collegamento (ballast e/o attacco).

Le suddette azioni dovranno essere portate in conto nel progetto di tutti gli elementi della struttura (impalcati, apparecchi d'appoggio, pile, spalle, fondazioni, ecc.) e dovranno essere tali da non compromettere le condizioni di servizio del binario (tensioni nella rotaia, scorrimenti binario-impalcato).

Devono essere considerati gli effetti di interazione binario-struttura prodotti da:

- frenatura ed avviamento dei treni;
- variazioni termiche della struttura e del binario;
- deformazioni dovute ai carichi verticali.

Gli effetti di interazione prodotti da viscosità e ritiro nelle strutture in c.a. e c.a.p. dovranno essere presi in conto, ove rilevanti.

La rigidezza del sistema appoggio/pile/fondazioni, da considerare per la valutazione degli effetti delle interazioni statiche, dovrà essere calcolata trascurando lo scalzamento nel caso di pile in alveo.

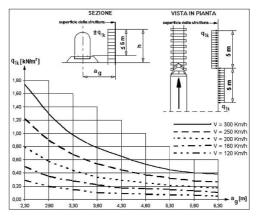
Al fine di garantire la sicurezza del binario rispetto a fenomeni di instabilità per compressione e rottura per trazione della rotaia, nonché rispetto ad eccessivi scorrimenti nel ballast, causa di un suo rapido deterioramento, occorre che vengano rispettati i limiti sull'incremento delle tensioni nel binario e sugli spostamenti relativi tra binario ed estradosso dell'impalcato o del rilevato forniti dal gestore dell'infrastruttura, che specificherà modalità e parametri di controllo in funzione delle caratteristiche dell'infrastruttura e della tipologia di armamento (rotaie, traverse, attacchi) e della presenza o meno del ballast.

La verifica di sicurezza del binario andrà condotta considerando la combinazione caratteristica (SLE), adottando per le azioni termiche coefficienti ψ_0 =1,0.

5.2.2.6 EFFETTI AERODINAMICI ASSOCIATI AL PASSAGGIO DEI CONVOGLI FERROVIARI

Il passaggio dei convogli ferroviari induce sulle superfici situate in prossimità della linea ferroviaria (per esempio barriere antirumore) onde di pressione e depressione secondo gli schemi riportati nel seguito.

Le azioni possono essere schematizzate mediante carichi equivalenti agenti nelle zone prossime alla testa ed alla coda del treno nei casi in cui, in ragione della velocità della linea, non si instaurino amplificazioni dinamiche significative per il comportamento degli elementi strutturali investiti dalle azioni aerodinamiche. Esse dovranno essere utilizzate per il progetto delle barriere e delle relative strutture di sostegno (cordoli, solette, fondazioni, ecc.).


I carichi equivalenti sono considerati valori caratteristici delle azioni.

In ogni caso le azioni aerodinamiche dovranno essere cumulate con l'azione del vento come indicato al punto 5.2.3.3.2.

5.2.2.6.1 Superfici verticali parallele al binario

I valori caratteristici dell'azione \pm q_{1k} relativi a superfici verticali parallele al binario sono forniti in Fig. 5.2.8 in funzione della distanza a_g dall'asse del binario più vicino.

 $\textbf{Fig. 5.2.8} - \textit{Valori caratteristici delle azioni} \ \ q_{1k} \ \textit{per superfici verticali parallele al binario}$

I suddetti valori sono relativi a treni con forme aerodinamiche sfavorevoli; per i casi di forme aerodinamiche favorevoli, questi valori dovranno essere corretti per mezzo del fattore k_1 , ove:

 $k_1 = 0.85$ per convogli formati da carrozze con sagoma arrotondata;

 $k_1 = 0,60$ per treni aerodinamici.

Se l'altezza di un elemento strutturale (o parte della sua superficie di influenza) è \leq 1,0 m o se la larghezza è \leq 2,50 m, l'azione q_{1k} deve essere incrementata del fattore k_2 =1,3.

5.2.2.6.2 Superfici orizzontali al di sopra del binario

I valori caratteristici dell'azione \pm q_{2k} relativi a superfici orizzontali al di sopra del binario, sono forniti in Fig. 5.2.9 in funzione della distanza hg della superficie inferiore della struttura dal PF.

La larghezza d'applicazione del carico per gli elementi strutturali da considerare si estende sino a 10 m da ciascun lato a partire dalla mezzeria del binario.

Per convogli transitanti in due direzioni opposte le azioni saranno sommate. Nel caso di presenza di più binari andranno considerati solo due binari.

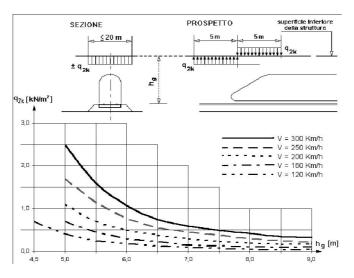
Anche l'azione q_{2k} andrà ridotta del fattore $k_{1\prime}$ in accordo a quanto previsto nel precedente § 5.2.2.6.1.

Le azioni agenti sul bordo di elementi nastriformi che attraversano i binari, come ad esempio le passerelle, possono essere ridotte con un fattore pari a 0,75 per una larghezza fino a 1,50 m.

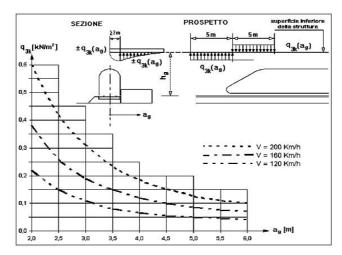
5.2.2.6.3 Superfici orizzontali adiacenti il binario

I valori caratteristici dell'azione \pm q_{3k} , relativi a superfici orizzontali adiacenti il binario, sono forniti in Fig. 5.2.10 e si applicano indipendentemente dalla forma aerodinamica del treno.

Per tutte le posizioni lungo le superfici da progettare, q_{3k} si determinerà come una funzione della distanza a_g dall'asse del binario più vicino. Le azioni saranno sommate, se ci sono binari su entrambi i lati dell'elemento strutturale da calcolare.


Se la distanza h_g supera i 3,80 m l'azione q_{3k} può essere ridotta del fattore k_3 :

$$k_3 = \frac{(7.5 - h_g)}{3.7}$$
 per 3.8 m < h_g < 7.5 m;


 $k_3 = 0$ per $h_g \ge 7.5$ m

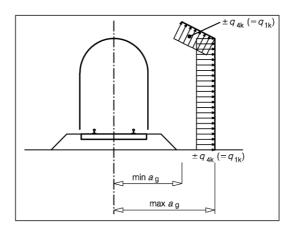
dove h_g rappresenta la distanza dal P.F. alla superficie inferiore della struttura.

 $\textbf{Fig. 5.2.9} \ - \textit{Valori caratteristici delle azioni } \textit{q}_{2k} \textit{per superfici orizzontali al di sopra del binario}$

 $\textbf{Fig. 5.2.10} - Valori\ caratteristici\ delle\ azioni\ q_{3k}\ per\ superfici\ orizzontali\ adiacenti\ il\ binario$

5.2.2.6.4 Strutture con superfici multiple a fianco del binario sia verticali che orizzontali o inclinate

I valori caratteristici dell'azione \pm q_{4k} sono forniti in Fig. 5.2.11 e si applicano ortogonalmente alla superficie considerata. Le azioni sono determinate secondo quanto detto nel precedente \S 5.2.2.6.1 adottando una distanza fittizia dal binario pari a


$$a'_{g} = 0.6 \text{ min } a_{g} + 0.4 \text{ max } a_{g}$$
 [5.2.10]

Le distanze min $a_{g'}$ max a_{g} sono indicate in Fig. 5.2.11.

Nei casi in cui max $a_g > 6$ m si adotterà max $a_g = 6.0$ m

I coefficienti $\mathbf{k_1}$ e $\mathbf{k_2}$ sono gli stessi definiti al precedente § 5.2.2.6.1.

 $\textbf{Fig. 5.2.11} - Definizione \ della \ distanza \ max \ a_{g} \ e \ min \ a_{g} \ dall'asse \ del \ binario$

5.2.2.6.5 Superfici che circondano integralmente il binario per lunghezze inferiori a 20 m

In questo caso, tutte le azioni si applicheranno indipendentemente dalla forma aerodinamica del treno nel modo seguente:.

- $\quad \text{sulle superfici verticali} \pm k_4 \cdot q_{1k'} \text{ per tutta l'altezza dell'elemento, con } q_{1k} \text{ determinato in accordo con il punto 5.2.2.6.1 e } k_4 = 2;$
- sulla superficie orizzontale $\pm k_5 \cdot q_{2k}$, con:
 - q_{2k} determinato in accordo con il punto 5.2.2.6.2;
 - k_5 = 2,5 se la struttura racchiude un solo binario;
 - k_5 = 3,5 se la struttura racchiude due binari.

5.2.2.7 AZIONI IDRODINAMICHE

Le azioni idrauliche sulle pile poste nell'alveo dei fiumi andranno calcolate secondo le prescrizioni del § 5.2.1.2 tenendo conto, oltre che dell'orientamento e della forma della pila, anche degli effetti di modificazioni locali dell'alveo dovute, per esempio, allo scalzamento.

5.2.2.8 AZIONI SISMICHE

Per le azioni sismiche si devono rispettare le prescrizioni di cui al § 3.2. e al § 7.9.

Per la determinazione degli effetti di tali azioni si farà di regola riferimento alle sole masse corrispondenti ai pesi propri ed ai carichi permanenti e considerando con un coefficiente Ψ_2 = 0,2 il valore quasi permanente delle masse corrispondenti ai carichi da traffico ferroviario.

5.2.2.9 AZIONI ECCEZIONALI

Le azioni eccezionali da considerare nel progetto saranno valutate sulla base delle indicazioni contenute nel § 3.6 in generale e al § 3.6.3.1 in particolare.

Con riferimento al § 3.6.3.1 si puntualizza che le azioni d'urto agenti sugli elementi strutturali orizzontali al disopra della strada, sono da impiegarsi per la verifica di sicurezza globale dell'impalcato nel suo insieme inteso come corpo rigido (sollevamento/ribaltamento); all'occorrenza di tali eventi sono ammessi danni localizzati agli elementi strutturali che non comportino il collasso dell'impalcato.

Sempre nell'ambito delle azioni eccezionali devono essere considerate quelle riportate nei seguenti paragrafi.

5.2.2.9.1 Rottura della catenaria

Si dovrà considerare l'eventualità che si verifichi la rottura della catenaria nel punto più sfavorevole per la struttura del ponte. La forza trasmessa alla struttura in conseguenza di un simile evento si considererà come una forza di natura statica agente in direzione parallela all'asse dei binari, di intensità pari a ± 20 kN e applicata sui sostegni alla quota del filo.

In funzione del numero di binari presenti sull'opera si assumerà la rottura simultanea di:

1 catenaria per ponti con un binario;

2 catenarie per ponti con un numero di binari compreso fra 2 e 6;

3 catenarie per ponti con più di sei binari.

Nelle verifiche saranno considerate rotte le catenarie che determinano l'effetto più sfavorevole.

5.2.2.9.2 Deragliamento al di sopra del ponte

Oltre a considerare i modelli di carico verticale da traffico ferroviario, ai fini della verifica della struttura si dovrà tenere conto della possibilità alternativa che un locomotore o un carro pesante deragli, esaminando separatamente le due seguenti situazioni di progetto:

Caso 1:

Si considerano due carichi verticali lineari q_{A1d} = 60 kN/m (comprensivo dell'effetto dinamico) ciascuno.

Trasversalmente i carichi distano fra loro di S (scartamento del binario) e possono assumere tutte le posizioni comprese entro i limiti indicati in Fig. 5.2.12.

Per questa condizione sono tollerati danni locali, purché possano essere facilmente riparati, mentre sono da evitare danneggiamenti delle strutture portanti principali.

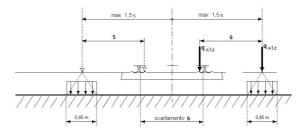


Fig. 5.2.12 - Caso 1

Caso 2:

Si considera un unico carico lineare q_{A2d} =80 kN/m·1,4 esteso per 20 m e disposto con una eccentricità massima, lato esterno, di 1,5 s rispetto all'asse del binario (Fig. 5.2.13). Per questa condizione convenzionale di carico andrà verificata la stabilità globale dell'opera, come il ribaltamento d'impalcato, il collasso della soletta, ecc.

Per impalcati metallici con armamento diretto, il caso 2 dovrà essere considerato solo per le verifiche globali.

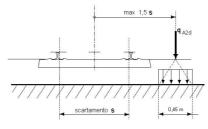


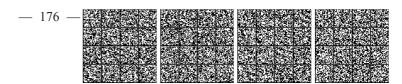
Fig. 5.2.13 - Caso 2

5.2.2.9.3 Deragliamento al di sotto del ponte

Nel posizionamento degli elementi strutturali in adiacenza della ferrovia, ad eccezione delle gallerie artificiali a parete continua, occorre tenere conto che per una zona di larghezza di 3,5 m misurata perpendicolarmente dall'asse del binario più vicino, vige il divieto di edificabilità.

A distanze superiori di 4,50 m è consentita la realizzazione di pilastri isolati. Per distanze intermedie dovranno essere previsti elementi strutturali aventi rigidezza via via crescenti con il diminuire della distanza dal binario.

Le azioni prodotte dal treno deragliato sugli elementi verticali di sostegno adiacenti la sede ferroviaria sono indicate al § 3.6.3.4.


5.2.2.10 AZIONI INDIRETTE

5.2.2.10.1 Distorsioni

Le distorsioni, quali ad esempio i cedimenti vincolari artificialmente provocati e non, sono da considerarsi azioni permanenti. Nei ponti in c.a., c.a.p. e a struttura mista i loro effetti vanno valutati tenendo conto dei fenomeni di viscosità.

5.2.2.10.2 Ritiro e viscosità

I coefficienti di ritiro e viscosità finali, salvo sperimentazione diretta, sono quelli indicati rispettivamente nei §§ 11.2.10.6 e 11.2.10.7.

Qualora si debba provvedere al calcolo dell'ampiezza dei giunti e della corsa degli apparecchi di appoggio, gli effetti del ritiro e della viscosità dovranno essere valutati incrementando del 50% i valori di cui al precedente capoverso.

Nella progettazione delle pile di un viadotto ferroviario deve considerarsi il ritiro differenziale fusto-fondazione (fusto-pulvino), considerando un plinto (pulvino) parzialmente stagionato, che non ha, quindi, ancora esaurito la relativa deformazione da ritiro. Conseguentemente a tale situazione si potrà considerare un valore di ritiro differenziale pari al 50% di quello a lungo termine, considerando un valore convenzionale del modulo di elasticità del calcestruzzo pari ad 1/3 di quello misurato.

5.2.2.10.3 Resistenze parassite nei vincoli

Nel calcolo delle pile, delle spalle, delle fondazioni, degli stessi apparecchi d'appoggio e, se del caso, dell'impalcato, si devono considerare le forze che derivano dalle resistenze parassite dei vincoli. Le forze indotte dalla resistenza parassita nei vincoli saranno da esprimere in funzione del tipo di appoggio e del sistema di vincolo dell'impalcato.

5.2.3. PARTICOLARI PRESCRIZIONI PER LE VERIFICHE

5.2.3.1 COMBINAZIONE DEI TRENI DI CARICO E DELLE AZIONI DA ESSI DERIVATE PER PIÙ BINARI

5.2.3.1.1 Numero di binari

Salvo diversa prescrizione progettuale ciascun ponte dovrà essere progettato per il maggior numero di binari geometricamente compatibile con la larghezza dell'impalcato, a prescindere dal numero di binari effettivamente presenti.

5.2.3.1.2 Numero di treni contemporanei

Nella progettazione dei ponti andrà considerata l'eventuale contemporaneità di più treni, secondo quanto previsto nella Tab. 5.2.III considerando, in genere, sia il traffico normale che il traffico pesante.

Tab. 5.2.III - Carichi mobili in funzione del numero di binari presenti sul ponte

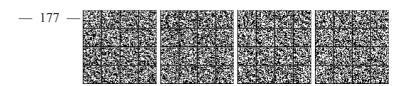
Numero	Binari	Traffico	normale	
di binari	Carichi	caso a ⁽¹⁾	caso b(1)	Traffico pesante ⁽²⁾
1	Primo	1,0 (LM 71"+"SW/0)	=	1,0 SW/2
	Primo	1,0 (LM 71"+"SW/0)	=	1,0 SW/2
2	secondo	1,0 (LM 71"+"SW/0)	=	1,0 (LM 71"+"SW/0)
	Primo	1,0 (LM 71"+"SW/0)	0,75 (LM 71"+"SW/0)	1,0 SW/2
≥3	secondo	1,0 (LM 71"+"SW/0)	0,75 (LM 71"+"SW/0)	1,0 (LM 71"+"SW/0)
≥3	Altri	-	0,75 (LM 71"+"SW/0)	-

 $^{^{(1)}} LM71~\mbox{\em "+"}$ SW/0 significa considerare il più sfavorevole fra i treni LM 71, SW/0

Per strutture con 3 o più binari dovranno considerarsi due distinte condizioni: la prima che prevede caricati solo due binari (primo e secondo) considerando gli effetti più gravosi tra il caso "a" ed il traffico pesante; la seconda che prevede tutti i binari caricati con l'entità del carico corrispondente a quello fissato nel caso "b".

Come "primo" binario si intende quello su cui disporre il treno più pesante per avere i massimi effetti sulla struttura. Per "secondo" binario si intende quello su cui viene disposto il secondo treno per avere, congiuntamente con il primo, i massimi effetti sulla struttura; pertanto, il "primo" e il "secondo" binario possono anche non essere contigui nel caso di ponti con 3 o più binari.

Qualora la presenza del secondo treno o, eventualmente, dei successivi, riduca l'effetto in esame, essi non vanno considerati presenti. Tutti gli effetti delle azioni dovranno determinarsi con i carichi e le forze disposti nelle posizioni più sfavorevoli. Azioni che producano effetti favorevoli saranno trascurate (ad eccezione dei casi in cui si considerino i treni di carico SW i quali debbono considerarsi applicati per l'intera estensione del carico).


5.2.3.1.3 Simultaneità delle azioni da traffico - valori caratteristici delle azioni combinate in gruppi di carichi

Gli effetti dei carichi verticali dovuti alla presenza dei convogli vanno sempre combinati con le altre azioni derivanti dal traffico ferroviario, adottando i coefficienti indicati in Tab. 5.2.IV.

Il carico verticale, nel caso di ponti con più binari, è quello che si ottiene con i treni specificati nella Tab. 5.2.III.

Nella valutazione degli effetti di interazione, alle azioni conseguenti all'applicazione dei carichi da traffico ferroviario si adotteranno gli stessi coefficienti parziali dei carichi che li generano.

I valori fra parentesi indicati nella Tab. 5.2.IV vanno assunti quando l'azione risulta favorevole nei riguardi della verifica che si sta svolgendo.

⁽²⁾Salvo i casi in cui sia esplicitamente escluso

Tab. 5.2.IV -Valutazione dei carichi da traffico

TIPO DI CARICO	Azioni v	erticali	Azioni orizzontali				
Gruppi di carico	Carico verticale (1)	Treno scarico	Frenatura e avviamento	Centrifuga Serpeggio		Commenti	
Gruppo 1 (2)	1,0	-	0,5 (0,0)	1,0 (0,0)	1,0 (0,0)	massima azione verticale e laterale	
Gruppo 2 (2)	-	1,0	0,0	1,0 (0,0)	1,0 (0,0)	stabilità laterale	
Gruppo 3 (2)	1,0 (0,5)	-	1,0	0,5 (0,0)	0,5 (0,0)	massima azione longitudinale	
Gruppo 4	0,8 (0,6;0,4)	-	0,8 (0,6;0,4)	0,8 (0,6;0,4)	0,8 (0,6;0,4)	Fessurazione	

⁽¹⁾ Includendo tutti i valori (F; a; etc..)

Il gruppo 4 è da considerarsi esclusivamente per le verifiche a fessurazione. I valori indicati fra parentesi si assumeranno pari a: (0,6) per impalcati con 2 binari caricati e (0,4) per impalcati con tre o più binari caricati.

5.2.3.1.4 Valori rari e frequenti delle azioni da traffico ferroviario

Le azioni derivanti da ciascuno dei gruppi di carico definiti nella Tab. 5.2.IV sono da intendersi come un'unica azione caratteristica da utilizzarsi nella definizione dei valori rari e frequenti.

5.2.3.1.5 Valori quasi-permanenti delle azioni da traffico ferroviario

I valori quasi permanenti delle azioni da traffico ferroviario possono assumersi uguali a zero ad eccezione delle combinazioni sismiche.

5.2.3.1.6 Azioni da traffico ferroviario in situazioni transitorie

Nelle verifiche di progetto per situazioni transitorie dovute alla manutenzione dei binari o del ponte, i valori caratteristici delle azioni da traffico, caso per caso, sono da concordarsi con l'autorità ferroviaria.

5.2.3.2 VERIFICHE AGLI SLU E SLE

5.2.3.2.1 Requisiti concernenti gli SLU

Per le verifiche agli stati limite ultimi si adottano i valori dei coefficienti parziali γ in Tab. 5.2.V e i coefficienti di combinazione Ψ in Tab. 5.2.VI.

Tab. 5.2.V- Coefficienti parziali di sicurezza per le combinazioni di carico agli SLU

Coefficie	nte		EQU ⁽¹⁾	A1	A2
Azioni permanenti	favorevoli	γG1	0,90	1,00	1,00
	sfavorevoli		1,10	1,35	1,00
Azioni permanenti non	favorevoli	γG2	0,00	0,00	0,00
strutturali ⁽²⁾	sfavorevoli		1,50	1,50	1,30
Ballast ⁽³⁾	favorevoli	γв	0,90	1,00	1,00
	sfavorevoli		1,50	1,50	1,30
Azioni variabili da traffi-	favorevoli	γο	0,00	0,00	0,00
CO ⁽⁴⁾	sfavorevoli	,	1,45	1,45	1,25
Azioni variabili	favorevoli	γQi	0,00	0,00	0,00
	sfavorevoli	,	1,50	1,50	1,30
Precompressione	favorevole	γP	0,90	1,00	1,00
	sfavorevo-		1,00(5)	1,00(6)	1,00
	le				
Ritiro, viscosità e cedi-	favorevole	γCe	0,00	0,00	0,00
menti non imposti appo-	sfavorevo-	d	1,20	1,20	1,00
sitamente	le				

⁽¹⁾ Equilibrio che non coinvolga i parametri di deformabilità e resistenza del terreno; altrimenti si applicano i valori della colonna A2.

⁽²⁾ La simultaneità di due o tre valori caratteristici interi (assunzione di diversi coefficienti pari ad 1.0), sebbene improbabile, è stata considerata come semplificazione per i gruppi di carico 1,2 e 3 senza che ciò abbia significative conseguenze progettuali

I valori campiti in grigio rappresentano l'azione dominante.

- ^{©1}Nel caso in cui l'intensità dei carichi permanenti non strutturali, o di una parte di essi (ad esempio carichi permanenti portati), sia ben definita in fase di progetto, per detti carichi o per la parte di essi nota si potranno adottare gli stessi coefficienti validi per le azioni permanenti.
- © Quando si prevedano variazioni significative del carico dovuto al ballast, se ne dovrà tener conto esplicitamente nelle verifiche.

 © Le componenti delle azioni da traffico sono introdotte in combinazione considerando uno dei gruppi di carico gr della Tab. 5.2.IV.
- (5) 1,30 per instabilità in strutture con precompressione esterna

Nella Tab. 5.2.V il significato dei simboli è il seguente:

 γ_{GI} coefficiente parziale del peso proprio della struttura, del terreno e dell'acqua, quando pertinente;

 γ_{G2} coefficiente parziale dei pesi propri degli elementi non strutturali;

 γ_B coefficiente parziale del peso proprio del ballast;

 $\gamma_Q \quad \text{coefficiente parziale delle azioni variabili da traffico;}$

 γ_{Qi} coefficiente parziale delle azioni variabili

coefficiente parziale delle azioni di precompressione

 γ_{Ced} coefficiente parziale delle azioni di ritiro, viscosità e cedimenti non imposti appositamente.

Tab. 5.2.VI - Coefficienti di combinazione Ψ delle azioni

Azioni		Ψ_0	ψ_1	Ψ 2
Azioni singole	Carico sul rilevato a tergo delle	0,80	0,50	0,0
	spalle			
da traffico	Azioni aerodinamiche generate	0,80	0,50	0,0
	dal transito dei convogli			
	gr_1	0,80(2)	0,80(1)	0,0
Gruppi di	gr_2	0,80(2)	0,80(1)	-
carico	gr_3	0,80(2)	0,80(1)	0,0
	gr_4	1,00	1,00(1)	0,0
Azioni del vento	F_{Wk}	0,60	0,50	0,0
Azioni da	in fase di esecuzione	0,80	0,0	0,0
neve	SLU e SLE	0,0	0,0	0,0
Azioni termiche	T_k	0,60	0,60	0,50

¹⁾0,80 se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Requisiti concernenti gli SLE

L'assetto di una struttura, da valutarsi in base alle combinazioni di carico previste dalla presente norma, deve risultare compatibile con la geometria della struttura stessa in relazione alle esigenze dei convogli ferroviari.

Per le verifiche agli stati limite d'esercizio si adottano i valori dei coefficienti parziali in Tab. 5.2.VI.

Ove necessario in luogo dei gruppi delle azioni da traffico ferroviario definiti in Tab. 5.2.IV possono considerarsi le singole azioni con i coefficienti di combinazione indicati in Tab. 5.2.VII.

Tab. 5.2.VII - Ulteriori coefficienti di combinazione ψ delle azioni

	Azioni	Ψ0	Ψ1	Ψ2
	Treno di carico LM 71	0,80 ⁽³⁾	(1)	0,0
	Treno di carico SW /0	0,80 ⁽³⁾	0,80	0,0
Azioni singole	Treno di carico SW/2	0,00(3)	0,80	0,0
da traffico	Treno scarico	1,00 ⁽³⁾	-	-
	Centrifuga	(2) (3)	(2)	(2)
	Azione laterale (serpeggio)	1,00 ⁽³⁾	0,80	0,0

^{(1) 0,80} se è carico solo un binario, 0,60 se sono carichi due binari e 0,40 se sono carichi tre o più binari.

Per la valutazione degli effetti dell'interazione si usano gli stessi coefficienti ψ adottati per le azioni che provocano dette interazioni e cioè: temperatura, carichi verticali da traffico ferroviario, frenatura.

^{6 1,20} per effetti locali

⁽²⁾ Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

 $^{^{(2)}}$ Si usano gli stessi coefficienti ψ adottati per i carichi che provocano dette azioni.

[©] Quando come azione di base venga assunta quella del vento, i coefficienti ψ_0 relativi ai gruppi di carico delle azioni da traffico vanno assunti pari a 0,0.

In ogni caso le azioni aerodinamiche devono essere cumulate con l'azione del vento. L'azione risultante dovrà essere maggiore di un valore minimo, funzione della velocità della linea e comunque di 1,5 kN/m² sia nella verifica agli SLE (combinazione caratteristica) sia nella verifica agli SLU con $\gamma_Q = 1,00$ e $\gamma_Q = 1,00$.

5.2.3. 2.2.1 Stati limite di esercizio per la sicurezza del traffico ferroviario

Accelerazioni verticali dell'impalcato

Questa verifica è richiesta per opere sulle quali la velocità di esercizio è superiore ai 200 km/h o quando la frequenza propria della struttura non è compresa nei limiti indicati nella Fig. 5.2.7. La verifica, quando necessaria, dovrà essere condotta considerando convogli reali.

In mancanza di ulteriori specificazioni, per ponti con armamento su ballast, non devono registrarsi accelerazioni verticali superiori a 3.5 m/s^2 nel campo di frequenze da 0 a 20 Hz.

Deformazioni torsionali dell'impalcato

La torsione dell'impalcato del ponte è calcolata considerando il treno di carico LM 71 incrementato con il corrispondente coefficiente dinamico.

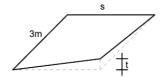


Fig. 5.2.14 - Sghembo ammissibile

Il massimo sghembo, misurato su una lunghezza di 3 m e considerando le rotaie solidali all'impalcato (Fig. 5.2.14), non deve eccedere i seguenti valori:

per $V \le 120 \text{ km/h};$ $t \le 4,5 \text{ mm/3m}$ per $120 < V \le 200 \text{ km/h};$ $t \le 3,0 \text{ mm/3m}$ per V > 200 km/h; $t \le 1,5 \text{ mm/3m}$

Per velocità V > 200 km/h si deve inoltre verificare che per convogli reali, moltiplicati per il relativo incremento dinamico, risulti $t \le 1.2$ mm/3m.

In mancanza di ulteriori specifiche, lo sghembo complessivo dovuto alla geometria del binario (curve di transizione) e quello dovuto alla deformazione dell'impalcato, non deve comunque eccedere i $6\,\mathrm{mm}/3\,\mathrm{m}$.

Inflessione nel piano orizzontale dell'impalcato

Considerando la presenza del treno di carico LM 71, incrementato con il corrispondente coefficiente dinamico, l'azione del vento, la forza laterale (serpeggio), la forza centrifuga e gli effetti della variazione di temperatura lineare fra i due lati dell'impalcato stabilita al § 5.2.2.4, l'inflessione nel piano orizzontale dell'impalcato non deve produrre:

- una variazione angolare maggiore di quella fornita nella successiva Tab. 5.2.VIII;
- un raggio di curvatura orizzontale minore dei valori di cui alla citata tabella.

Tab. 5.2.VIII - Massima variazione angolare e minimo raggio di curvatura

W. 1		Raggio minim	o di curvatura
Velocità [km/h]	Variazione Angolare massima	Singola campata	Più campate
V ≤ 120	0,0035 rd	1700 m	3500 m
120 < V ≤ 200	0,0020 rd	6000 m	9500 m
200 < V	0,0015 rd	14000 m	17500 m

Il raggio di curvatura, nel caso di impalcati a semplice appoggio, è dato dalla seguente espressione:

$$R = \frac{L^2}{8\delta_h}$$
 [5.2.11]

dove $\delta_h \, rappresenta$ la freccia orizzontale.

La freccia orizzontale deve includere anche l'effetto della deformazione della sottostruttura del ponte (pile, spalle e fondazioni), qualora esso sia sfavorevole alla verifica.

Verifiche allo stato limite di fatica

Per strutture e elementi strutturali che presentano dettagli sensibili a fenomeni di fatica vanno effettuate opportune verifiche nei confronti di questo fenomeno.

Le verifiche saranno condotte considerando idonei spettri di carico. La determinazione dell'effettivo spettro di carico da considerare nella verifica del ponte dovrà essere effettuata in base alle caratteristiche funzionali e d'uso della infrastruttura ferroviaria cui l'opera appartiene.

5.2.3.2.4 Verifiche allo stato limite di fessurazione

Per assicurare la funzionalità e la durabilità delle strutture viene prefissato uno stato limite di fessurazione commisurato alle condizioni ambientali, di sollecitazione e di ispezionabilità, nonché alla sensibilità delle armature. Tali verifiche vengono condotte per le azioni da traffico gruppo 4, Tab. 5.2.IV.

CAPITOLO 6.

PROGETTAZIONE GEOTECNICA

6.1. DISPOSIZIONI GENERALI

6.1.1. OGGETTO DELLE NORME

Il presente capitolo riguarda gli aspetti geotecnici della progettazione e della esecuzione di opere ed interventi che interagiscono con il terreno ed in particolare tratta di :

- opere di fondazione;
- opere di sostegno;
- opere in sotterraneo;
- opere e manufatti di materiali sciolti naturali o di provenienza diversa;
- fronti di scavo;
- consolidamento;
- miglioramento e rinforzo dei terreni e degli ammassi rocciosi;
- consolidamento di opere esistenti.

Il presente capitolo riguarda, altresì, la sicurezza dei pendii naturali e la fattibilità di interventi che hanno riflessi su grandi aree.

6.1.2. PRESCRIZIONI GENERALI

Le scelte progettuali devono tener conto delle prestazioni attese delle opere, dei caratteri geologici del sito e delle condizioni ambientali. I risultati dello studio rivolto alla caratterizzazione e modellazione geologica, dedotti da specifiche indagini, devono essere esposti in una specifica relazione geologica di cui al § 6.2.1.

Le analisi di progetto devono essere basate su modelli geotecnici dedotti da specifiche indagini definite dal progettista in base alla tipologia dell'opera o dell'intervento e alle previste modalità esecutive.

Le scelte progettuali, il programma e i risultati delle indagini, la caratterizzazione e la modellazione geotecnica di cui al § 6.2.2, unitamente alle analisi per il dimensionamento geotecnico delle opere e alla descrizione delle fasi e modalità costruttive devono essere illustrati in una specifica relazione geotecnica.

6.2. ARTICOLAZIONE DEL PROGETTO

Il progetto delle opere e degli interventi si articola nelle seguenti fasi:

- 1. caratterizzazione e modellazione geologica del sito;
- 2. scelta del tipo di opera o di intervento e programmazione delle indagini geotecniche;
- 3. caratterizzazione fisico-meccanica dei terreni e delle rocce presenti nel volume significativo e definizione dei modelli geotecnici di sottosuolo (cfr. § 3.2.2);
- 4. definizione delle fasi e delle modalità costruttive;
- 5. verifiche della sicurezza e delle prestazioni
- 6. programmazione delle attività di controllo e monitoraggio.

6.2.1. CARATTERIZZAZIONE E MODELLAZIONE GEOLOGICA DEL SITO

Il modello geologico di riferimento è la ricostruzione concettuale della storia evolutiva dell'area di studio, attraverso la descrizione delle peculiarità genetiche dei diversi terreni presenti, delle dinamiche dei diversi termini litologici, dei rapporti di giustapposizione reciproca, delle vicende tettoniche subite e dell'azione dei diversi agenti morfogenetici.

La caratterizzazione e la modellazione geologica del sito deve comprendere la ricostruzione dei caratteri litologici, stratigrafici, strutturali, idrogeologici, geomorfologici e, più in generale, di pericolosità geologica del territorio, descritti e sintetizzati dal modello geologico di riferimento.

In funzione del tipo di opera, di intervento e della complessità del contesto geologico nel quale si inserisce l'opera, specifiche indagini saranno finalizzate alla documentata ricostruzione del modello geologico.

Il modello geologico deve essere sviluppato in modo da costituire elemento di riferimento per il progettista per inquadrare i problemi geotecnici e per definire il programma delle indagini geotecniche

La caratterizzazione e la modellazione geologica del sito devono essere esaurientemente esposte e commentate in una relazione geologica, che è parte integrante del progetto. Tale relazione comprende, sulla base di specifici rilievi ed indagini , la identificazione delle formazioni presenti nel sito, lo studio dei tipi litologici, della struttura del sottosuolo e dei caratteri fisici degli ammassi, definisce il modello geologico del sottosuolo, illustra e caratterizza gli aspetti stratigrafici, strutturali, idrogeologici, geomorfologici, nonché i conseguenti livelli delle pericolosità geologiche.

6.2.2. INDAGINI, CARATTERIZZAZIONE E MODELLAZIONE GEOTECNICA

Le indagini geotecniche devono essere programmate in funzione del tipo di opera e/o di intervento, devono riguardare il volume significativo e, in presenza di azioni sismiche, devono essere conformi a quanto prescritto ai §§ 3.2.2 e 7.11.2. Per volume significativo di terreno si intende la parte di sottosuolo influenzata, direttamente o indirettamente, dalla costruzione del manufatto e che influenza il manufatto stesso. Le indagini devono permettere la definizione dei modelli geotecnici di sottosuolo necessari alla progettazione. Della definizione del piano delle indagini, della caratterizzazione e della modellazione geotecnica è responsabile il progettista.

Ai fini dell'analisi quantitativa di uno specifico problema, per modello geotecnico di sottosuolo si intende uno schema rappresentativo del volume significativo di terreno, suddiviso in unità omogenee sotto il profilo fisico-meccanico, che devono essere caratterizzate con riferimento allo specifico problema geotecnico. Nel modello geotecnico di sottosuolo devono essere definiti il regime delle pressioni interstiziali e i valori caratteristici dei parametri geotecnici.

Per valore caratteristico di un parametro geotecnico deve intendersi una stima ragionata e cautelativa del valore del parametro per ogni stato limite considerato. I valori caratteristici delle proprietà fisiche e meccaniche da attribuire ai terreni devono essere dedotti dall'interpretazione dei risultati di specifiche prove di laboratorio su campioni rappresentativi di terreno e di prove e misure in sito

Per gli ammassi rocciosi e per i terreni a struttura complessa, nella valutazione della resistenza caratteristica occorre tener conto della natura e delle caratteristiche geometriche e di resistenza delle discontinuità. Deve inoltre essere specificato se la resistenza caratteristica si riferisce alle discontinuità o all'ammasso roccioso.

Per la verifica delle condizioni di sicurezza e delle prestazioni di cui al successivo § 6.2.4, la scelta dei valori caratteristici delle quote piezometriche e delle pressioni interstiziali deve tenere conto della loro variabilità spaziale e temporale.

Le prove di laboratorio, sulle terre e sulle rocce, devono essere eseguite e certificate dai laboratori di prova di cui all'art. 59 del DPR 6 giugno 2001, n. 380. I laboratori su indicati fanno parte dell'elenco depositato presso il Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici.

Nel caso di costruzioni o di interventi di modesta rilevanza, che ricadano in zone ben conosciute dal punto di vista geotecnico, la progettazione può essere basata su preesistenti indagini e prove documentate, ferma restando la piena responsabilità del progettista su ipotesi e scelte progettuali.

6.2.3. FASI E MODALITA' COSTRUTTIVE

Nel progetto devono essere individuate le diverse fasi esecutive per definire eventuali specifiche condizioni geotecniche anche a carattere temporaneo che possono verificarsi nel corso dei lavori. Queste fasi dovranno essere oggetto di specifiche analisi da condurre con i criteri e le procedure riportati nelle presenti norme.

6.2.4. VERIFICHE DELLA SICUREZZA E DELLE PRESTAZIONI

Le verifiche di sicurezza relative agli stati limite ultimi (SLU) e le analisi relative alle condizioni di esercizio (SLE) devono essere effettuate nel rispetto dei principi e delle procedure indicate al § 2.6.

6.2.4.1 VERIFICHE NEI CONFRONTI DEGLI STATI LIMITE ULTIMI (SLU)

Per ogni stato limite per perdita di equilibrio (EQU), come definito al §2.6.1, deve essere rispettata la condizione:

$$E_{inst.d} \le E_{stb.d}$$

 $dove \; E_{inst.d} \; \grave{e} \; il \; valore \; di \; progetto \; dell'azione \; instabilizzante, \; E_{stb.d} \; \grave{e} \; il \; valore \; di \; progetto \; dell'azione \; stabilizzante.$

La verifica della suddetta condizione deve essere eseguita impiegando come fattori parziali per le azioni i valori γ riportati nella colonna EQU della tabella 6.2.I.

Per ogni stato limite ultimo che preveda il raggiungimento della resistenza di un elemento strutturale (STR) o del terreno (GEO), come definiti al § 2.6.1, deve essere rispettata la condizione:

$$E_d \le R_d \tag{6.2.1}$$


essendo E_d il valore di progetto dell'azione o dell'effetto dell'azione, definito dalle relazioni [6.2.2a] o [6.2.2b]

$$E_{d} = E \left[\gamma_{F} F_{k}; \frac{X_{k}}{\gamma_{M}}; a_{d} \right]$$
 [6.2.2a]

$$E_{d} = \gamma_{E} \cdot E \left[F_{k}; \frac{X_{k}}{\gamma_{M}}; a_{d} \right]$$
 [6.2.2b]

e R_d è il valore di progetto della resistenza del sistema geotecnico definito dalla relazione [6.2.3].

$$R_{d} = \frac{1}{\gamma_{R}} R \left[\gamma_{F} F_{k}; \frac{X_{k}}{\gamma_{M}}; a_{d} \right]$$
 [6.2.3]

Effetto delle azioni e resistenza di progetto sono espresse nelle [6.2.2a] e [6.2.3] rispettivamente in funzione delle azioni di progetto $\gamma_F F_k$, dei parametri geotecnici di progetto X_k/γ_M e dei parametri geometrici di progetto a_d . Il coefficiente parziale di sicurezza γ_R opera direttamente sulla resistenza del sistema. L'effetto delle azioni di progetto può anche essere valutato direttamente con i valori caratteristici delle azioni come indicato dalla [6.2.2b] con $\gamma_E = \gamma_F$.

In accordo a quanto stabilito al §2.6.1, la verifica della condizione [6.2.1] deve essere effettuata impiegando diverse combinazioni di gruppi di coefficienti parziali, rispettivamente definiti per le azioni (A1 e A2), per i parametri geotecnici (M1 e M2) e per le resistenze (R1, R2 e R3).

I diversi gruppi di coefficienti di sicurezza parziali sono scelti nell'ambito di due approcci progettuali distinti e alternativi.

Nel primo approccio progettuale (Approccio 1) le verifiche si eseguono con due diverse combinazioni di gruppi di coefficienti ognuna delle quali può essere critica per differenti aspetti dello stesso progetto.

Nel secondo approccio progettuale (Approccio 2) le verifiche si eseguono con un'unica combinazione di gruppi di coefficienti.

Per le verifiche nei confronti di stati limite ultimi non espressamente trattati nei successivi paragrafi, da 6.3 a 6.11, si utilizza l'Approccio 1 con le due combinazioni (A1+M1+R1) e (A2+M2+R2). I fattori parziali per il gruppo R1 sono sempre unitari; quelli del gruppo R2 possono essere maggiori o uguali all'unità e, in assenza di indicazioni specifiche per lo stato limite ultimo considerato, devono essere scelti dal progettista in relazione alle incertezze connesse con i procedimenti adottati.

6.2.4.1.1 Azioni

I coefficienti parziali γ_F relativi alle azioni sono indicati nella Tab. 6.2.I. Ad essi deve essere fatto riferimento con le precisazioni riportate nel § 2.6.1. Si deve comunque intendere che il terreno e l'acqua costituiscono carichi permanenti (strutturali) quando, nella modellazione utilizzata, contribuiscono al comportamento dell'opera con le loro caratteristiche di peso, resistenza e rigidezza.

Nella valutazione della combinazione delle azioni i coefficienti di combinazione ψ_{ij} devono essere assunti come specificato nel Capitolo 2.

Si fa salvo, comunque, quanto previsto nel Decreto del Ministro delle Infrastrutture e dei Trasporti del 26 giugno 2014 recante "Norme tecniche per la progettazione e la costruzione degli sbarramenti di ritenuta (dighe e traverse)", ove applicabile

Tab. 6.2.I – Coefficienti parziali per le azioni o per l'effetto delle azioni

	Effetto	Coefficiente Parziale $\gamma_{\scriptscriptstyle F}$ (o $\gamma_{\scriptscriptstyle E}$)	EQU	(A1)	(A2)
Carichi permanenti G1	Favorevole	γ_{G1}	0,9	1,0	1,0
	Sfavorevole		1,1	1,3	1,0
Carichi permanenti G2(1)	Favorevole	γ_{G2}	0,8	0,8	0,8
	Sfavorevole		1,5	1,5	1,3
Azioni variabili Q	Favorevole	γ_{Qi}	0,0	0,0	0,0
	Sfavorevole		1,5	1,5	1,3

⁽¹⁾ Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γει

6.2.4.1.2 Resistenze

Il valore di progetto della resistenza $R_{\rm d}$ può essere determinato:

- a) in modo analitico, con riferimento al valore caratteristico dei parametri geotecnici del terreno, diviso per il valore del coefficiente parziale γ_M specificato nella successiva Tab. 6.2.II e tenendo conto, ove necessario, dei coefficienti parziali γ_R specificati nei paragrafi relativi a ciascun tipo di opera;
- *b*) in modo analitico, con riferimento a correlazioni con i risultati di prove in sito, tenendo conto dei coefficienti parziali γ_R riportati nelle tabelle contenute nei paragrafi relativi a ciascun tipo di opera;
- c) sulla base di misure dirette su prototipi, tenendo conto dei coefficienti parziali γ_R riportati nelle tabelle contenute nei paragrafi relativi a ciascun tipo di opera.

Tab. 6.2.II – Coefficienti parziali per i parametri geotecnici del terreno

Parametro	Grandezza alla quale applicare il coefficiente parziale	$\begin{array}{c} \text{Coefficiente} \\ \text{parziale} \ \gamma_M \end{array}$	(M1)	(M2)
Tangente dell'angolo di resi- stenza al taglio	$\tan{\phi'}_k$	$\gamma_{\phi'}$	1,0	1,25
Coesione efficace	c′ _k	$\gamma_{c'}$	1,0	1,25
Resistenza non drenata	c_{uk}	γ_{cu}	1,0	1,4
Peso dell'unità di volume	γγ	γ_{γ}	1,0	1,0

dove

Per gli ammassi rocciosi e per i terreni a struttura complessa, nella valutazione della resistenza caratteristica occorre tener conto della natura e delle caratteristiche geometriche e di resistenza delle discontinuità strutturali. Il valore di progetto della resistenza si ottiene, per il caso (a), applicando al valore caratteristico della resistenza unitaria al taglio τκ un coefficiente parziale γ-κ =1,0 (M1) e γ_{τ} R=1,25 (M2) oppure procedendo come previsto ai punti b) e c) di cui sopra.

6.2.4.1.3. Verifiche strutturali con l'analisi di interazione terreno-struttura

Le analisi finalizzate al dimensionamento strutturale nelle quali si consideri l'interazione terreno-struttura si eseguono con i valori caratteristici dei parametri geotecnici, amplificando l'effetto delle azioni con i coefficienti parziali del gruppo A1.

Verifiche nei confronti degli stati limite ultimi idraulici

Le opere geotecniche devono essere verificate nei confronti dei possibili stati limite di sollevamento o di sifonamento.

A tal fine, nella valutazione delle pressioni interstiziali e delle quote piezometriche caratteristiche, si devono assumere le condizioni più sfavorevoli, considerando i possibili effetti delle condizioni stratigrafiche.

Per la stabilità al sollevamento deve risultare che il valore di progetto dell'azione instabilizzante V_{inst,d}, ovverosia della risultante delle pressioni idrauliche ottenuta considerando separatamente la parte permanente (Ginst,d) e quella variabile (Qinst,d), sia non $maggiore \ della\ combinazione\ dei\ valori\ di\ progetto\ \bar{d}elle\ azioni\ stabilizzanti\ (G_{stb,d})\ e\ delle\ resistenze\ (R_d):$

[6.2.5]

$$\begin{aligned} V_{inst,d} &\leq G_{stb,d} + R_d \\ V_{inst,d} &= G_{inst,d} + Q_{inst,d} \end{aligned} \tag{6.2.4}$$

Per le verifiche di stabilità al sollevamento, i relativi coefficienti parziali sulle azioni sono indicati nella Tab. 6.2.III. Al fine del calcolo della resistenza di progetto R_d, tali coefficienti devono essere combinati in modo opportuno con quelli relativi ai parametri geotecnici (M2). Ove necessario, il calcolo della resistenza va eseguito in accordo a quanto indicato nei successivi paragrafi per le fondazioni su pali e per gli ancoraggi.

Tab. 6.2.III – Coefficienti parziali sulle azioni per le verifiche nei confronti di stati limite di sollevamento

	Effetto	Coefficiente Parziale γ_F (o γ_E)	Sollevamento (UPL)
Camiahi mammamanti C	Favorevole	24	0,9
Carichi permanenti G1	Sfavorevole	γ _{G1}	1,1
Carichi permanenti	Favorevole	2/	0,8
$G_{2^{(1)}}$	Sfavorevole	γ _{G2}	1,5
A minumi susumi albili. O	Favorevole	2/	0,0
Azioni variabili Q	Sfavorevole	γ_{Qi}	1,5

⁽I) Per i carichi permanenti G2 si applica quanto indicato alla Tabella 2.6.I. Per la spinta delle terre si fa riferimento ai coefficienti γG1

In condizioni di flusso prevalentemente verticale:

- nel caso di frontiera di efflusso libera, la verifica a sifonamento si esegue controllando che il gradiente idraulico i risulti non superiore al gradiente idraulico critico ic diviso per un coefficiente parziale γκ = 3, se si assume come effetto delle azioni il gradiente idraulico medio, e per un coefficiente parziale γκ = 2 nel caso in cui si consideri il gradiente idraulico di
- b) in presenza di un carico imposto sulla frontiera di efflusso, la verifica si esegue controllando che la pressione interstiziale in eccesso rispetto alla condizione idrostatica risulti non superiore alla tensione verticale efficace calcolata in assenza di filtrazione, divisa per un coefficiente parziale $\gamma_R = 2$.

In tutti gli altri casi il progettista deve valutare gli effetti delle forze di filtrazione e garantire adeguati livelli di sicurezza, da prefissare e giustificare esplicitamente.

Si fa salvo, comunque, quanto previsto nel Decreto del Ministro delle Infrastrutture e dei Trasporti del 26 giugno 2014 recante "Norme tecniche per la progettazione e la costruzione degli sbarramenti di ritenuta (dighe e traverse)", ove applicabile

6.2.4.3 VERIFICHE NEI CONFRONTI DEGLI STATI LIMITE DI ESERCIZIO (SLE)

Le opere e i sistemi geotecnici di cui al § 6.1.1 devono essere verificati nei confronti degli stati limite di esercizio. A tale scopo, il progetto deve esplicitare le prescrizioni relative agli spostamenti compatibili e le prestazioni attese.

La verifica agli stati limite di esercizio implica l'analisi del problema di interazione terreno-struttura, al termine della costruzione e nel tempo, secondo quanto disposto al paragrafo § 2.2.2. Il grado di approfondimento dell'analisi di interazione terrenostruttura è funzione dell'importanza dell'opera.

Per ciascun stato limite di esercizio deve essere rispettata la condizione:

$$E_d \le C_d \tag{6.2.7}$$

dove E_d è il valore di progetto dell'effetto delle azioni nelle combinazioni di carico per gli SLE specificate al $\S 2.5.3$ e C_d è il prescritto valore limite dell'effetto delle azioni. Quest'ultimo deve essere stabilito in funzione del comportamento della struttura in elevazione e di tutte le costruzioni che interagiscono con le opere geotecniche in progetto, tenendo conto della durata dei carichi applicati.

6.2.5. IMPIEGO DEL METODO OSSERVAZIONALE

La progettazione può fare ricorso anche al metodo osservazionale, nei casi in cui a causa della particolare complessità della situazione geologica e geotecnica e dell'importanza e impegno dell'opera, dopo estese ed approfondite indagini permangano documentate ragioni di incertezza risolvibili solo in fase di esecuzione dell'opera.

Nell'applicazione di tale metodo si deve utilizzare il seguente procedimento:

- devono essere stabiliti i limiti di accettabilità dei valori di alcune grandezze rappresentative del comportamento del complesso manufatto-terreno;
- si deve dimostrare che la soluzione prescelta è accettabile in rapporto a tali limiti;
- devono essere previste soluzioni alternative, congruenti con il progetto, e definiti i relativi oneri economici;
- deve essere istituito un adeguato sistema di monitoraggio in corso d'opera, con i relativi piani di controllo, tale da consentire tempestivamente l'adozione di una delle soluzioni alternative previste, qualora i limiti indicati siano raggiunti.

6.2.6. MONITORAGGIO DEL COMPLESSO OPERA-TERRENO

Il monitoraggio del complesso opera-terreno e degli interventi consiste nella installazione di un'appropriata strumentazione e nella misura di grandezze fisiche significative - quali spostamenti, tensioni, forze e pressioni interstiziali - prima, durante e/o dopo la costruzione del manufatto.

Il monitoraggio ha lo scopo di verificare la corrispondenza tra le ipotesi progettuali e i comportamenti osservati e di controllare la funzionalità dei manufatti nel tempo. Nell'ambito del metodo osservazionale, il monitoraggio ha lo scopo di confermare la validità della soluzione progettuale adottata o, in caso contrario, di individuare la più idonea tra le altre soluzioni previste in progetto. Se previsto, il programma di monitoraggio deve essere definito e illustrato nella relazione geotecnica.

6.3. STABILITÀ DEI PENDII NATURALI

Le presenti norme si applicano allo studio delle condizioni di stabilità dei pendii naturali, anche in presenza di azioni sismiche (§ 7.11.3.5) e al progetto, alla esecuzione e al controllo degli interventi di stabilizzazione.

6.3.1. PRESCRIZIONI GENERALI

Lo studio della stabilità dei pendii naturali richiede osservazioni e rilievi di superficie, raccolta di notizie storiche sull'evoluzione dello stato del pendio e su eventuali danni subiti dalle strutture o infrastrutture esistenti, la constatazione di movimenti eventualmente in atto e dei loro caratteri geometrici e cinematici, la raccolta dei dati sulle precipitazioni meteoriche, sui caratteri idrogeologici della zona e sui precedenti interventi di consolidamento. Le verifiche di sicurezza, anche in relazione alle opere da eseguire, devono essere basate su dati acquisiti con specifiche indagini geotecniche.

6.3.2. MODELLAZIONE GEOLOGICA DEL PENDIO

Il modello geologico di riferimento deve rappresentare le caratteristiche geologiche, geomorfologiche, geologico strutturali e idrogeologiche, con particolare riguardo alla genesi delle forme e dei processi, dei diversi litotipi, dell'ambiente deposizionale, del metamorfismo delle rocce, degli stili tettonici e geologico-strutturali dell'area; deve, inoltre, riconoscere e descrivere le criticità di natura geologica in relazione ai possibili processi di instabilità.

Le tecniche di studio, i rilievi e le indagini sono commisurati all'estensione dell'area, alle finalità progettuali e alle peculiarità dello scenario territoriale ed ambientale in cui si opera.

6.3.3. MODELLAZIONE GEOTECNICA DEL PENDIO

Tenendo conto del modello geologico ed evolutivo del versante, devono essere programmate specifiche indagini per la caratterizzazione geotecnica dei terreni e dell'ammasso roccioso, finalizzate alla definizione del modello geotecnico sulla base del quale effettuare lo studio delle condizioni di stabilità nonché al progetto di eventuali interventi di stabilizzazione.

Le indagini devono effettuarsi secondo i seguenti criteri:

- la superficie del pendio deve essere definita attraverso un rilievo plano-altimetrico in scala adeguata ed esteso ad una zona sufficientemente ampia a monte e valle del pendio stesso;
- lo studio geotecnico deve definire la successione stratigrafica e le caratteristiche fisico-meccaniche dei terreni e degli ammassi
 rocciosi, l'entità e la distribuzione delle pressioni interstiziali nel terreno e nelle discontinuità, degli eventuali spostamenti plano-altimetrici di punti in superficie e in profondità.

La scelta delle tipologie di indagine e misura, dell'ubicazione del numero di verticali da esplorare, della posizione e del numero dei campioni di terreno da prelevare e sottoporre a prove di laboratorio dipende dall'estensione dell'area, dalla disponibilità di informazioni provenienti da precedenti indagini e dalla complessità delle condizioni idrogeologiche e stratigrafiche del sito in esame.

Il numero minimo di verticali di indagine e misura deve essere tale da permettere una descrizione accurata della successione stratigrafica dei terreni interessati da cinematismi di collasso effettivi e potenziali e, in caso di pendii in frana, deve consentire di accertare forma e posizione della superficie o delle superfici di scorrimento esistenti e definire i caratteri cinematici della frana.

La profondità e l'estensione delle indagini devono essere fissate in relazione alle caratteristiche geometriche del pendio, ai risultati dei rilievi di superficie nonché alla più probabile posizione della eventuale superficie di scorrimento.

Tutti gli elementi raccolti devono permettere la definizione di un modello geotecnico di sottosuolo (vedi § 6.2.2) che tenga conto della complessità della situazione stratigrafica e geotecnica, della presenza di discontinuità e dell'evidenza di movimenti pregressi e al quale fare riferimento per le verifiche di stabilità e per il progetto degli eventuali interventi di stabilizzazione.

6.3.4. VERIFICHE DI SICUREZZA

Le verifiche di sicurezza devono essere effettuate con metodi che tengano conto del tipo di frana e dei possibili cinematismi, considerando forma e posizione della eventuale superficie di scorrimento, le proprietà meccaniche dei terreni e degli ammassi rocciosi e il regime delle pressioni interstiziali.

Nel caso di pendii in frana le verifiche di sicurezza devono essere eseguite lungo le superfici di scorrimento che meglio approssimano quella/e riconosciuta/e con le indagini.

Negli altri casi, la verifica di sicurezza deve essere eseguita lungo superfici di scorrimento cinematicamente possibili, in numero sufficiente per ricercare la superficie critica alla quale corrisponde il grado di sicurezza più basso.

Quando sussistano condizioni tali da non consentire una agevole valutazione delle pressioni interstiziali, le verifiche di sicurezza devono essere eseguite assumendo le condizioni più sfavorevoli che ragionevolmente si possono prevedere.

La valutazione del coefficiente di sicurezza dei pendii naturali, espresso dal rapporto tra la resistenza al taglio disponibile (τ_i) e la tensione di taglio agente (τ) lungo la superficie di scorrimento, deve essere eseguita impiegando sia i parametri geotecnici, congruenti con i caratteri del cinematismo atteso o accertato, sia le azioni presi con il loro valore caratteristico.

L'adeguatezza del margine di sicurezza ritenuto accettabile dal progettista deve comunque essere giustificata sulla base del livello di conoscenze raggiunto, dell'affidabilità dei dati disponibili e del modello di calcolo adottato in relazione alla complessità geologica e geotecnica, nonché sulla base delle conseguenze di un'eventuale frana.

6.3.5. INTERVENTI DI STABILIZZAZIONE

Il progetto degli interventi di stabilizzazione deve comprendere la descrizione completa dell'intervento, l'influenza delle modalità costruttive sulle condizioni di stabilità, il piano di monitoraggio e un significativo piano di gestione e controllo nel tempo della funzionalità e dell'efficacia dei provvedimenti adottati. In ogni caso devono essere definiti l'entità del miglioramento delle condizioni di sicurezza del pendio e i criteri per verificarne il raggiungimento.

La scelta delle più idonee tipologie degli interventi di stabilizzazione deve tener conto delle cause promotrici della frana, del meccanismo di collasso ipotizzato o in atto, dei suoi caratteri cinematici e del regime delle pressioni interstiziali nel sottosuolo. Il progetto degli interventi deve essere basato su specifici modelli geotecnici di sottosuolo.

L'adeguatezza del margine di sicurezza raggiunto per effetto degli interventi di stabilizzazione deve essere giustificato dal progettista.

Oltre alla valutazione dell'incremento di sicurezza indotto dagli interventi di stabilizzazione nei confronti del meccanismo di collasso più critico, è necessario verificare le condizioni di sicurezza connesse con altri, diversi, meccanismi di collasso, compatibili con gli interventi ipotizzati

6.3.6. CONTROLLI E MONITORAGGIO

Il monitoraggio di un pendio o di una frana interessa le diverse fasi che vanno dallo studio al progetto, alla realizzazione e gestione delle opere di stabilizzazione e al controllo della loro funzionalità e durabilità. Esso è riferito principalmente agli spostamenti di punti significativi del pendio, in superficie e/o in profondità, al controllo di eventuali manufatti presenti e alla misura delle pressioni interstiziali, da effettuare con periodicità e durata tali da consentire di definirne le variazioni periodiche e stagionali.

Il controllo dell'efficacia degli interventi di stabilizzazione deve comprendere la definizione delle soglie di attenzione e di allarme e dei provvedimenti da assumere in caso del relativo superamento.

6.4. OPERE DI FONDAZIONE

6.4.1. CRITERI GENERALI DI PROGETTO

Le scelte progettuali per le opere di fondazione devono essere effettuate contestualmente e congruentemente con quelle delle strutture in elevazione.

Nel caso di opere situate su pendii o in prossimità di pendii naturali o artificiali deve essere verificata anche la stabilità globale del pendio in assenza e in presenza dell'opera e di eventuali scavi, riporti o interventi di altra natura, necessari alla sua realizzazione.

Devono essere valutati gli effetti della costruzione dell'opera su manufatti attigui e sull'ambiente circostante.

Nel caso di fondazioni su pali, le indagini devono essere dirette anche ad accertare la fattibilità e l'idoneità del tipo di palo in relazione alle caratteristiche dei terreni e al regime delle pressioni interstiziali.

6.4.2. FONDAZIONI SUPERFICIALI

La profondità del piano di posa della fondazione deve essere scelta e giustificata in relazione alle caratteristiche e alle prestazioni della struttura in elevazione, alle caratteristiche del sottosuolo e alle condizioni ambientali.

Il piano di fondazione deve essere situato sotto la coltre di terreno vegetale nonché sotto lo strato interessato dal gelo e da significative variazioni stagionali del contenuto d'acqua.

In situazioni nelle quali sono possibili fenomeni di erosione o di scalzamento da parte di acque di scorrimento superficiale, le fondazioni devono essere poste a profondità tale da non risentire di questi fenomeni o devono essere adeguatamente difese.

In presenza di azioni sismiche, oltre a quanto previsto nel presente paragrafo, le fondazioni superficiali devono rispettare i criteri di verifica di cui al successivo \S 7.11.5.3.1

6.4.2.1. VERIFICHE AGLI STATI LIMITE ULTIMI (SLU)

Nelle verifiche di sicurezza devono essere presi in considerazione tutti i meccanismi di stato limite ultimo, sia a breve sia a lungo termine

Gli stati limite ultimi delle fondazioni superficiali si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che compongono la fondazione stessa.

Nel caso di fondazioni posizionate su o in prossimità di pendii naturali o artificiali deve essere effettuata la verifica anche con riferimento alle condizioni di stabilità globale del pendio includendo nelle verifiche le azioni trasmesse dalle fondazioni.

Le verifiche devono essere effettuate almeno nei confronti dei seguenti stati limite, accertando che la condizione [6.2.1] sia soddisfatta per ogni stato limite considerato:

- SLU di tipo geotecnico (GEO)
 - collasso per carico limite dell'insieme fondazione-terreno;
 - collasso per scorrimento sul piano di posa;
 - stabilità globale.
- SLU di tipo strutturale (STR)
 - raggiungimento della resistenza negli elementi strutturali.

La verifica di stabilità globale deve essere effettuata, analogamente a quanto previsto nel § 6.8, secondo la Combinazione 2 (A2+M2+R2) dell'Approccio 1, tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II per le azioni e i parametri geotecnici e nella Tab. 6.8.I per le resistenze globali.

Le rimanenti verifiche devono essere effettuate applicando la combinazione (A1+M1+R3) di coefficienti parziali prevista dall'Approccio 2, tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.4.I.

Nelle verifiche nei confronti di SLU di tipo strutturale (STR), il coefficiente γ_R non deve essere portato in conto.

 $\textbf{Tab. 6.4.I} - \textit{Coefficienti parziali } \gamma_{R} \ \textit{per le verifiche agli stati limite ultimi di fondazioni superficiali}$

Verifica	Coefficiente
	parziale
	(R3)
Carico limite	$\gamma_R = 2.3$
Scorrimento	$\gamma_R = 1.1$

6.4.2.2 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO (SLE)

Al fine di assicurare che le fondazioni risultino compatibili con i requisiti prestazionali della struttura in elevazione (§§ 2.2.2 e 2.6.2), si deve verificare il rispetto della condizione [6.2.7], calcolando i valori degli spostamenti e delle distorsioni nelle combinazioni di carico per gli SLE specificate al §2.5.3, tenendo conto anche dell'effetto della durata delle azioni.

Forma, dimensioni e rigidezza della struttura di fondazione devono essere stabilite nel rispetto dei summenzionati requisiti prestazionali, tenendo presente che le verifiche agli stati limite di esercizio possono risultare più restrittive di quelle agli stati limite ultimi.

6.4.3. FONDAZIONI SU PALI

Il progetto di una fondazione su pali deve comprendere la scelta del tipo di palo e delle relative tecnologie e modalità di esecuzione, il dimensionamento dei pali e delle relative strutture di collegamento, tenendo conto degli effetti di gruppo tanto nelle verifiche SLU quanto nelle verifiche SLU quanto nelle verifiche SLE.

Le indagini geotecniche, oltre a soddisfare i requisiti riportati al § 6.2.2, devono essere dirette anche ad accertare l'effettiva realizzabilità e l'idoneità del tipo di palo in relazione alle caratteristiche dei terreni e del regime delle pressioni interstiziali.

In generale, le verifiche dovrebbero essere condotte a partire dai risultati di analisi di interazione tra il terreno e la fondazione costituita dai pali e dalla struttura di collegamento (fondazione mista a platea su pali) che portino alla determinazione dell'aliquota dell'azione di progetto trasferita al terreno direttamente dalla struttura di collegamento e di quella trasmessa dai pali.

Nei casi in cui l'interazione sia considerata non significativa o, comunque, si ometta la relativa analisi, le verifiche SLU e SLE, condotte con riferimento ai soli pali, dovranno soddisfare quanto riportato ai §§ 6.4.3.1 e 6.4.3.2.

Nei casi in cui si consideri significativa tale interazione e si svolga la relativa analisi, le verifiche SLU e SLE, condotte con riferimento alla fondazione mista, dovranno soddisfare quanto riportato ai §§ 6.4.3.3 e 6.4.3.4.

In ogni caso, in aggiunta a quanto riportato ai §§ 6.2.4.1.1 e 6.2.4.1.2, fra le azioni permanenti deve essere incluso il peso proprio del palo e l'effetto dell'attrito negativo, quest'ultimo valutato con i coefficienti γ_M del caso M1 della Tab. 6.2.II.

In presenza di azioni sismiche, oltre a quanto previsto nel presente paragrafo , le fondazioni su pali devono rispettare i criteri di verifica di cui al successivo \S 7.11.5.3.2

6.4.3.1 VERIFICHE AGLI STATI LIMITE ULTIMI (SLU)

Nelle verifiche di sicurezza devono essere presi in considerazione tutti i meccanismi di stato limite ultimo, sia a breve sia a lungo termine.

Gli stati limite ultimi delle fondazioni su pali si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che compongono la fondazione stessa.

Nel caso di fondazioni posizionate su o in prossimità di pendii naturali o artificiali deve essere effettuata la verifica con riferimento alle condizioni di stabilità globale del pendio includendo nelle verifiche le azioni trasmesse dalle fondazioni.

Le verifiche delle fondazioni su pali devono essere effettuate con riferimento almeno ai seguenti stati limite, accertando che la condizione [6.2.1] sia soddisfatta per ogni stato limite considerato:

- SLU di tipo geotecnico (GEO)
 - collasso per carico limite della palificata nei riguardi dei carichi assiali;
 - collasso per carico limite della palificata nei riguardi dei carichi trasversali;
 - collasso per carico limite di sfilamento nei riguardi dei carichi assiali di trazione;
 - stabilità globale;
- SLU di tipo strutturale (STR)
 - raggiungimento della resistenza dei pali;
 - raggiungimento della resistenza della struttura di collegamento dei pali.

La verifica di stabilità globale deve essere effettuata secondo la Combinazione 2 (A2+M2+R2) dell'Approccio 1 tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II per le azioni e i parametri geotecnici, e nella Tab. 6.8.I per le resistenze globali.

Le rimanenti verifiche devono essere effettuate secondo l'Approccio 2, con la combinazione (A1+M1+R3), tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II, 6.4.VI.

Nelle verifiche nei confronti di SLU di tipo strutturale, il coefficiente γ_R non deve essere portato in conto.

6.4.3.1.1 Resistenze di pali soggetti a carichi assiali

Il valore di progetto R_d della resistenza si ottiene a partire dal valore caratteristico R_k applicando i coefficienti parziali γ_R della Tab. 6.4.II.

Tab. 6.4.II – Coefficienti parziali γ_R da applicare alle resistenze caratteristiche a carico verticale dei pali

Resistenza	Simbolo	Pali infissi	Pali trivellati	Pali ad elica continua
	γ_{R}	(R3)	(R3)	(R3)
Base	Υь	1,15	1,35	1,3
Laterale in compressione	$\gamma_{\rm s}$	1,15	1,15	1,15
Totale (*)	γ	1,15	1,30	1,25
Laterale in trazione	$\gamma_{\rm st}$	1,25	1,25	1,25

^(°) da applicare alle resistenze caratteristiche dedotte dai risultati di prove di carico di progetto.

La resistenza caratteristica R_k del palo singolo può essere dedotta da:

- a) risultati di prove di carico statico di progetto su pali pilota (§ 6.4.3.7.1);
- b) metodi di calcolo analitici, dove R_k è calcolata a partire dai valori caratteristici dei parametri geotecnici, oppure con l'impiego di relazioni empiriche che utilizzino direttamente i risultati di prove in sito (prove penetrometriche, pressiometriche, ecc.);

- c) risultati di prove dinamiche di progetto, ad alto livello di deformazione, eseguite su pali pilota (§ 6.4.3.7.1). In dettaglio:
- (a) Se il valore caratteristico della resistenza a compressione del palo, $R_{c,k'}$ o a trazione, $R_{t,k'}$ è dedotto dai corrispondenti valori $R_{c,m}$ o $R_{t,m'}$ ottenuti elaborando i risultati di una o più prove di carico di progetto, il valore caratteristico della resistenza a compressione e a trazione è pari al minore dei valori ottenuti applicando al valore medio e al valore minimo delle resistenze misurate i fattori di correlazione ξ riportati nella Tab. 6.4.III, in funzione del numero n di prove di carico su pali pilota:

$$R_{c,k} = Min\left\{ \frac{\left(R_{c,m}\right)_{media}}{\xi_1}; \frac{\left(R_{c,m}\right)_{min}}{\xi_2} \right\}$$
 [6.4.1]

$$R_{t,k} = Min \left\{ \frac{\left(R_{t,m}\right)_{media}}{\xi_{l}}; \frac{\left(R_{t,m}\right)_{min}}{\xi_{2}} \right\}$$
 [6.4.2]

Tab. 6.4.III - Fattori di correlazione ξ per la determinazione della resistenza caratteristica a partire dai risultati di prove di carico statico su pali pilota

Numero di prove di carico	1	2	3	4	≥5
ξ ₁	1,40	1,30	1,20	1,10	1,0
ξ ₂	1,40	1,20	1,05	1,00	1,0

(b) Con riferimento alle procedure analitiche che prevedano l'utilizzo dei parametri geotecnici o dei risultati di prove in sito, il valore caratteristico della resistenza $R_{c,k}$ (o $R_{t,k}$) è dato dal minore dei valori ottenuti applicando al valore medio e al valore minimo delle resistenze calcolate $R_{c,cal}$ ($R_{t,cal}$) i fattori di correlazione ξ riportati nella Tab. 6.4.IV, in funzione del numero n di verticali di indagine:

$$R_{c,k} = Min \left\{ \frac{(R_{c,cal})_{media}}{\xi_3}; \frac{(R_{c,cal})_{min}}{\xi_4} \right\}$$
 [6.4.3]

$$R_{t,k} = Min \left\{ \frac{\left(R_{t,cal}\right)_{media}}{\xi_{3}}; \frac{\left(R_{t,cal}\right)_{min}}{\xi_{4}} \right\}$$
 [6.4.4]

 $\textbf{Tab. 6.4.IV} - Fattori\ di\ correlazione\ \xi\ per\ la\ determinazione\ della\ resistenza\ caratteristica\ in\ funzione\ del\ numero\ di\ verticali\ indagate$

Numero di verticali indagate	1	2	3	4	5	7	≥ 10
ξ ₃	1,70	1,65	1,60	1,55	1,50	1,45	1,40
ξ_4	1,70	1,55	1,48	1,42	1,34	1,28	1,21

Fatta salva la necessità di almeno una verticale di indagine per ciascun sistema di fondazione, nell'ambito dello stesso sistema di fondazione, ai fini del conteggio delle verticali di indagine per la scelta dei coefficienti ξ in Tab. 6.4.IV si devono prendere solo le verticali lungo le quali la singola indagine (sondaggio con prelievo di campioni indisturbati, prove penetrometriche, ecc.) sia stata spinta ad una profondità superiore alla lunghezza dei pali, in grado di consentire una completa identificazione del modello geotecnico di sottosuolo.

(c) Se il valore caratteristico della resistenza R_{c,k} è dedotto dal valore R_{c,m} ottenuto elaborando i risultati di una o più prove dinamiche di progetto ad alto livello di deformazione, il valore caratteristico della resistenza a compressione è pari al minore dei valori ottenuti applicando al valore medio e al valore minimo delle resistenze misurate i fattori di correlazione ξ riportati nella Tab. 6.4.V, in funzione del numero n di prove dinamiche eseguite su pali pilota:

$$R_{c,k} = Min \left\{ \frac{\left(R_{c,m}\right)_{media}}{\xi_{5}}; \frac{\left(R_{c,m}\right)_{min}}{\xi_{6}} \right\}$$
 [6.4.5]

Tab. 6.4.V - Fattori di correlazione ξ per la determinazione della resistenza caratteristica a partire dai risultati di prove dinamiche su pali pilota

Numero di prove di carico	≥ 2	≥ 5	≥ 10	≥ 15	≥ 20
ξ ₅	1,60	1,50	1,45	1,42	1,40
ξ ₆	1,50	1,35	1,30	1,25	1,25

6.4.3.1.1.1 Resistenza a carico assiale di una palificata

Per una palificata, la verifica della condizione [6.2.1] dovrà essere fatta in base alla resistenza caratteristica che risulta dalla somma delle resistenze caratteristiche dei pali che la costituiscono. Sarà comunque necessario valutare possibili riduzioni della resistenza disponibile per effetto di gruppo, tenendo conto della tipologia dei pali, della natura dei terreni interessati e della configurazione geometrica della palificata.

6.4.3.1.2 Resistenze di pali soggetti a carichi trasversali

Per la determinazione del valore di progetto $R_{tr,d}$ della resistenza di pali soggetti a carichi trasversali valgono le indicazioni del § 6.4.3.1.1, applicando il coefficiente parziale γ_T della Tab. 6.4.VI.

 $\textbf{Tab. 6.4.VI -} \textit{Coefficiente parziale } \gamma_{\text{T}} \textit{per le verifiche agli stati limite ultimi di pali soggetti a carichi trasversali}$

 .,	
Coefficiente parziale (R3)	
$\gamma_{\rm T}$ = 1,3	

Nel caso in cui la resistenza caratteristica $R_{tr,k}$ sia valutata a partire dalla resistenza $R_{tr,m}$ misurata nel corso di una o più prove di carico statico su pali pilota, è necessario che la prova sia eseguita riproducendo la retta di azione delle azioni di progetto.

Nel caso in cui la resistenza caratteristica sia valutata con metodi di calcolo analitici, i coefficienti riportati nella Tab. 6.4.IV devono essere scelti assumendo come verticali indagate solo quelle che consentano una completa identificazione del modello geotecnico di sottosuolo nell'ambito delle profondità interessate dal meccanismo di rottura.

La resistenza sotto carichi trasversali dell'intera fondazione su pali deve essere valutata tenendo conto delle condizioni di vincolo alla testa dei pali determinate dalla struttura di collegamento e di possibili riduzioni per effetto di gruppo.

6.4.3.2 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO (SLE)

Devono essere presi in considerazione almeno i seguenti stati limite di esercizio, quando pertinenti:

- eccessivi cedimenti o sollevamenti;
- eccessivi spostamenti trasversali.

Specificamente, si devono calcolare i valori degli spostamenti e delle distorsioni nelle combinazioni caratteristiche previste per gli stati limite di esercizio al § 2.5.3, per verificarne la compatibilità con i requisiti prestazionali della struttura in elevazione, come prescritto dalla condizione [6.2.7]. La geometria della fondazione (numero, lunghezza, diametro e interasse dei pali) deve essere stabilita nel rispetto dei summenzionati requisiti prestazionali, tenendo opportunamente conto degli effetti di interazione tra i pali e considerando i diversi meccanismi di mobilitazione della resistenza laterale rispetto alla resistenza alla base, soprattutto in presenza di pali di grande diametro.

6.4.3.3 VERIFICHE AGLI STATI LIMITE ULTIMI (SLU) DELLE FONDAZIONI MISTE

Gli stati limite ultimi delle fondazioni miste si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che compongono la fondazione stessa.

Nel caso di fondazioni posizionate su o in prossimità di pendii naturali o artificiali deve essere effettuata la verifica con riferimento alle condizioni di stabilità globale del pendio includendo nelle verifiche le azioni trasmesse dalle fondazioni.

Le verifiche delle fondazioni miste devono essere effettuate con riferimento almeno ai seguenti stati limite, accertando che la condizione [6.2.1] sia soddisfatta per ogni stato limite considerato:

- SLU di tipo geotecnico (GEO)
 - collasso per carico limite della fondazione mista nei riguardi dei carichi assiali;
 - collasso per carico limite della fondazione mista nei riguardi dei carichi trasversali;
 - stabilità globale;
- SLU di tipo strutturale (STR)
 - raggiungimento della resistenza dei pali;
 - raggiungimento della resistenza della struttura di collegamento dei pali.

La verifica di stabilità globale deve essere effettuata, analogamente a quanto previsto al § 6.8, secondo la Combinazione 2 (A2+M2+R2) dell'Approccio 1 tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II per le azioni e i parametri geotecnici, e nella Tab. 6.8.I per le resistenze globali.

Nel caso in cui il soddisfacimento della condizione [6.2.1] sia garantito dalla sola struttura di collegamento posta a contatto con il terreno secondo quanto indicato al § 6.4.2.1, ai pali può essere assegnata la sola funzione di riduzione e regolazione degli spostamenti. In questo caso il dimensionamento dei pali deve garantire il soddisfacimento delle verifiche nei confronti degli stati limite ultimi (SLU) di tipo strutturale per tutti gli elementi della fondazione (struttura di collegamento e pali) e delle verifiche SLE secondo quanto riportato al paragrafo successivo.

Limitatamente alle azioni verticali, il soddisfacimento della condizione [6.2.1] può essere garantito portando in conto anche il contributo dei pali. In questo caso, la verifica deve essere svolta anche per stati limite ultimi di tipo GEO della fondazione mista, sia a breve sia a lungo termine, ottenendo la resistenza di progetto R_d dalla somma delle resistenze caratteristiche dei pali, deter-

minate come al § 6.4.3.1, e della struttura di collegamento, dividendo la resistenza totale per il coefficiente parziale di capacità portante (R3) riportato nella Tab. 6.4.I (§ 6.4.2.1).

6.4.3.4 VERIFICHE AGLI STATI LIMITE DI ESERCIZIO (SLE) DELLE FONDAZIONI MISTE

L'analisi di interazione tra il terreno e la fondazione mista deve garantire che i valori degli spostamenti e delle distorsioni siano compatibili con i requisiti prestazionali della struttura in elevazione (§§ 2.2.2 e 2.6.2), nel rispetto della condizione [6.2.7].

La geometria della fondazione (numero, lunghezza, diametro e interasse dei pali) deve essere stabilita nel rispetto dei summenzionati requisiti prestazionali, tenendo opportunamente conto dei diversi meccanismi di mobilitazione della resistenza laterale rispetto alla resistenza alla base, soprattutto in presenza di pali di grande diametro.

6.4.3.5 ASPETTI COSTRUTTIVI

Nel progetto si deve tenere conto dei vari aspetti che possono influire sull'integrità strutturale, sulla durabilità e sul comportamento dei pali, quali la distanza relativa, la sequenza di installazione, i problemi di refluimento e sifonamento nel caso di pali trivellati, l'addensamento del terreno nel caso di pali infissi, gli effetti della falda o di sostanze chimiche presenti nell'acqua o nel terreno sul conglomerato dei pali gettati in opera, la connessione dei pali alla struttura di collegamento. La durabilità dei pali di fondazione deve essere valutata in relazione ai materiali posti in opera ed alle specifiche condizioni ambientali del sito di progetto.

6.4.3.6 CONTROLLI D'INTEGRITÀ DEI PALI

In tutti i casi in cui la qualità dei pali dipenda in misura significativa dai procedimenti esecutivi e dalle caratteristiche geotecniche dei terreni di fondazione, devono essere effettuati controlli di integrità.

Il controllo dell'integrità, da effettuarsi con prove dirette o indirette di comprovata validità, deve interessare almeno il 5% dei pali della fondazione con un minimo di 2 pali.

Nel caso di gruppi di pali di grande diametro (d≥80 cm), il controllo dell'integrità deve essere effettuato su tutti i pali di ciascun gruppo se i pali del gruppo sono in numero inferiore o uguale a 4.

6.4.3.7 PROVE DI CARICO

6.4.3.7.1 Prove di progetto su pali pilota

Le prove per la determinazione della resistenza del singolo palo (prove di progetto) devono essere eseguite su pali appositamente realizzati (pali pilota) identici, per geometria e tecnologia esecutiva, a quelli da realizzare e ad essi sufficientemente vicini.

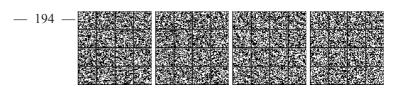
L'intervallo di tempo intercorrente tra la costruzione del palo pilota e l'inizio della prova di carico deve essere sufficiente a garantire che il materiale di cui è costituito il palo sviluppi la resistenza richiesta e che le pressioni interstiziali nel terreno si riportino ai valori iniziali

Se si esegue una sola prova di carico statica di progetto, questa deve essere ubicata dove le condizioni del terreno sono più sfavorevoli.

Le prove di progetto devono essere spinte fino a valori del carico assiale tali da portare a rottura il complesso palo-terreno o comunque tali da consentire di ricavare diagrammi dei cedimenti della testa del palo in funzione dei carichi e dei tempi, significativi ai fini della valutazione della resistenza.

Il sistema di vincolo deve essere dimensionato per consentire un valore del carico di prova non inferiore a 2,5 volte l'azione di progetto utilizzata per le verifiche agli SLE.

La resistenza del complesso palo-terreno è assunta pari al valore del carico applicato corrispondente ad un cedimento della testa pari al 10% del diametro nel caso di pali di piccolo e medio diametro (d < 80 cm), non inferiori al 5% del diametro nel caso di pali di grande diametro ($d \ge 80$ cm).


Se tali valori di cedimento non sono raggiunti nel corso della prova, è possibile procedere all'estrapolazione della curva sperimentale a patto che essa evidenzi un comportamento del complesso palo-terreno marcatamente non lineare.

Per i pali di grande diametro si può ricorrere a prove statiche eseguite su pali aventi la stessa lunghezza dei pali da realizzare, ma diametro inferiore, purché tali prove siano adeguatamente motivate ed interpretate al fine di fornire indicazioni utili per i pali da realizzare. In ogni caso, la riduzione del diametro non può essere superiore al 50% e tale da restituire un palo ancora di grande diametro ($d \ge 80$ cm); il palo di prova deve essere opportunamente strumentato per consentire il rilievo separato delle curve di mobilitazione della resistenza laterale e della resistenza alla base.

Come prove di progetto possono essere eseguite prove dinamiche ad alto livello di deformazione, purché adeguatamente interpretate al fine di fornire indicazioni comparabili con quelle derivanti da una corrispondente prova di carico statica di progetto.

6.4.3.7.2 Prove in corso d'opera

Sui pali di fondazione, ad esclusione di quelli sollecitati prevalentemente da azioni orizzontali, devono essere eseguite prove di carico statiche per controllarne il comportamento sotto le azioni di progetto. Tali prove devono essere spinte ad un carico assiale pari a 1,5 volte l'azione di progetto utilizzata per le verifiche SLE.

In presenza di pali strumentati per il rilievo separato delle curve di mobilitazione delle resistenze lungo la superficie e alla base, il massimo carico assiale di prova può essere posto pari a 1,2 volte l'azione di progetto utilizzata per le verifiche SLE.

Il numero e l'ubicazione delle prove di carico devono essere stabiliti in base all'importanza dell'opera e al grado di omogeneità del terreno di fondazione. In ogni caso, per ciascun sistema di fondazione il numero complessivo di prove non deve essere inferiore a:

- 1 se il numero di pali è inferiore o uguale a 20,
- 2 se il numero di pali è compreso tra 21 e 50,
- 3 se il numero di pali è compreso tra 51 e 100,
- 4 se il numero di pali è compreso tra 101 e 200,
- 5 se il numero di pali è compreso tra 201 e 500,
- il numero intero più prossimo al valore 5 + n/500, se il numero n di pali è superiore a 500.

Fermo restando il numero complessivo delle prove di carico minimo sopra indicato, il numero di prove di carico statiche può essere ridotto se sono eseguite prove di carico dinamiche sostitutive, da tarare con quelle statiche di progetto su pali pilota, e siano effettuati controlli non distruttivi su almeno il 50% dei pali, per verificarne lunghezza e integrità strutturale. In ogni caso, deve essere eseguita almeno una prova di carico statica.

Per fondazioni su pali di opere che ricadono in condizioni ambientali particolarmente severe, quali ad esempio le strutture offshore con elevato battente d'acqua, si può fare riferimento a specifiche normative di comprovata validità.

6.5. OPERE DI SOSTEGNO

Le norme si applicano a tutte le costruzioni e agli interventi atti a sostenere in sicurezza un corpo di terreno o di materiale con comportamento simile. In particolare :

- muri, per i quali la funzione di sostegno è affidata al peso proprio del muro e a quello del terreno direttamente agente su di
 esso (ad esempio muri a gravità, muri a mensola, muri a contrafforti);
- paratie, per le quali la funzione di sostegno è assicurata principalmente dalla resistenza del volume di terreno posto innanzi l'opera e da eventuali ancoraggi e puntoni;
- strutture miste, che esplicano la funzione di sostegno anche per effetto di trattamenti di miglioramento e per la presenza di particolari elementi di rinforzo e collegamento.

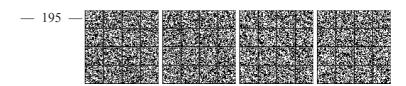
In presenza di azioni sismiche, oltre a quanto previsto nel presente paragrafo, le opere di sostegno devono rispettare i criteri di verifica di cui al successivo § 7.11.6.

6.5.1 CRITERI GENERALI DI PROGETTO

La scelta del tipo di opera di sostegno deve essere effettuata in base alle dimensioni e alle esigenze di funzionamento dell'opera, alle caratteristiche meccaniche dei terreni in sede e di riporto, al regime delle pressioni interstiziali, all'interazione con i manufatti circostanti, alle condizioni generali di stabilità del sito. Deve inoltre tener conto dell'incidenza sulla sicurezza di dispositivi complementari (quali rinforzi, drenaggi, tiranti e ancoraggi) e delle fasi costruttive.

Nei muri di sostegno, il terreno di riempimento a tergo del muro deve essere posto in opera con opportuna tecnica di costipamento ed avere granulometria tale da consentire un drenaggio efficace nel tempo. Si può ricorrere all'uso di geotessili, con funzione di separazione e filtrazione, da interporre fra il terreno in sede e quello di riempimento. Il drenaggio deve essere progettato in modo da risultare efficace in tutto il volume significativo a tergo del muro.

Devono essere valutati gli effetti derivanti da parziale perdita di efficacia di dispositivi particolari quali sistemi di drenaggio superficiali e profondi, tiranti ed ancoraggi. Per tutti questi interventi deve essere predisposto un dettagliato piano di controllo e monitoraggio nei casi in cui la loro perdita di efficacia configuri scenari di rischio.


In presenza di costruzioni preesistenti, il comportamento dell'opera di sostegno deve garantirne i previsti livelli di funzionalità e stabilità. In particolare, devono essere valutati gli spostamenti del terreno a tergo dell'opera e verificata la loro compatibilità con le condizioni di sicurezza e funzionalità delle costruzioni preesistenti. Inoltre, nel caso in cui in fase costruttiva o a seguito della adozione di sistemi di drenaggio si determini una modifica delle pressioni interstiziali nel sottosuolo se ne devono valutare gli effetti, anche in termini di stabilità e funzionalità delle costruzioni preesistenti.

Le indagini geotecniche devono avere estensione tale da consentire la verifica delle condizioni di stabilità locale e globale del complesso opera-terreno, tenuto conto anche di eventuali moti di filtrazione.

Devono essere prescritte le caratteristiche fisiche e meccaniche dei materiali di riempimento.

6.5.2 AZIONI

Si considerano azioni sull'opera di sostegno quelle dovute al peso proprio del terreno e del materiale di riempimento, ai sovraccarichi, all'acqua, ad eventuali ancoraggi presollecitati, al moto ondoso, ad urti e collisioni, alle variazioni di temperatura e al ghiaccio.

6.5.2.1 SOVRACCARICHI

Nel valutare il sovraccarico a tergo di un'opera di sostegno si deve tener conto della eventuale presenza di costruzioni, di depositi di materiale, di veicoli in transito, di apparecchi di sollevamento.

6.5.2.2 MODELLO GEOMETRICO DI RIFERIMENTO

Il modello geometrico deve tenere conto delle possibili variazioni del profilo del terreno a monte e a valle del paramento rispetto ai valori nominali.

Nel caso in cui la funzione di sostegno è affidata alla resistenza del volume di terreno a valle dell'opera, la quota di valle dove essere diminuita di una quantità pari al minore dei seguenti valori:

- 10% dell'altezza di terreno da sostenere nel caso di opere a sbalzo;
- 10 % della differenza di quota fra il livello inferiore di vincolo e il fondo scavo nel caso di opere vincolate;
- 0,5 m.

Il livello della superficie libera dell'acqua deve essere scelto sulla base di misure e sulla possibile evoluzione del regime delle pressioni interstiziali anche legati a eventi di carattere eccezionale e a possibili malfunzionamenti dei sistemi di drenaggio. In assenza di particolari sistemi di drenaggio, nelle verifiche allo stato limite ultimo, si deve sempre ipotizzare che la superficie libera della falda non sia inferiore a quella del livello di sommità dei terreni con bassa permeabilità $(k < 10^6 \text{m/s})$.

6.5.3 VERIFICHE AGLI STATI LIMITE

Le verifiche eseguite mediante analisi di interazione terreno-struttura o con metodi semplificati devono sempre rispettare le condizioni di equilibrio e congruenza e la compatibilità con i criteri di resistenza del terreno. È necessario inoltre portare in conto la dipendenza della spinta dei terreni dallo spostamento dell'opera.

6.5.3.1 VERIFICHE DI SICUREZZA (SLU)

Nelle verifiche di sicurezza devono essere presi in considerazione tutti i meccanismi di stato limite ultimo, sia a breve sia a lungo termine. Gli stati limite ultimi delle opere di sostegno si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno, e al raggiungimento della resistenza degli elementi strutturali che compongono le opere stesse.

6.5.3.1.1 Muri di sostegno

Per i muri di sostegno o per altre strutture miste ad essi assimilabili devono essere effettuate le verifiche con riferimento almeno ai seguenti stati limite, accertando che la condizione [6.2.1] sia soddisfatta per ogni stato limite considerato:

- SLU di tipo geotecnico (GEO)
 - scorrimento sul piano di posa;
 - collasso per carico limite del complesso fondazione-terreno;
 - ribaltamento;
 - stabilità globale del complesso opera di sostegno-terreno;
- SLU di tipo strutturale (STR)
 - raggiungimento della resistenza negli elementi strutturali.

La verifica di stabilità globale del complesso opera di sostegno-terreno deve essere effettuata, analogamente a quanto previsto al § 6.8, secondo l'Approccio 1, con la Combinazione 2 (A2+M2+R2), tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II per le azioni e i parametri geotecnici e nella Tab. 6.8.I per le verifiche di sicurezza di opere di materiali sciolti e fronti di scavo.

Le rimanenti verifiche devono essere effettuate secondo l'Approccio 2, con la combinazione (A1+M1+R3), tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.5.I.

Nella verifica a ribaltamento i coefficienti R3 della Tab. 6.5.I si applicano agli effetti delle azioni stabilizzanti.

 $\textbf{Tab. 6.5.I -} \textit{Coefficienti parziali } \gamma_{\text{R}} \textit{per le verifiche agli stati limite ultimi di muri di sostegno}$

Verifica	Coefficiente parziale (R3)		
Capacità portante della fondazione	$\gamma_R = 1.4$		
Scorrimento	$\gamma_R = 1.1$		
Ribaltamento	$\gamma_R = 1.15$		
Resistenza del terreno a valle	$\gamma_R = 1.4$		

In generale, le ipotesi di calcolo delle spinte devono essere giustificate sulla base dei prevedibili spostamenti relativi manufattoterreno, oppure determinate con un'analisi dell'interazione terreno-struttura. Le spinte devono tenere conto del sovraccarico e dell'inclinazione del piano campagna, dell'inclinazione del paramento rispetto alla verticale, delle pressioni interstiziali e degli effetti

della filtrazione nel terreno. Nel calcolo della spinta si può tenere conto dell'attrito che si sviluppa fra parete e terreno. I valori assunti per il relativo coefficiente di attrito devono essere giustificati in base alla natura dei materiali a contatto e all'effettivo grado di mobilitazione.

Ai fini della verifica alla traslazione sul piano di posa di muri di sostegno con fondazioni superficiali, non si deve in generale considerare il contributo della resistenza passiva del terreno antistante il muro. In casi particolari, da giustificare con considerazioni relative alle caratteristiche meccaniche dei terreni e alle modalità costruttive, la presa in conto di un'aliquota (comunque non superiore al 50%) di tale resistenza è subordinata all'assunzione di effettiva permanenza di tale contributo, nonché alla verifica che gli spostamenti necessari alla mobilitazione di tale aliquota siano compatibili con le prestazioni attese dell'opera.

Nel caso di strutture miste o composite, le verifiche di stabilità globale devono essere accompagnate da verifiche di stabilità locale e di funzionalità e durabilità degli elementi singoli.

6.5.3.1.2 Paratie

Per le paratie si devono considerare almeno i seguenti stati limite ultimi, accertando che la condizione [6.2.1] sia soddisfatta per ogni stato limite considerato:

- SLU di tipo geotecnico (GEO) e di tipo idraulico (UPL e HYD)
 - collasso per rotazione intorno a un punto dell'opera (atto di moto rigido);
 - collasso per carico limite verticale;
 - sfilamento di uno o più ancoraggi;
 - instabilità del fondo scavo in terreni a grana fine in condizioni non drenate;
 - instabilità del fondo scavo per sollevamento;
 - sifonamento del fondo scavo;
 - instabilità globale del complesso opera di sostegno-terreno;
- SLU di tipo strutturale (STR)
 - raggiungimento della resistenza in uno o più ancoraggi;
 - raggiungimento della resistenza in uno o più puntoni o di sistemi di contrasto;
 - raggiungimento della resistenza strutturale della paratia.

La verifica di stabilità globale del complesso opera di sostegno-terreno deve essere effettuata secondo la Combinazione 2 (A2+M2+R2) dell'Approccio 1, tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.8.I.

Le verifiche nei riguardi degli stati limite idraulici (UPL e HYD) devono essere eseguite come descritto nel § 6.2.4.2.

Le rimanenti verifiche devono essere effettuate secondo l'Approccio 1 considerando le due combinazioni di coefficienti:

- Combinazione 1: (A1+M1+R1)
- Combinazione 2: (A2+M2+R1)

tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I e 6.2.II, con i coefficienti γ R del gruppo R1 pari all'unità.

Per le paratie, i calcoli di progetto devono comprendere la verifica degli eventuali ancoraggi, puntoni o strutture di controventamento

Fermo restando quanto specificato nel § 6.5.3.1.1 per il calcolo delle spinte, per valori dell'angolo d'attrito tra terreno e parete $\delta > \phi'/2$, ai fini della valutazione della resistenza passiva è necessario tener conto della non planarità delle superfici di scorrimento.

6.5.3.2 VERIFICHE DI ESERCIZIO (SLE)

In tutti i casi, nelle condizioni di esercizio, gli spostamenti dell'opera di sostegno e del terreno circostante devono essere valutati per verificarne la compatibilità con la funzionalità dell'opera e con la sicurezza e funzionalità di manufatti adiacenti, anche a seguito di modifiche indotte sul regime delle pressioni interstiziali.

In presenza di manufatti particolarmente sensibili agli spostamenti dell'opera di sostegno, deve essere sviluppata una specifica analisi dell'interazione tra opere e terreno, tenendo conto della sequenza delle fasi costruttive.

6.6. TIRANTI DI ANCORAGGIO

I tiranti di ancoraggio sono elementi strutturali opportunamente collegati al terreno, in grado di sostenere forze di trazione.

6.6.1. CRITERI DI PROGETTO

Ai fini del progetto, gli ancoraggi si distinguono in provvisori e permanenti.

Gli ancoraggi possono essere ulteriormente suddivisi in attivi o presollecitati, quando nell'armatura viene indotta una forza di tesatura iniziale, e passivi o non presollecitati.

Nella scelta del tipo di ancoraggio si deve tenere conto delle sollecitazioni prevedibili, delle caratteristiche del sottosuolo, dell'aggressività ambientale.

Nel progetto devono indicarsi l'orientazione, la lunghezza e il numero degli ancoraggi; la tecnica e le tolleranze di esecuzione; la resistenza di progetto R_{ad} e l'eventuale programma di tesatura.

Nel caso di ancoraggi attivi impiegati per una funzione permanente, devono essere adottati tutti gli accorgimenti costruttivi necessari a garantire la durabilità e l'efficienza del sistema di testata dei tiranti, soprattutto per quelli a trefoli, in particolare nei riguardi della corrosione, per tutta la vita nominale della struttura. Inoltre si devono prevedere efficaci dispositivi di contenimento locale dell'armatura nei confronti del possibile tranciamento in corso di esercizio.

Nel progetto deve essere definito un programma di manutenzione ordinaria che può comprendere anche successivi interventi di regolazione e/o sostituzione dei dispositivi di ancoraggio. Deve inoltre essere predisposto un piano di monitoraggio per verificare il comportamento dell'ancoraggio nel tempo.

Se la funzione di ancoraggio è esercitata da piastre, da pali accostati o simili, è necessario evitare ogni sovrapposizione tra la zona passiva di pertinenza dell'ancoraggio e quella attiva a tergo dell'opera di sostegno.

Per la valutazione della resistenza a sfilamento di un ancoraggio si può procedere in prima approssimazione con formule teoriche o con correlazioni empiriche. La conferma sperimentale con prove di trazione in sito nelle fasi di progetto e in corso d'opera è sempre necessaria.

6.6.2. VERIFICHE DI SICUREZZA (SLU)

Nelle verifiche di sicurezza devono essere presi in considerazione tutti i meccanismi di stato limite ultimo, sia a breve sia a lungo termine

Gli stati limite ultimi dei tiranti di ancoraggio si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che li compongono.

Per il dimensionamento geotecnico, deve risultare rispettata la condizione [6.2.1] con specifico riferimento ad uno stato limite di sfilamento della fondazione dell'ancoraggio. La verifica di tale condizione può essere effettuata con riferimento alla combinazione A1+M1+R3, tenendo conto dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.6.I.

La verifica a sfilamento della fondazione dell'ancoraggio si esegue confrontando la massima azione di progetto E_d con la resistenza di progetto R_{ad} , determinata applicando alla resistenza caratteristica R_{ak} i coefficienti parziali γ_R riportati nella Tab. 6.6.I.

Tab. 6.6.I - Coefficienti parziali per la resistenza degli ancoraggi

	Simbolo	Coefficiente parziale
Temporanei	γ_R	1,1
Permanenti	γ_R	1,2

Il valore caratteristico della resistenza allo sfilamento dell'ancoraggio R_{ak} si può determinare:

- a) dai risultati di prove di progetto su ancoraggi di prova;
- b) con metodi di calcolo analitici, dai valori caratteristici dei parametri geotecnici dedotti dai risultati di prove in sito e/o di laboratorio.

Nel caso (a), il valore della resistenza caratteristica R_{ak} è il minore dei valori derivanti dall'applicazione dei fattori di correlazione ξ_{a1} e ξ_{a2} riportati nella Tabella 6.6.II rispettivamente al valor medio e al valor minimo delle resistenze $R_{a,m}$ misurate nel corso delle prove:

$$R_{ak} = Min \left\{ \frac{\left(R_{a,m}\right)_{medio}}{\xi_{a1}}; \frac{\left(R_{a,m}\right)_{min}}{\xi_{a2}} \right\}$$
 [6.6.1]

Nel caso (b), il valore della resistenza caratteristica R_{ak} è il minore dei valori derivanti dall'applicazione dei fattori di correlazione ξ_{a3} e ξ_{a4} riportati nella Tabella 6.6.III rispettivamente al valor medio e al valor minimo delle resistenze $R_{a,c}$ ottenute dal calcolo. Per la valutazione dei fattori ξ_{a3} e ξ_{a4} , si deve tenere conto che i profili di indagine sono solo quelli che consentono la completa identificazione del modello geotecnico di sottosuolo per il terreno di fondazione dell'ancoraggio.

$$R_{ak} = Min \left\{ \frac{(R_{a,c})_{medio}}{\xi_{a3}}; \frac{(R_{a,c})_{min}}{\xi_{a4}} \right\}$$
 [6.6.2]

Nella valutazione analitica della resistenza allo sfilamento degli ancoraggi non si applicano coefficienti parziali di sicurezza sui valori caratteristici della resistenza del terreno; si fa quindi riferimento ai coefficienti parziali di sicurezza M1.

Tab. 6.6.II - Fattori di correlazione per derivare la resistenza caratteristica da prove di progetto, in funzione del numero degli ancoraggi di prova

Numero degli ancoraggi di prova	1	2	> 2
ξ_{a1}	1,5	1,4	1,3
ξ_{a2}	1,5	1,3	1,2

Tab. 6.6.III - Fattori di correlazione per derivare la resistenza caratteristica dalle prove geotecniche, in funzione del numero n di profili di indagine

Numero di profili di indagine	1	2	3	4	≥ 5
ξ_{a3}	1,80	1,75	1,70	1,65	1,60
ξ_{a4}	1,80	1,70	1,65	1,60	1,55

Nei tiranti di prova, l'armatura a trefoli dell'acciaio armonico del tratto libero deve essere dimensionata in modo che la resistenza caratteristica al limite di snervamento del tratto libero sia sempre maggiore del tiro massimo di prova.

6.6.3. ASPETTI COSTRUTTIVI

Per la realizzazione di ancoraggi di tipo attivo si devono impiegare sistemi qualificati, come previsto al § 11.5.2. La durabilità e la compatibilità con i terreni dei materiali impiegati per la costruzione dei tiranti, nonché i sistemi di protezione dalla corrosione, devono essere documentati.

Il diametro dei fori non deve essere inferiore ai diametri nominali previsti in progetto.

La tesatura dei tiranti deve essere effettuata in conformità al programma di progetto. In ogni caso, la tesatura può avere inizio non prima che siano praticamente esauriti i fenomeni di presa ed indurimento del materiale costituente la fondazione dell'ancoraggio.

6.6.4. PROVE DI CARICO

6.6.4.1. PROVE DI PROGETTO SU ANCORAGGI PRELIMINARI

Gli ancoraggi preliminari di prova (ancoraggi di progetto) - sottoposti a sollecitazioni più severe di quelle di verifica e non utilizzabili per l'impiego successivo - devono essere realizzati con lo stesso sistema costruttivo di quelli definitivi, nello stesso sito e nelle stesse condizioni ambientali.

Gli ancoraggi preliminari di prova devono essere realizzati dopo l'esecuzione di quelle operazioni, quali scavi e riporti, che possano influire sulla capacità portante della fondazione.

Nelle valutazioni si terrà conto della variazione della resistenza allo sfilamento nel tempo, per effetto del comportamento viscoso del terreno e dei materiali che costituiscono l'ancoraggio.

Il numero di prove di progetto non deve essere inferiore a:

- 1 se il numero degli ancoraggi è inferiore a 30,
- 2 se il numero degli ancoraggi è compreso tra 31 e 50,
- 3 se il numero degli ancoraggi è compreso tra 51 e 100,
- 7 se il numero degli ancoraggi è compreso tra 101 e 200,
- 8 se il numero degli ancoraggi è compreso tra 201 e 500,
- 10 se il numero degli ancoraggi è superiore a 500.

6.6.4.2. PROVE DI CARICO IN CORSO D'OPERA SUGLI ANCORAGGI

Le prove di carico in corso d'opera devono essere effettuate su tutti gli ancoraggi per controllarne il comportamento sotto le azioni di progetto. La prova consiste nell'applicazione di un ciclo semplice di carico e scarico; in questo ciclo il tirante viene sottoposto ad una forza pari a 1,2 l'azione di progetto Pd utilizzata per le verifiche SLE, verificando che gli allungamenti misurati siano nei limiti previsti e/o compatibili con le misure sugli ancoraggi preliminari di prova.

6.7. OPERE IN SOTTERRANEO

Le presenti norme definiscono le procedure tecniche per il progetto e la costruzione delle opere in sotterraneo quali le gallerie, le caverne ed i pozzi, che sono costruiti totalmente nel sottosuolo mediante operazioni coordinate di asportazione del terreno e/o della roccia in posto e l'esecuzione di eventuali interventi necessari alla stabilizzazione della cavità a breve e a lungo termine, nonché del rivestimento finale.

6.7.1. PRESCRIZIONI GENERALI

Il progetto delle opere in sotterraneo, per la loro peculiarità, deve svilupparsi ponendo particolare cura nella definizione del modello geologico e del modello geotecnico di riferimento.

L'approccio progettuale adottato deve prevedere l'impiego di metodi atti a prevenire o controllare, nelle fasi esecutive, gli effetti legati alla variazione dello stato tensionale preesistente nel terreno e/o nell'ammasso roccioso e alla variazione del regime idraulico del sottosuolo nell'intorno della cavità, conseguenti alle operazioni di scavo. Deve in particolare essere dimostrato il raggiungimento di condizioni di stabilità della stessa cavità ad opera ultimata, in relazione alle condizioni e alle caratteristiche del sito, nonché alle conseguenze che si possono comunque produrre nell'ambiente circostante. A tale scopo, in stretta dipendenza dai risultati delle indagini geologiche e geotecniche, nel progetto devono essere specificati e adeguatamente giustificati:

- geometria, ubicazione (per le opere puntuali quali le caverne ed i pozzi) e tracciato dell'opera (per le opere a sviluppo lineare quali le gallerie);
- metodi e tecniche di scavo, di tipo tradizionale o meccanizzato;
- eventuali interventi di stabilizzazione (quali il miglioramento e il rinforzo dei terreni e dell'ammasso roccioso) da adottare sul
 fronte e sulle pareti di scavo, le strutture di rivestimento, di prima fase o definitivi, ed eventuali opere di protezione degli imbocchi;
- modalità e metodi per l'intercettazione delle acque sotterranee ed il controllo del regime delle pressioni interstiziali
- provvedimenti per prevenire l'innesco e/o la riattivazione di eventuali fenomeni franosi, soprattutto per le gallerie parietali e nelle zone di imbocco;
- elementi utili a definire accorgimenti nei metodi e nelle tecniche di scavo, interventi, piani e norme di sicurezza, anche con riferimento a particolari situazioni di pericolo per presenza di gas tossici o esplosivi, di cavità (naturali e antropiche) o di venute improvvise di acqua;
- problemi relativi alla messa a dimora dei materiali di risulta dagli scavi, compresa la individuazione degli eventuali interventi di inertizzazione che si rendessero necessari, in relazione alla natura degli stessi materiali.

6.7.2. CARATTERIZZAZIONE GEOLOGICA

L'ampiezza e l'approfondimento degli studi e delle indagini di carattere geologico devono essere commisurati alla complessità geologica, alla vulnerabilità ambientale del sito, alla posizione e alle dimensioni dell'opera.

Il modello geologico di riferimento deve descrivere le caratteristiche geologiche generali dei terreni e dell'ammasso roccioso interessato dagli scavi indicando natura e distribuzione geometrica dei litotipi e caratteri strutturali, ponendo particolare attenzione al riconoscimento del contatto fra formazione di base e copertura, dei contatti stratigrafici, delle faglie in corrispondenza o in prossimità dell'opera e delle altre discontinuità Devono essere accertate le caratteristiche sismotettoniche e la franosità della zona interessata dal progetto, particolarmente rilevante per gallerie parietali e per le zone di imbocco, e deve essere segnalata l'eventuale presenza di cavità carsiche.

Gli accertamenti devono riguardare inoltre le condizioni idrogeologiche, i caratteri degli acquiferi presenti nell'area, nonché i rischi di natura ambientale dovuti alla presenza di gas tossici ed esplosivi e di minerali nocivi.

6.7.3. CARATTERIZZAZIONE E MODELLAZIONE GEOTECNICA

Specifiche indagini, in sito e in laboratorio, devono permettere la caratterizzazione fisico-meccanica dei terreni e delle rocce sia alla scala dell'elemento di volume sia alla scala dell'ammasso. Ove necessario la caratterizzazione deve essere rivolta a valutare potenzialità spingenti e/o rigonfianti e le caratteristiche meccaniche lungo le discontinuità. Deve inoltre essere accertato il regime delle pressioni interstiziali e l'eventuale presenza di moti di filtrazione.

Il modello geotecnico di sottosuolo deve permettere di eseguire le analisi di progetto e le verifiche di sicurezza di cui al successivo § 6.7.5 . A tal fine, deve evidenziare le zone omogenee dal punto di vista fisico-meccanico e rappresentare il regime delle pressioni interstiziali nel sottosuolo interessato dallo scavo. Inoltre, la caratterizzazione fisico-meccanica dei materiali deve essere adeguata ai procedimenti analitici e/o numerici previsti.

Nel caso in cui la progettazione faccia riferimento al "metodo osservazionale", indagini e prove integrative possono essere svolte in corso d'opera purché previste per la valutazione dei parametri significativi per la scelta fra le soluzioni alternative già individuate in progetto.

6.7.4. CRITERI DI PROGETTO

Sulla base del modello geotecnico del sottosuolo, il progetto deve comprendere la previsione quantitativa degli effetti direttamente indotti dagli scavi al contorno della cavità e in superficie, con riferimento in particolare a scavi e gallerie poco profonde in ambienti urbanizzati, da cui deve derivare la scelta del metodo e delle tecniche di scavo e degli eventuali interventi di miglioramento e rinforzo in fase di avanzamento. Devono essere dimensionati i rivestimenti, di prima fase e definitivi, e quando appropriato, le opere di protezione agli imbocchi. Infine, nel caso di opere che ricadono in zona di versante, devono essere valutate le condizioni di stabilità globale dei pendii con cui l'opera interagisce, sia in corso di realizzazione sia in esercizio.

L'adozione di interventi di miglioramento e rinforzo dei terreni e dell'ammasso roccioso per garantire o migliorare la stabilità globale e locale dell'opera deve essere adeguatamente motivata, così come deve essere giustificato e illustrato il dimensionamento di tali interventi.

6.7.5. ANALISI PROGETTUALI E VERIFICHE DI SICUREZZA

Le analisi devono essere riferite alle diverse fasi di scavo e costruzione, nonché alle condizioni di esercizio.

Le verifiche devono essere svolte con riferimento agli stati limite ultimi (SLU) e agli stati limite di esercizio (SLE).

Si devono considerare gli stati limite ultimi per raggiungimento della resistenza del terreno o dell'ammasso roccioso interessato dallo scavo (GEO) e gli stati limite ultimi per raggiungimento della resistenza degli elementi strutturali che costituiscono gli interventi di stabilizzazione e di rivestimento, sia di prima fase sia definitivi (STR). Devono essere inoltre valutati quantitativamente gli effetti indotti dall'opera in sotterraneo sui manufatti e sulle costruzioni esistenti. Devono essere considerati i possibili stati limite ultimi di tipo idraulico prodotti sia dalle spinte idrauliche al fronte e al contorno dello scavo in fase di avanzamento (UPL) sia da elevati gradienti idraulici nel caso di attraversamento di terreni suscettibili al sifonamento (HYD).

Le verifiche di stabilità globale dei versanti con cui l'opera interagisce e dei fronti di scavo agli imbocchi devono essere eseguite con i criteri indicati ai §§ 6.3 e 6.8 rispettivamente per i pendii naturali e per i fronti di scavo.

Le verifiche agli stati limite ultimi devono essere eseguite con l'Approccio 1, considerando le due combinazioni di coefficienti

- Combinazione 1: (A1+M1+R1)
- Combinazione 2: (A2+M2+R2)

con i valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e con i coefficienti γκ dei gruppi R1 e R2 pari all'unità.

Le verifiche strutturali degli elementi di rinforzo, in avanzamento dal fronte e sulle pareti di scavo, e delle strutture di rivestimento, di prima fase e definitive, devono essere eseguite come specificato al § 6.2.4.1.3, utilizzando i valori caratteristici dei parametri geotecnici.

Le verifiche nei confronti degli stati limite ultimi idraulici devono essere eseguite con i criteri indicati al § 6.2.4.2.

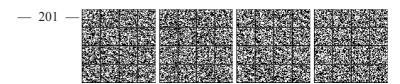
Nel caso di progettazione basata sul metodo osservazionale, di cui al § 6.2.5, le analisi devono permettere la valutazione quantitativa del comportamento dell'opera nelle diverse fasi di scavo e costruzione, in modo da poter formulare previsioni sui valori delle grandezze rappresentative del comportamento della cavità, con particolare riguardo ai valori di convergenza radiale, della deformazione longitudinale del fronte e, se pertinenti, degli spostamenti di superficie, per consentire il confronto delle previsioni con i valori misurati delle medesime grandezze.

6.7.6. CONTROLLO E MONITORAGGIO

Il monitoraggio deve permettere di verificare la validità delle previsioni progettuali in relazione al comportamento dell'opera in fase di costruzione e in esercizio, per il periodo di tempo indicato in progetto. Esso deve essere predisposto in modo da permettere la valutazione del comportamento del terreno o dell'ammasso roccioso interessato, delle strutture di rivestimento per ogni fase di scavo e costruzione e a opera ultimata, nonché del comportamento dei manufatti esistenti. In presenza di fenomeni franosi, potenziali o in atto, il monitoraggio deve riguardare le grandezze significative (tensioni, spostamenti e pressioni interstiziali) e gli effetti sulle opere per il controllo del fenomeno.

Nel caso di applicazione del metodo osservazionale, il monitoraggio deve essere specificamente progettato per consentire il controllo delle grandezze rappresentative del comportamento del complesso opera-terreno ai fini della scelta fra le soluzioni alternative previste.

6.8. OPERE DI MATERIALI SCIOLTI E FRONTI DI SCAVO


Le presenti norme si applicano ai manufatti di materiali sciolti, quali rilevati, argini di difesa per fiumi, canali e litorali, rinfianchi, rinterri, terrapieni e colmate, scavi per la formazione di piazzali e/o trincee. Le norme si applicano, inoltre, alle opere e alle parti di opere di materiali sciolti con specifiche funzioni di drenaggio, filtro, transizione, fondazione, tenuta, protezione ed altre. Gli sbarramenti di ritenuta idraulica di materiali sciolti sono oggetto di normativa specifica.

6.8.1. CRITERI GENERALI DI PROGETTO

Il progetto di un manufatto di materiali sciolti deve tenere conto dei requisiti prestazionali richiesti e delle caratteristiche dei terreni di fondazione. Esso deve comprendere la scelta dei materiali da costruzione, sia naturali che di provenienza diversa, e la loro modalità di posa in opera.

I criteri per la scelta dei materiali naturali devono essere definiti in relazione alle funzioni dell'opera, tenendo presenti i problemi di selezione, coltivazione delle cave, trasporto, trattamento e posa in opera.

Per i materiali di provenienza diversa, i criteri di selezione e impiego dovranno essere definiti di volta in volta, compatibilmente con i vincoli di natura ambientale.

Nel progetto devono essere indicate le prescrizioni relative alla qualificazione dei materiali e alla posa in opera precisando tempi e modalità di costruzione, in particolare lo spessore massimo degli strati in funzione dei materiali. Sono altresì da precisare i controlli da eseguire durante la costruzione e i limiti di accettabilità dei materiali, del grado di compattazione da raggiungere e della deformabilità degli strati.

6.8.2. VERIFICHE DI SICUREZZA (SLU)

Deve risultare rispettata la condizione [6.2.1], verificando che non si raggiunga una condizione di stato limite ultimo con i valori di progetto delle azioni e dei parametri geotecnici.

Le verifiche devono essere effettuate secondo la Combinazione 2 (A2+M2+R2) dell'Approccio 1, tenendo conto dei valori dei coefficienti parziali riportati nelle Tabelle 6.2.I, 6.2.II e 6.8.I.

Tab. 6.8.I - Coefficienti parziali per le verifiche di sicurezza di opere di materiali sciolti e di fronti di scavo

COEFFICIENTE	R2
γ_{R}	1,1

La stabilità globale dell'insieme manufatto-terreno di fondazione deve essere studiata nelle condizioni corrispondenti alle diverse fasi costruttive, al termine della costruzione e in esercizio.

Le verifiche locali devono essere estese agli elementi artificiali di rinforzo eventualmente presenti all'interno ed alla base del manufatto, con riferimento anche ai problemi di durabilità. Nel caso di manufatti su pendii si deve esaminare l'influenza dell'opera in terra sulle condizioni generali di sicurezza del pendio, anche in relazione alle variazioni indotte nel regime delle pressioni interstiziali nel sottosuolo.

Se l'opera ha funzioni di ritenuta idraulica, lo stato limite ultimo è da verificarsi con riferimento alla stabilità dei paramenti, in tutte le possibili condizioni di esercizio. Si deve porre particolare attenzione alle problematiche relative al sifonamento ed all'erosione, in relazione alle caratteristiche dei terreni di fondazione dei materiali con i quali è realizzata l'opera, tenendo conto di quanto indicato al § 6.2.4.2.

6.8.3. VERIFICHE DI ESERCIZIO (SLE)

Nelle condizioni di esercizio, devono essere valutati gli spostamenti del manufatto e del terreno circostante, dovuti alla deformazione dei terreni di fondazione e dell'opera, per verificarne la compatibilità con la funzionalità dell'opera e con la sicurezza e funzionalità dei manufatti adiacenti.

6.8.4. ASPETTI COSTRUTTIVI

I materiali costituenti il manufatto devono essere posti in opera in strati con metodologie idonee a garantire il raggiungimento delle proprietà fisiche e meccaniche richieste in progetto.

Le caratteristiche dei componenti artificiali, quali i materiali geosintetici, devono essere specificate e certificate in conformità alle relative norme europee armonizzate e verificate sulla base di risultati di prove sperimentali da eseguire nelle fasi di accettazione e di verifica delle prestazioni attese.

6.8.5. CONTROLLI E MONITORAGGIO

Durante la costruzione devono essere eseguite prove di controllo secondo un programma di prove commisurato alla tipologia ed importanza del manufatto, in modo da assicurare un congruo numero di misure significative. Con il monitoraggio si deve accertare che i valori delle grandezze misurate, quali ad esempio spostamenti e pressioni interstiziali, siano compatibili con i requisiti di sicurezza e funzionalità del manufatto e di quelli delle costruzioni contigue.

6.8.6. FRONTI DI SCAVO

6.8.6.1 INDAGINI GEOTECNICHE E CARATTERIZZAZIONE GEOTECNICA

Ferme restando le prescrizioni di carattere generale di cui al § 6.2.2, le indagini geotecniche devono inoltre tener conto della profondità, dell'ampiezza, della destinazione e del carattere permanente o provvisorio dello scavo.

6.8.6.2 CRITERI GENERALI DI PROGETTO E VERIFICHE DI SICUREZZA

Il progetto deve definire un profilo di scavo tale che risultino rispettate le prescrizioni di cui al § 6.2.4 e la verifica di sicurezza deve essere condotta con modalità analoga a quella indicata per i manufatti di materiali sciolti.

Nel caso di scavi realizzati su pendio, deve essere verificata l'influenza dello scavo sulle condizioni di stabilità generale del pendio stesso.

Il progetto deve tener conto dell'esistenza di opere e sovraccarichi in prossimità dello scavo, deve esaminare l'influenza dello scavo sul regime delle pressioni interstiziali e deve garantire la stabilità e la funzionalità delle costruzioni preesistenti nell'area interessata dallo scavo.

Per scavi in trincea a fronte verticale di altezza superiore ai 2 m, nei quali sia prevista la permanenza di personale, e per scavi che ricadano in prossimità di manufatti esistenti, deve essere prevista una struttura di sostegno delle pareti di scavo. Le verifiche devono essere svolte nei confronti degli stati limite ultimi (SLU) e nei confronti degli stati limite di servizio (SLE), quando pertinenti

Le azioni dovute al terreno, all'acqua e ai sovraccarichi anche transitori devono essere calcolate in modo da pervenire, di volta in volta, alle condizioni più sfavorevoli.

Le ipotesi per il calcolo delle azioni del terreno e delle sollecitazioni della struttura di sostegno devono essere giustificate portando in conto la deformabilità relativa del terreno-struttura di sostegno, le modalità esecutive dello scavo, le caratteristiche meccaniche del terreno e il tempo di permanenza dello scavo.

6.9. MIGLIORAMENTO E RINFORZO DEI TERRENI E DEGLI AMMASSI ROCCIOSI

Le presenti norme riguardano la progettazione, la costruzione e il controllo degli interventi di miglioramento e rinforzo dei terreni e degli ammassi rocciosi, realizzati per diverse finalità applicative.

6.9.1. SCELTA DEL TIPO DI INTERVENTO E CRITERI GENERALI DI PROGETTO

La scelta del tipo di intervento deve derivare da una caratterizzazione geotecnica dei terreni e degli ammassi rocciosi da trattare e da un'analisi dei fattori tecnici, organizzativi e ambientali.

Gli interventi devono essere giustificati, indicando i fattori geotecnici che ci si propone di modificare e fornendo valutazioni quantitative degli effetti meccanici attesi.

Le indagini geotecniche devono riguardare anche l'accertamento dei risultati conseguiti, avvalendosi di misure e di appositi campi prova.

Nel progetto devono essere definiti il dimensionamento degli interventi, le caratteristiche degli eventuali elementi strutturali e dei materiali di apporto, le tecniche necessarie e le sequenze operative.

Il progetto deve indicare le modalità di accertamento dei risultati, specificando le misure e le indagini sperimentali più opportune in relazione alla tipologia ed agli obiettivi dell'intervento di miglioramento e/o rinforzo. Negli interventi di particolare importanza il progetto deve prevedere una fase preliminare di verifica sperimentale e messa a punto delle modalità esecutive dell'intervento (campi prova).

6.9.2. MONITORAGGIO

Il monitoraggio ha lo scopo di valutare l'efficacia degli interventi e di verificare la rispondenza dei risultati ottenuti con le ipotesi progettuali. Ha inoltre lo scopo di controllare il comportamento nel tempo del complesso opera-terreno trattato.

Il monitoraggio deve essere previsto nei casi in cui gli interventi di miglioramento e di rinforzo possano condizionare la sicurezza e la funzionalità dell'opera in progetto o di opere circostanti.

6.10. CONSOLIDAMENTO GEOTECNICO DI OPERE ESISTENTI

Le norme riguardano l'insieme dei provvedimenti tecnici con i quali si interviene sul sistema manufatto-terreno per eliminare o mitigare difetti di comportamento di un'opera esistente.

6.10.1. CRITERI GENERALI DI PROGETTO

Il progetto degli interventi di consolidamento deve derivare dalla individuazione delle cause che hanno prodotto il comportamento anomalo dell'opera. Tali cause possono riguardare singolarmente o congiuntamente la sovrastruttura, le strutture di fondazione, il terreno di fondazione.

In particolare, devono essere ricercate le cause di anomali spostamenti del terreno conseguenti al mutato stato tensionale indotto da modifiche del manufatto, da variazioni del regime delle pressioni interstiziali, dalla costruzione di altri manufatti in adiacenza, da modifiche del profilo topografico del terreno per cause antropiche o per movimenti di massa, oppure le cause alle quali è riconducibile il deterioramento dei materiali costituenti le strutture in elevazione e le strutture di fondazione.

Il progetto del consolidamento geotecnico deve essere sviluppato unitariamente con quello strutturale e gli interventi che si reputano necessari per migliorare il terreno o per rinforzare le fondazioni devono essere concepiti congiuntamente al risanamento della struttura in elevazione.

La descrizione delle modalità esecutive dell'intervento e delle opere provvisionali sono parte integrante del progetto. Per situazioni geotecniche, nelle quali sia documentata la complessità del sottosuolo e comprovata l'impossibilità di svolgere indagini esaustive, è possibile il ricorso al metodo osservazionale.

6.10.2. INDAGINI GEOTECNICHE E CARATTERIZZAZIONE GEOTECNICA

Il progetto degli interventi di consolidamento deve essere basato su risultati di indagini sul terreno e sulle fondazioni esistenti, programmate dopo aver consultato tutta la documentazione eventualmente disponibile, relativa al manufatto da consolidare e al terreno.

In presenza di manufatti particolarmente sensibili agli spostamenti del terreno di fondazione, nell'ubicazione e nella scelta delle attrezzature e delle tecniche esecutive delle indagini si devono valutare le conseguenze di ogni disturbo che potrebbe indursi nel manufatto.

Le indagini devono anche comprendere la misura di grandezze significative per individuare i caratteri cinematici dei movimenti in atto e devono riguardare la variazione nel tempo di grandezze quali le pressioni interstiziali e gli spostamenti del terreno all'interno del volume significativo. Se è presumibile il carattere periodico dei fenomeni osservati, legato ad eventi stagionali, le misure devono essere adeguatamente protratte nel tempo .

6.10.3. TIPI DI CONSOLIDAMENTO GEOTECNICO

I principali metodi per il consolidamento geotecnico di una struttura esistente comprendono in genere:

- il miglioramento e il rinforzo dei terreni di fondazione;
- il miglioramento e il rinforzo dei materiali costituenti la fondazione;
- l'ampliamento della base della fondazione, se superficiale;
- il trasferimento del carico a strati più profondi;
- l'introduzione di sostegni laterali;
- la rettifica degli spostamenti del piano di posa.

Nella scelta del metodo di consolidamento si deve tener conto della circostanza che i terreni di fondazione del manufatto siano stati da tempo sottoposti all'azione di carichi permanenti e ad altre azioni eccezionali. Si devono valutare gli effetti di un'eventuale ridistribuzione delle sollecitazioni nel terreno per effetto dell'intervento sulla risposta meccanica dell'intero manufatto, sia a breve che a lungo termine.

Interventi a carattere provvisorio o definitivo che comportino variazioni di volume, quali il congelamento, le iniezioni, la gettiniezione, e modifiche del regime delle pressioni interstiziali, richiedono particolari cautele e possono essere adottati solo dopo averne valutato gli effetti sul comportamento del manufatto stesso e di quelli adiacenti.

Le funzioni dell'intervento di consolidamento devono essere chiaramente identificate e definite in progetto.

6.10.4. CONTROLLI E MONITORAGGIO

Il controllo dell'efficacia del consolidamento geotecnico è obbligatorio quando agli interventi consegue una ridistribuzione delle sollecitazioni al contatto terreno-manufatto. I controlli assumono diversa ampiezza e si eseguono con strumentazioni e modalità diverse in relazione all'importanza dell'opera, al tipo di difetto del manufatto e ai possibili danni per le persone e le cose.

Il monitoraggio degli interventi di consolidamento deve essere previsto in progetto e descritto in dettaglio – indicando le grandezze da misurare, gli strumenti impiegati e la cadenza temporale delle misure – nel caso di ricorso al metodo osservazionale. Gli esiti delle misure e dei controlli possono costituire elemento di collaudo dei singoli interventi.

6.11. DISCARICHE CONTROLLATE DI RIFIUTI E DEPOSITI DI INERTI

6.11.1. DISCARICHE CONTROLLATE

6.11.1.1 CRITERI DI PROGETTO

Oltre a quanto stabilito nelle specifiche norme vigenti, il progetto delle discariche deve essere basato sulla caratterizzazione del sito, con una chiara definizione delle modalità costruttive e di controllo dei diversi dispositivi di barriera, tenendo conto della natura dei rifiuti, della vulnerabilità ambientale del territorio e dei rischi connessi con eventuali malfunzionamenti.

6.11.1.2 CARATTERIZZAZIONE DEL SITO

La caratterizzazione geologica e geotecnica deve essere finalizzata alla identificazione della natura dei terreni e degli ammassi rocciosi presenti nell'area e dello schema di circolazione idrica del sottosuolo, nonché alla valutazione di tutte le grandezze fisicomeccaniche che contribuiscono alla scelta della localizzazione dell'opera (comprensiva delle aree di deposito, di servizio e di quelle di rispetto), alla sua progettazione e al suo esercizio. È in particolare necessario il preventivo accertamento della presenza di falde acquifere, di zone di protezione naturale, del rischio sismico e di inondazione, del rischio di frane o di valanghe e di fenomeni di subsidenza.

6.11.1.3 MODALITÀ COSTRUTTIVE E DI CONTROLLO DEI DISPOSITIVI DI BARRIERA

Il progetto dovrà definire in dettaglio le modalità costruttive e di controllo delle barriere previste dalla specifica normativa di settore. In particolare, devono essere definite le prove di qualificazione del materiale impiegato e le modalità costruttive in termini di spessore degli strati da porre in opera e metodi di compattazione. Il progetto deve inoltre definire il numero e la frequenza delle prove di controllo da eseguire in sito e in laboratorio durante la costruzione delle barriere. In ogni caso, sulla barriera finita dovranno essere previste specifiche prove di controllo della permeabilità, in numero adeguato da consentire la valutazione del raggiungimento o meno dei requisiti richiesti dalla specifica normativa di settore.

6.11.1.4 VERIFICHE DI SICUREZZA

La stabilità del manufatto e dei terreni di fondazione deve essere valutata mediante specifiche analisi geotecniche, riferite alle diverse fasi della vita dell'opera. In particolare deve essere verificata la stabilità e la deformabilità del fondo, per garantire nel tempo l'efficacia e la funzionalità del sistema di raccolta del percolato, la stabilità globale e la stabilità delle pareti laterali.

In particolare, nel caso di barriere composite, devono essere valutate le condizioni di stabilità lungo superfici di scorrimento che comprendano anche le interfacce tra i diversi materiali utilizzati.

Nelle verifiche che interessano il corpo della discarica, si devono attribuire ai materiali di rifiuto parametri che tengano conto della composizione del rifiuto medesimo e dei metodi di pretrattamento e costipamento adottati nonché dei risultati di specifiche prove in sito o di laboratorio.

6.11.1.5 MONITORAGGIO

Il monitoraggio geotecnico del complesso discarica-terreno deve in generale comprendere la misura di grandezze significative – quali, ad esempio, spostamenti, pressioni interstiziali, caratteristiche del percolato e di eventuale biogas .

6.11.2. DEPOSITI DI INERTI

6.11.2.1 CRITERI DI PROGETTO

Il progetto deve definire modalità e caratteristiche del deposito in modo che risultino rispettate le prescrizioni di cui al § 6.2.4 e la verifica di sicurezza deve essere condotta con modalità analoga a quella indicata al § 6.8 per i manufatti di materiali sciolti. Nelle verifiche che interessano il corpo del deposito, si devono attribuire parametri che tengano conto della natura e delle modalità di compattazione del materiale nonché dei risultati di specifiche prove in sito o di laboratorio.

Per i bacini di decantazione a servizio di attività estrattive consistenti in invasi delimitati almeno da un lato da argini di terra in cui i solidi sono separati dai liquidi, devono essere determinate le caratteristiche del materiale di decantazione per diverse possibili condizioni di consolidazione.

Al fine di garantire condizioni adeguate di stabilità, devono essere previsti dispositivi per la raccolta e l'allontanamento dal deposito delle acque di ruscellamento superficiale e dispositivi per la riduzione e il controllo delle pressioni interstiziali all'interno del materiale del deposito. È da prevedersi un dispositivo per evitare comunque la tracimazione.

Nel progetto devono essere definite le modalità di posa in opera dei materiali e i provvedimenti per evitare dissesti del materiale del deposito.

6.11.2.2 MONITORAGGIO

Il monitoraggio geotecnico del complesso deposito-terreno consiste nella installazione di appropriata strumentazione e nella misura di grandezze significative – quali, ad esempio, spostamenti e pressioni interstiziali.

Deve essere altresì effettuato un controllo delle acque di ruscellamento superficiale al fine di limitarne la penetrazione nel corpo del deposito.

6.12. FATTIBILITÀ DI OPERE SU GRANDI AREE

Le presenti norme definiscono i criteri di carattere geologico e geotecnico da adottare nell'elaborazione di piani urbanistici e nel progetto di insiemi di manufatti e interventi che interessano ampie superfici, quali:

- a) nuovi insediamenti urbani civili o industriali;
- b) ristrutturazione di insediamenti esistenti, reti idriche e fognarie urbane e reti di sottoservizi di qualsiasi tipo;
- c) strade, ferrovie ed idrovie:
- d) opere marittime e difese costiere;
- e) aeroporti;
- f) bacini idrici artificiali e sistemi di derivazione da corsi d'acqua;
- g) sistemi di impianti per l'estrazione di liquidi o gas dal sottosuolo;
- h) bonifiche e sistemazione del territorio;
- i) attività estrattive di materiali da costruzione.

6.12.1. INDAGINI SPECIFICHE

Gli studi geologici e la caratterizzazione geotecnica devono essere estesi a tutta la zona di possibile influenza degli interventi previsti, al fine di accertare che la destinazione d'uso sia compatibile con il territorio in esame.

In particolare, le indagini e gli studi devono caratterizzare la zona di interesse in termini vulnerabilità ambientale, per processi geodinamici interni (sismicità, vulcanismo,...) ed esterni (stabilità dei pendii, erosione, subsidenza,...) e devono consentire di individuare gli eventuali limiti imposti al progetto di insiemi di manufatti e interventi (ad esempio: modifiche del regime delle acque superficiali e sotterranee, subsidenza per emungimento di fluido dal sottosuolo).

CAPITOLO 7.

PROGETTAZIONE PER AZIONI SISMICHE

7.0. GENERALITÀ

Il presente capitolo disciplina la progettazione e la costruzione delle nuove opere soggette anche all'azione sismica. Le sue indicazioni sono da considerarsi aggiuntive e non sostitutive di quelle riportate nei Capitoli 4, 5 e 6; si deve inoltre far sempre riferimento a quanto indicato nel Capitolo 2, per la valutazione della sicurezza, e nel Capitolo 3, per la valutazione dell'azione sismica.

Le costruzioni caratterizzate, nei confronti dello SLV, da $a_gS \le 0.075g$, in cui S è il coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T) , di cui al \S 3.2.3.2, e a_g è l'accelerazione orizzontale massima per il suddetto SLV su sito di riferimento rigido, possono essere progettate e verificate come segue:

- si considera la combinazione di azioni definita nel § 2.5.3, applicando, in due direzioni ortogonali, il sistema di forze orizzontali definito dall'espressione [7.3.7] assumendo F_h = 0,10 W λ per tutte le tipologie strutturali, essendo λ definito al §7.3.3.2;
- si richiede la sola verifica nei confronti dello SLV;
- si utilizza in generale una "progettazione per comportamento strutturale non dissipativo", quale definita nel § 7.2.2; qualora si scelga una "progettazione per comportamento strutturale dissipativo", quale definita nel § 7.2.2, si possono impiegare, in classe di duttilità CD"B", valori unitari per i coefficienti γ_{Rd} di cui alla Tab. 7.2.I;
- ad eccezione del caso di edifici fino a due piani, considerati al di sopra della fondazione o della struttura scatolare rigida di cui al § 7.2.1, gli orizzontamenti devono rispettare i requisiti di rigidezza e resistenza di cui al § 7.2.2.

7.1. REQUISITI NEI CONFRONTI DEGLI STATI LIMITE

S'intende per:

- capacità di un elemento strutturale o di una struttura: l'insieme delle caratteristiche di rigidezza, resistenza e duttilità da essi manifestate, quando soggetti ad un prefissato insieme di azioni;
- *domanda su un elemento strutturale o su una struttura*: l'insieme delle caratteristiche di rigidezza, resistenza e duttilità ad essi richieste da un prefissato insieme di azioni.

Sotto l'effetto delle azioni definite nel § 3.2, deve essere garantito il rispetto degli stati limite ultimi e di esercizio, quali definiti al § 3.2.1 e individuati riferendosi alle prestazioni della costruzione nel suo complesso che include, oltre agli elementi strutturali in elevazione e di fondazione, agli elementi non strutturali e agli impianti, il volume significativo di terreno definito al § 6.2.2.

La verifica nei confronti dei vari stati limite si effettua confrontando capacità e domanda; in mancanza di specifiche indicazioni in merito, la verifica si considera svolta positivamente quando sono soddisfatti i requisiti di rigidezza, resistenza e duttilità, per gli elementi strutturali, e di stabilità e funzionalità, per gli elementi non strutturali e gli impianti, secondo quanto indicato al § 7.3.6.

Per tutti gli stati limite, le strutture di fondazione devono resistere agli effetti risultanti dalla risposta del terreno e delle strutture sovrastanti, senza spostamenti permanenti incompatibili con lo stato limite di riferimento. Al riguardo, deve essere valutata la risposta sismica e la stabilità del sito, secondo quanto indicato nel § 7.11.5.

7.2. CRITERI GENERALI DI PROGETTAZIONE E MODELLAZIONE

7.2.1. CARATTERISTICHE GENERALI DELLE COSTRUZIONI

REGOLARITÀ

Le costruzioni devono avere, quanto più possibile, struttura iperstatica caratterizzata da *regolarità in pianta e in altezza*. Se necessario, ciò può essere conseguito suddividendo la struttura, mediante giunti, in unità tra loro dinamicamente indipendenti.

Per quanto riguarda gli edifici, una costruzione è *regolare in pianta* se tutte le seguenti condizioni sono rispettate:

- a) la distribuzione di masse e rigidezze è approssimativamente simmetrica rispetto a due direzioni ortogonali e la forma in pianta è compatta, ossia il contorno di ogni orizzontamento è convesso; il requisito può ritenersi soddisfatto, anche in presenza di rientranze in pianta, quando esse non influenzano significativamente la rigidezza nel piano dell'orizzontamento e, per ogni rientranza, l'area compresa tra il perimetro dell'orizzontamento e la linea convessa circoscritta all'orizzontamento non supera il 5% dell'area dell'orizzontamento;
- b) il rapporto tra i lati del rettangolo circoscritto alla pianta di ogni orizzontamento è inferiore a 4;
- c) ciascun orizzontamento ha una rigidezza nel proprio piano tanto maggiore della corrispondente rigidezza degli elementi strutturali verticali da potersi assumere che la sua deformazione in pianta influenzi in modo trascurabile la distribuzione delle azioni sismiche tra questi ultimi e ha resistenza sufficiente a garantire l'efficacia di tale distribuzione.

Sempre riferendosi agli edifici, una costruzione è regolare in altezza se tutte le seguenti condizioni sono rispettate:

d) tutti i sistemi resistenti alle azioni orizzontali si estendono per tutta l'altezza della costruzione o, se sono presenti parti aventi differenti altezze, fino alla sommità della rispettiva parte dell'edificio;

- e) massa e rigidezza rimangono costanti o variano gradualmente, senza bruschi cambiamenti, dalla base alla sommità della costruzione (le variazioni di massa da un orizzontamento all'altro non superano il 25%, la rigidezza non si riduce da un orizzontamento a quello sovrastante più del 30% e non aumenta più del 10%); ai fini della rigidezza si possono considerare regolari in altezza strutture dotate di pareti o nuclei in c.a. o di pareti e nuclei in muratura di sezione costante sull'altezza o di telai controventati in acciaio, ai quali sia affidato almeno il 50% dell'azione sismica alla base;
- f) il rapporto tra la capacità e la domanda allo SLV non è significativamente diverso, in termini di resistenza, per orizzontamenti successivi (tale rapporto, calcolato per un generico orizzontamento, non deve differire più del 30% dall'analogo rapporto calcolato per l'orizzontamento adiacente); può fare eccezione l'ultimo orizzontamento di strutture intelaiate di almeno tre orizzontamenti;
- g) eventuali restringimenti della sezione orizzontale della costruzione avvengano con continuità da un orizzontamento al successivo; oppure avvengano in modo che il rientro di un orizzontamento non superi il 10% della dimensione corrispondente all'orizzontamento immediatamente sottostante, né il 30% della dimensione corrispondente al primo orizzontamento. Fa eccezione l'ultimo orizzontamento di costruzioni di almeno quattro orizzontamenti, per il quale non sono previste limitazioni di restringimento.

Qualora, immediatamente al di sopra della fondazione, sia presente una struttura scatolare rigida, purché progettata con comportamento non dissipativo, i controlli sulla regolarità in altezza possono essere riferiti alla sola struttura soprastante la scatolare, a condizione che quest'ultima abbia rigidezza rispetto alle azioni orizzontali significativamente maggiore di quella della struttura ad essa soprastante. Tale condizione si può ritenere soddisfatta se gli spostamenti della struttura soprastante la scatolare, valutati su un modello con incastri al piede, e gli spostamenti della struttura soprastante, valutati tenendo conto anche della deformabilità della struttura scatolare, sono sostanzialmente coincidenti.

Per i ponti le condizioni di regolarità sono definite nel § 7.9.2.1.

DISTANZA TRA COSTRUZIONI CONTIGUE

La distanza tra costruzioni contigue deve essere tale da evitare fenomeni di martellamento e comunque non può essere inferiore alla somma degli spostamenti massimi determinati per lo *SLV*, calcolati per ciascuna costruzione secondo il § 7.3.3 (analisi lineare) o il § 7.3.4 (analisi non lineare) e tenendo conto, laddove significativo, dello spostamento relativo delle fondazioni delle due costruzioni contigue, secondo quanto indicato ai §§ 3.2.4.1, 3.2.4.2 e 7.3.5;

La distanza tra due punti di costruzioni che si fronteggiano non potrà in ogni caso essere inferiore a 1/100 della quota dei punti considerati, misurata dallo spiccato della fondazione o dalla sommità della struttura scatolare rigida di cui al § 7.2.1, moltiplicata per $2a_nS/g \le 1$.

Qualora non si possano eseguire calcoli specifici, lo spostamento massimo di una costruzione non isolata alla base può essere stimato in 1/100 della sua altezza, misurata come sopra, moltiplicata per a_gS/g ; in questo caso, la distanza tra costruzioni contigue non potrà essere inferiore alla somma degli spostamenti massimi di ciascuna di esse. Il presente capoverso non si applica ai ponti.

Se le costruzioni hanno dispositivi d'isolamento sismico e/o dissipazione, particolare attenzione va posta al dimensionamento dei distacchi e/o giunti, tenendo in conto le indicazioni riportate nel § 7.10.4 e nel § 7.10.6.

ALTEZZA MASSIMA DEI NUOVI EDIFICI

L'altezza massima degli edifici deve essere opportunamente limitata, in funzione della loro capacità in rigidezza, resistenza e duttilità, in aggiunta ai limiti imposti dalle normative urbanistiche locali.

LIMITAZIONE DELL'ALTEZZA IN FUNZIONE DELLA LARGHEZZA STRADALE

I regolamenti e le norme di attuazione degli strumenti urbanistici possono introdurre limitazioni all'altezza degli edifici in funzione della larghezza stradale.

Per ciascun fronte dell'edificio verso strada, i regolamenti e le norme definiranno la distanza minima tra la proiezione in pianta del fronte stesso ed il ciglio opposto della strada. S'intende per strada l'area di uso pubblico aperta alla circolazione dei pedoni e dei veicoli, e lo spazio inedificabile non cintato aperto alla circolazione pedonale.

7.2.2. CRITERI GENERALI DI PROGETTAZIONE DEI SISTEMI STRUTTURALI

Le costruzioni devono essere dotate di sistemi strutturali che garantiscano rigidezza, resistenza e duttilità nei confronti delle due componenti orizzontali delle azioni sismiche, tra loro ortogonali.

I sistemi strutturali sono composti di elementi strutturali primari ed eventuali elementi strutturali secondari. Agli elementi strutturali primari è affidata l'intera capacità antisismica del sistema; gli elementi strutturali secondari sono progettati per resistere ai soli carichi verticali (v. § 7.2.3).

La componente verticale deve essere considerata, in aggiunta a quanto indicato al § 3.2.3.1, anche in presenza di elementi pressoché orizzontali con luce superiore a 20 m, elementi precompressi (con l'esclusione dei solai di luce inferiore a 8 m), elementi a mensola di luce superiore a 4 m, strutture di tipo spingente, pilastri in falso, edifici con piani sospesi, ponti e costruzioni con isolamento nei casi specificati in § 7.10.5.3.2.

Nei casi precisati in § 3.2.4.1 si deve inoltre tener conto della variabilità spaziale del moto sismico.

Gli orizzontamenti, ove presenti, devono essere dotati di rigidezza e resistenza tali da consentire la ridistribuzione delle forze orizzontali tra i diversi sistemi resistenti a sviluppo verticale.

Il sistema di fondazione deve essere dotato di elevata rigidezza estensionale nel piano orizzontale e di adeguata rigidezza flessionale. Eccetto che per i ponti, deve essere adottata un'unica tipologia di fondazione per una data struttura in elevazione, salvo che questa non consista di unità indipendenti. In particolare, nella stessa struttura, deve essere evitato l'uso contestuale di fondazioni su pali e di fondazioni dirette o miste, salvo che uno studio specifico non ne dimostri l'accettabilità.

COMPORTAMENTO STRUTTURALE

Le costruzioni soggette all'azione sismica, non dotate di appositi dispositivi d'isolamento e/o dissipativi, devono essere progettate in accordo con uno dei seguenti comportamenti strutturali:

a) comportamento strutturale non dissipativo,

oppure

b) comportamento strutturale dissipativo.

Per *comportamento strutturale non dissipativo*, nella valutazione della domanda tutte le membrature e i collegamenti rimangono in campo elastico o sostanzialmente elastico; la domanda derivante dall'azione sismica e dalle altre azioni è calcolata, in funzione dello stato limite cui ci si riferisce, ma indipendentemente dalla tipologia strutturale e senza tener conto delle non linearità di materiale, attraverso un modello elastico (v. § 7.2.6)

Per *comportamento strutturale dissipativo*, nella valutazione della domanda un numero elevato di membrature e/o collegamenti evolvono in campo plastico, mentre la restante parte della struttura rimane in campo elastico o sostanzialmente elastico; la domanda derivante dall'azione sismica e dalle altre azioni è calcolata, in funzione dello stato limite cui ci si riferisce e della tipologia strutturale, tenendo conto della capacità dissipativa legata alle non linearità di materiale. Se la capacità dissipativa è presa in conto implicitamente attraverso il fattore di comportamento q (v. § 7.3), si adotta un modello elastico; se la capacità dissipativa è presa in conto esplicitamente, si adotta un'adeguata legge costitutiva (v. § 7.2.6).

CLASSI DI DUTTILITÀ

Una costruzione a comportamento strutturale dissipativo deve essere progettata per conseguire una delle due Classi di Duttilità (CD):

- Classe di Duttilità Alta (CD"A"), ad elevata capacità dissipativa;
- Classe di Duttilità Media (CD"B"), a media capacità dissipativa.

La differenza tra le due classi risiede nell'entità delle plasticizzazioni previste, in fase di progettazione, sia a livello locale sia a livello globale.

PROGETTAZIONE IN CAPACITÀ E FATTORI DI SOVRARESISTENZA

Sia per la CD"A" sia per la CD"B", s'impiegano i procedimenti tipici della progettazione in capacità. Nelle sole costruzioni di muratura, essi s'impiegano dove esplicitamente specificato.

Questa progettazione ha lo scopo di assicurare alla struttura dissipativa un comportamento duttile ed opera come segue:

- distingue gli elementi e i meccanismi, sia locali sia globali, in duttili e fragili;
- mira ad evitare le rotture fragili locali e l'attivazione di meccanismi globali fragili o instabili;
- mira a localizzare le dissipazioni di energia per isteresi in zone degli elementi duttili a tal fine individuate e progettate, dette "dissipative" o "duttili", coerenti con lo schema strutturale adottato.

Tali fini possono ritenersi conseguiti progettando la capacità in resistenza allo SLV degli elementi/meccanismi fragili, locali e globali, in modo che sia maggiore di quella degli elementi/meccanismi duttili ad essi alternativi. Per assicurare il rispetto di tale diseguaglianza, a livello sia locale sia globale, l'effettiva capacità in resistenza degli elementi/meccanismi duttili è incrementata mediante un opportuno coefficiente γ_{Rd} , detto "fattore di sovraresistenza"; a partire da tale capacità maggiorata si dimensiona la capacità degli elementi/meccanismi fragili indesiderati, alternativi ai duttili.

Per ogni tipologia strutturale:

- occorre assicurare, anche solo su base deduttiva a partire dai fattori di sovraresistenza γRd da utilizzare nella
 progettazione in capacità a livello locale, un adeguato fattore di sovraresistenza γRd dei meccanismi globali fragili. Ove non
 esplicitamente specificato nella presente norma, tale fattore deve essere almeno pari a 1,25;
- i fattori di sovraresistenza γ_{Rd} da utilizzare nella progettazione in capacità a livello locale per i diversi elementi strutturali e le singole verifiche, sono riassunti nella tabella seguente:

Tab. 7.2.I - Fattori di sovraresistenza yra (fra parentesi quadre è indicato il numero dell'equazione corrispondente)

Timelesis structurals	Elementi strutturali	Proportions in some sità	$\gamma_{ m Rd}$		
Tipologia strutturale	Elementi strutturali	Progettazione in capacità	CD"A"	CD"B"	
	Travi (§ 7.4.4.1.1)	4.4.1.1) Taglio		1,10	
	Dilectui (S.7.4.4.2.1)	Pressoflessione [7.4.4]	1,30	1,30	
C.a. gettata in opera	Pilastri (§ 7.4.4.2.1)	Taglio [7.4.5]	1,30	1,10	
C.a. gettata in opera	Nodi trave-pilastro (§ 7.4.4.3.1)	Taglio [7.4.6-7, 7.4.11-12]	1,20	1,10	
	Pareti (§ 7.4.4.5.1)	Taglio [7.4.13-14]	1,20	-	
C.a. prefabbricata	Collegamenti di tipo a) (§ 7.4.5.2.1) Flessione e taglio		1,20	1,10	
a struttura intelaiata	Collegamenti di tipo b) (§ 7.4.5.2.1)	Flessione e taglio	1,35	1,20	
C.a. prefabbricata con pilastri incastrati alla base e orizzontamenti incernierati	Collegamenti di tipo fisso (§ 7.4.5.2.1)	Taglio	1,35	1,20	
	Si impiega il	fattore di sovraresistenza γ_{ov} defi	inito al § 7.5.1		
Acciaio	Colonne (§ 7.5.4.2)	Pressoflessione [7.5.10]	1,30	1,30	
Composta	Si impiega il fattore di sovraresistenza γ_{ov} definito al § 7.5.1				
acciaio-calcestruzzo	Colonne (§ 7.6.6.2)	Pressoflessione [7.6.7]	1,30	1,30	
Legno	Collegamenti		1,60	1,30	
Muratura armata con progettazione in capacità	Pannelli murari (§ 7.8.1.7)	Taglio	1,50		
Ponti	Si impiega	impiegano i fattori di sovraresistenza definiti al § 7.9.5			

La domanda di resistenza valutata con i criteri della progettazione in capacità può essere assunta non superiore alla domanda di resistenza valutata per il caso di comportamento strutturale non dissipativo.

Le strutture di fondazione e i relativi elementi strutturali devono essere progettati sulla base della domanda ad essi trasmessa dalla struttura sovrastante (si veda § 7.2.5) attribuendo loro comportamento strutturale non dissipativo, indipendentemente dal comportamento attribuito alla struttura su di essi gravante.

I collegamenti realizzati con dispositivi di vincolo temporaneo, di cui al \S 11.9, devono sostenere la domanda allo SLV (vedi \S 7.3) maggiorata di un coefficiente γ Rd almeno pari a 1,5.

SPOSTAMENTI RELATIVI IN APPOGGI MOBILI

Gli appoggi mobili devono essere dimensionati per consentire, sotto l'azione sismica corrispondente allo *SLC*, uno spostamento relativo nella direzione d'interesse tra le due parti della struttura che essi collegano, valutato come:

$$\Delta = d_{Es} + d_{Eg}$$

dove:

- d_{Es} è lo spostamento relativo tra le due parti della struttura, valutato come radice quadrata della somma dei quadrati dei massimi spostamenti orizzontali nella direzione d'interesse delle due parti; tali massimi spostamenti sono calcolati, nel caso di analisi lineare, secondo il § 7.3.3.3 o, nel caso di analisi non lineare, secondo il § 7.3.4; per i ponti, lo spostamento relativo così ottenuto deve essere moltiplicato per 1,25,
- d_{Eg} è lo spostamento relativo tra il terreno alla base delle due parti della struttura collegate dall'appoggio mobile, calcolato come indicato al \S 3.2.4.2.

Per la trasmissione di forze orizzontali tra parti della struttura non è mai consentito confidare sull'attrito conseguente ai carichi gravitazionali, salvo per dispositivi espressamente progettati per tale scopo.

ZONE DISSIPATIVE E RELATIVI DETTAGLI COSTRUTTIVI

Nel caso di comportamento strutturale dissipativo il comportamento sismico della struttura è largamente dipendente dal comportamento delle sue zone dissipative, esse devono formarsi ove previsto e mantenere, in presenza di azioni cicliche, la capacità di trasmettere le necessarie sollecitazioni e di dissipare energia, garantendo la capacità in duttilità relativa alla classe di duttilità scelta.

I dettagli costruttivi delle zone dissipative e delle connessioni tra queste zone e le restanti parti della struttura, nonché dei diversi elementi strutturali tra loro, sono fondamentali per un corretto comportamento sismico e devono essere esaurientemente specificati negli elaborati di progetto.

7.2.3. CRITERI DI PROGETTAZIONE DI ELEMENTI STRUTTURALI SECONDARI ED ELEMENTI COSTRUTTIVI NON STRUTTURALI

ELEMENTI SECONDARI

Alcuni elementi strutturali possono essere considerati "secondari"; nell'analisi della risposta sismica, la rigidezza e la resistenza alle azioni orizzontali di tali elementi possono essere trascurate. Tali elementi sono progettati per resistere ai soli carichi verticali e per seguire gli spostamenti della struttura senza perdere capacità portante. Gli elementi secondari e i loro collegamenti devono quindi essere progettati e dotati di dettagli costruttivi per sostenere i carichi gravitazionali, quando soggetti a spostamenti causati dalla più sfavorevole delle condizioni sismiche di progetto allo *SLC*, valutati, nel caso di analisi lineare, secondo il § 7.3.3.3, oppure, nel caso di analisi non lineare, secondo il § 7.3.4.

In nessun caso la scelta degli elementi da considerare secondari può determinare il passaggio da struttura "irregolare" a struttura "regolare" come definite al § 7.2.1, né il contributo totale alla rigidezza ed alla resistenza sotto azioni orizzontali degli elementi secondari può superare il 15% dell'analogo contributo degli elementi primari.

ELEMENTI COSTRUTTIVI NON STRUTTURALI

Per elementi costruttivi non strutturali s'intendono quelli con rigidezza, resistenza e massa tali da influenzare in maniera significativa la risposta strutturale e quelli che, pur non influenzando la risposta strutturale, sono ugualmente significativi ai fini della sicurezza e/o dell'incolumità delle persone.

La capacità degli elementi non strutturali, compresi gli eventuali elementi strutturali che li sostengono e collegano, tra loro e alla struttura principale, deve essere maggiore della domanda sismica corrispondente a ciascuno degli stati limite da considerare (v. § 7.3.6). Quando l'elemento non strutturale è costruito in cantiere, è compito del progettista della struttura individuare la domanda e progettarne la capacità in accordo a formulazioni di comprovata validità ed è compito del direttore dei lavori verificarne la corretta esecuzione; quando invece l'elemento non strutturale è assemblato in cantiere, è compito del progettista della struttura individuare la domanda, è compito del fornitore e/o dell'installatore fornire elementi e sistemi di collegamento di capacità adeguata ed è compito del direttore dei lavori verificarne il corretto assemblaggio.

Se la distribuzione degli elementi non strutturali è fortemente irregolare in pianta, gli effetti di tale irregolarità debbono essere valutati e tenuti in conto. Questo requisito si intende soddisfatto qualora si incrementi di un fattore 2 l'eccentricità accidentale di cui al § 7.2.6.

Se la distribuzione degli elementi non strutturali è fortemente irregolare in altezza, deve essere considerata la possibilità di forti concentrazioni di danno ai livelli caratterizzati da significative riduzioni degli elementi non strutturali rispetto ai livelli adiacenti. Questo requisito s'intende soddisfatto qualora si incrementi di un fattore 1,4 la domanda sismica sugli elementi verticali (pilastri e pareti) dei livelli con significativa riduzione degli elementi non strutturali.

La domanda sismica sugli elementi non strutturali può essere determinata applicando loro una forza orizzontale F_a definita come segue:

$$F_a = (S_a \cdot W_a)/q_a \qquad [7.2.1]$$

dove

- F_a è la forza sismica orizzontale distribuita o agente nel centro di massa dell'elemento non strutturale, nella direzione più sfavorevole, risultante delle forze distribuite proporzionali alla massa;
- S_a è l'accelerazione massima, adimensionalizzata rispetto a quella di gravità, che l'elemento non strutturale subisce durante il sisma e corrisponde allo stato limite in esame (v. § 3.2.1);
- W_a è il peso dell'elemento;
- q_a è il fattore di comportamento dell'elemento.

In assenza di specifiche determinazioni, per S_a e q_a può farsi utile riferimento a documenti di comprovata validità.

7.2.4. CRITERI DI PROGETTAZIONE DEGLI IMPIANTI

Il presente paragrafo fornisce indicazioni utili per la progettazione e l'installazione antisismica degli impianti, intesi come insieme di: impianto vero e proprio, dispositivi di alimentazione dell'impianto, collegamenti tra gli impianti e la struttura principale. A meno di contrarie indicazioni della legislazione nazionale di riferimento, della progettazione antisismica degli impianti è responsabile il produttore, della progettazione antisismica degli elementi di alimentazione e collegamento è responsabile l'installatore, della progettazione antisismica degli orizzontamenti, delle tamponature e dei tramezzi a cui si ancorano gli impianti è responsabile il progettista strutturale.

La capacità dei diversi elementi funzionali costituenti l'impianto, compresi gli elementi strutturali che li sostengono e collegano, tra loro e alla struttura principale, deve essere maggiore della domanda sismica corrispondente a ciascuno degli stati limite da considerare (v. § 7.3.6). È compito del progettista della struttura individuare la domanda, mentre è compito del fornitore e/o dell'installatore fornire impianti e sistemi di collegamento di capacità adeguata.

Non ricadono nelle prescrizioni successive e richiedono uno specifico studio gli impianti che eccedano il 30% del carico permanente totale del campo di solaio su cui sono collocati o del pannello di tamponatura o di tramezzatura a cui sono appesi o il 10% del carico permanente totale dell'intera struttura.

In assenza di più accurate valutazioni, la domanda sismica agente per la presenza di un impianto sul pannello di tamponatura o di tramezzatura a cui l'impianto è appeso, si può assimilare ad un carico uniformemente distribuito di intensità 2F₉/S, dove F₉ è la forza di competenza di ciascuno degli elementi funzionali componenti l'impianto applicata al baricentro dell'elemento e calcolata utilizzando l'equazione [7.2.1] e S è la superficie del pannello di tamponatura o di tramezzatura. Tale carico distribuito deve intendersi agente sia ortogonalmente sia tangenzialmente al piano medio del pannello.

In accordo con i criteri della progettazione in capacità gli eventuali componenti fragili devono avere capacità doppia di quella degli eventuali componenti duttili ad essi contigui, ma non superiore a quella richiesta da un'analisi eseguita con modello elastico e fattore di comportamento q pari ad 1,5. La domanda valutata con i criteri della progettazione in capacità può essere assunta non superiore alla domanda valutata per il caso di comportamento strutturale non dissipativo.

Gli impianti non possono essere vincolati alla costruzione contando sull'effetto dell'attrito, bensì devono essere collegati ad essa con dispositivi di vincolo rigidi o flessibili; gli impianti a dispositivi di vincolo flessibili sono quelli che hanno periodo di vibrazione $T \ge 0.1$ s valutato tenendo conto della sola deformabilità del vincolo. Se si adottano dispositivi di vincolo flessibili, i collegamenti di servizio dell'impianto devono essere flessibili e non possono far parte del meccanismo di vincolo.

Deve essere limitato il rischio di fuoriuscite incontrollate di gas o fluidi, particolarmente in prossimità di utenze elettriche e materiali infiammabili, anche mediante l'utilizzo di dispositivi d'interruzione automatica della distribuzione. I tubi per la fornitura di gas o fluidi, al passaggio dal terreno alla costruzione, devono essere progettati per sopportare senza rotture i massimi spostamenti relativi costruzione-terreno dovuti all'azione sismica corrispondente a ciascuno degli stati limite considerati (v. § 7.3.6)

7.2.5. REQUISITI STRUTTURALI DEGLI ELEMENTI DI FONDAZIONE

Le azioni trasmesse in fondazione derivano dall'analisi del comportamento dell'intera opera, in genere condotta esaminando la sola struttura in elevazione alla quale sono applicate le pertinenti combinazioni delle azioni di cui al § 2.5.3.

Sia per CD"A" sia per CD"B" il dimensionamento delle strutture di fondazione e la verifica di sicurezza del complesso fondazione-terreno devono essere eseguiti assumendo come azione in fondazione, trasmessa dagli elementi soprastanti, una tra le seguenti:

- quella derivante dall'analisi strutturale eseguita ipotizzando comportamento strutturale non dissipativo (v. § 7.3);
- quella derivante dalla capacità di resistenza a flessione degli elementi (calcolata per la forza assiale derivante dalla combinazione delle azioni di cui al § 2.5.3), congiuntamente al taglio determinato da considerazioni di equilibrio;
- quella trasferita dagli elementi soprastanti nell'ipotesi di comportamento strutturale dissipativo, amplificata di un coefficiente pari a 1,30 in CD"A" e 1,10 in CD"B";

FONDAZIONI SUPERFICIALI

Le strutture delle fondazioni superficiali devono essere progettate per le azioni definite al precedente capoverso, assumendo un comportamento non dissipativo; non sono quindi necessarie armature specifiche per ottenere un comportamento duttile.

Le platee di fondazione in calcestruzzo armato devono avere armature longitudinali, secondo due direzioni ortogonali e per l'intera estensione, in percentuale non inferiore allo 0,1% dell'area della sezione trasversale della platea, sia inferiormente sia superiormente.

Le travi di fondazione in calcestruzzo armato devono avere, per l'intera lunghezza, armature longitudinali in percentuale non inferiore allo 0,2% dell'area della sezione trasversale della trave, sia inferiormente sia superiormente.

FONDAZIONI SU PALI

I pali in calcestruzzo devono essere armati, per tutta la lunghezza, con una armatura longitudinale in percentuale non inferiore allo 0,3% dell'area della sezione trasversale del palo e un'armatura trasversale costituita da staffe o da spirali di diametro non inferiore a 8 mm, passo non superiore a 8 volte il diametro delle barre longitudinali.

Qualora non fosse possibile escludere il raggiungimento della capacità dei pali, devono essere soddisfatte le seguenti condizioni:

- se la capacità è raggiunta in prossimità della testa del palo, deve considerarsi una zona dissipativa estesa fino a una
 profondità pari ad almeno dieci volte il diametro del palo; se la capacità è raggiunta in profondità, per esempio in
 corrispondenza di contatti tra strati di terreno di rigidezza molto diversa (§7.11.5.3.2), deve considerarsi una zona
 dissipativa a cavallo dei contatti avente estensione pari ad almeno cinque diametri;
- nelle zone dissipative le sezioni devono essere progettate per esibire un comportamento duttile per effetto delle azioni di calcolo;

In tali zone dissipative l'armatura longitudinale deve avere area non inferiore all'1% dell'area della sezione trasversale del palo, mentre l'armatura trasversale deve essere costituita da staffe singole di passo non superiore a 6 volte il diametro delle barre longitudinali.

In assenza di specifiche valutazioni della capacità di duttilità, devono essere rispettate le seguenti prescrizioni:

- la capacità per taglio deve essere almeno pari ad 1,3 volte della corrispondente domanda;
- nelle zone dissipative la tensione normale media agente su ciascuna sezione, in corrispondenza delle combinazioni sismiche delle azioni, deve essere inferiore a 0,45 fcd;
- il momento flettente calcolato in campo elastico deve essere inferiore a 1,5 MRd, dove MRd è la capacità a flessione di progetto del palo, calcolata per i livelli di sollecitazione assiale presenti nelle combinazioni sismiche delle azioni.

L'uso di pali inclinati deve essere esplicitamente giustificato. Il dimensionamento di questi pali deve derivare, con un adeguato margine di sicurezza, da una specifica analisi d'interazione del complesso fondazione-terreno in condizioni sismiche.

COLLEGAMENTI ORIZZONTALI TRA GLI ELEMENTI DI FONDAZIONE

Si deve tenere conto della presenza di spostamenti relativi del terreno sul piano di fondazione, calcolati come specificato nel § 3.2.4.2 e applicati alla fondazione, e dei possibili effetti da essi indotti nella struttura sovrastante.

Tali spostamenti relativi possono essere trascurati se le strutture di fondazione sono collegate tra loro da un reticolo di travi, o da una piastra dimensionata in modo adeguato, in grado di assorbire le forze assiali conseguenti. In assenza di valutazioni più accurate, si possono prudenzialmente assumere le seguenti azioni assiali:

- \pm 0,2 $N_{Sd}~a_{max}/g$ per il profilo stratigrafico di tipo A
- \pm 0,3 N_{Sd} a_{max}/g per il profilo stratigrafico di tipo B
- \pm 0,4 N_{Sd} a_{max}/g per il profilo stratigrafico di tipo C
- \pm 0,6 N_{sd} a_{max}/g per il profilo stratigrafico di tipo D

dove N_{sd} è il valore medio delle forze verticali agenti sugli elementi collegati, e a_{max} è l'accelerazione orizzontale massima attesa al sito

In assenza di analisi specifiche della risposta sismica locale l'accelerazione massima attesa al sito può essere valutata con la relazione: $a_{max} = a_g S$ in cui S è il coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_T), di cui al § 3.2.3.2, e a_g è l'accelerazione orizzontale massima per lo SLC su sito di riferimento rigido.

Ai fini dell'applicazione delle precedenti relazioni, il profilo stratigrafico di tipo E è assimilato a quello di tipo C se i terreni posti sul substrato di riferimento sono mediamente addensati (terreni a grana grossa) o mediamente consistenti (terreni a grana fina) e a quello di tipo D se i terreni posti su substrato di riferimento sono scarsamente addensati (terreni a grana grossa) o scarsamente consistenti (terreni a grana fine).

Travi o piastre di piano e travi porta pannello possono essere assimilate a elementi di collegamento solo se realizzate ad una distanza $\leq 1,00$ m dall'estradosso delle fondazioni dirette o del plinto di collegamento dei pali.

7.2.6. CRITERI DI MODELLAZIONE DELLA STRUTTURA E DELL'AZIONE SISMICA

MODELLAZIONE DELLA STRUTTURA

Il modello della struttura deve essere tridimensionale e rappresentare in modo adeguato le effettive distribuzioni spaziali di massa, rigidezza e resistenza, con particolare attenzione alle situazioni nelle quali componenti orizzontali dell'azione sismica possono produrre forze d'inerzia verticali (travi di grande luce, sbalzi significativi, ecc.).

Qualora si adotti un modello di comportamento non dissipativo , oppure un modello dissipativo che utilizza il coefficiente di comportamento q, si impiegheranno per i materiali leggi costitutive elastiche .

Qualora si adotti un modello di comportamento dissipativo tenendo esplicitamente conto della capacità dissipativa, il legame costitutivo utilizzato per modellare la non linearità di materiale dovrà essere giustificato, anche in relazione alla corretta rappresentazione dell'energia dissipata nei cicli di isteresi.

Delle non linearità geometriche, se significative, si terrà conto per ambedue i comportamenti.

Nel rappresentare la rigidezza degli elementi strutturali si deve tener conto della fessurazione. In caso non siano effettuate analisi specifiche, la rigidezza flessionale e a taglio di elementi in muratura, calcestruzzo armato, acciaio-calcestruzzo, può essere ridotta sino al 50% della rigidezza dei corrispondenti elementi non fessurati, tenendo debitamente conto dello stato limite considerato e dell'influenza della sollecitazione assiale permanente.

A meno di specifiche valutazioni e purché le aperture presenti non ne riducano significativamente la rigidezza, gli orizzontamenti piani possono essere considerati infinitamente rigidi nel loro piano medio a condizione che siano realizzati in calcestruzzo armato, oppure in latero-cemento con soletta in calcestruzzo armato di almeno 40 mm di spessore, o in struttura mista con soletta in calcestruzzo armato di almeno 50 mm di spessore collegata agli elementi strutturali in acciaio o in legno da connettori a taglio opportunamente dimensionati.

Nella definizione del modello, gli elementi non strutturali non appositamente progettati come collaboranti (quali tamponature e tramezzi) possono essere rappresentati unicamente in termini di massa; il loro contributo al comportamento del sistema strutturale in termini di rigidezza e resistenza sarà considerato solo qualora abbia effetti negativi ai fini della sicurezza.

MODELLAZIONE DELL'AZIONE SISMICA

Le azioni conseguenti al moto sismico possono essere modellate sia attraverso forze statiche equivalenti o spettri di risposta, sia attraverso storie temporali del moto del terreno, opportunamente selezionate.

La domanda sismica può essere valutata considerando gli effetti di interazione terreno-struttura di tipo sia inerziale sia cinematico, nonché definendo l'input sismico di progetto tramite analisi di risposta sismica locale. Per le relative procedure dovranno essere utilizzati metodi e modelli di comprovata validità.

Non è ammesso l'uso di storie temporali del moto del suolo artificiali o con componenti artificiali per le analisi di risposta sismica locale e per analisi di interazione terreno struttura che prevedano legami costitutivi isteretici per la modellazione del sottosuolo, coerentemente con le indicazioni del § 3.2.3.6.

In quanto alla domanda sismica ed alla risposta strutturale valgono le seguenti limitazioni:

- a) I valori dello spettro di risposta elastico in accelerazione delle componenti dell'azione sismica di progetto, valutato assumendo il 5 % di smorzamento ed ottenuto tramite analisi di risposta sismica locale e/o di interazione terreno struttura, devono essere almeno pari al 70 % di quelli del corrispondente spettro di risposta elastico in accelerazione per sottosuolo di tipo A, come definito al § 3.2.3.2.
- b) Ove si effettuino analisi di interazione terreno-struttura, la risultante globale di taglio e sforzo normale trasmessa all'estradosso della fondazione della costruzione deve essere almeno pari al 70 % di quella ottenuta da identico modello strutturale con vincoli fissi all'estradosso della fondazione e con input sismico corrispondente allo spettro di risposta per sottosuolo tipo A, come definito al § 3.2.3.2.

E' possibile considerare la deformabilità del complesso fondazione-terreno e la sua capacità dissipativa, utilizzando ad esempio vincoli viscoelastici caratterizzati da un'opportuna impedenza dinamica. In tal caso, è necessario tener conto della dipendenza delle caratteristiche di rigidezza e smorzamento dal livello deformativo nel terreno.

Per le fondazioni miste, come specificato al § 6.4.3, l'interazione fra terreno, pali e struttura di collegamento deve essere studiata con appropriate modellazioni, allo scopo di pervenire alla determinazione dell'aliquota dell'azione di progetto trasferita al terreno direttamente dalla struttura di collegamento e dell'aliquota trasmessa ai pali.

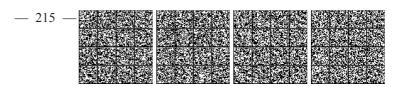
Per tenere conto della variabilità spaziale del moto sismico, nonché di eventuali incertezze, deve essere attribuita al centro di massa un'eccentricità accidentale rispetto alla sua posizione quale deriva dal calcolo. Per i soli edifici e in assenza di più accurate determinazioni, l'eccentricità accidentale in ogni direzione non può essere considerata inferiore a 0,05 volte la dimensione media dell'edificio misurata perpendicolarmente alla direzione di applicazione dell'azione sismica. Detta eccentricità è assunta costante, per entità e direzione, su tutti gli orizzontamenti.

7.3. METODI DI ANALISI E CRITERI DI VERIFICA

L'entità della domanda con la quale confrontare la capacità della struttura, secondo i criteri definiti al § 7.3.6, può essere valutata utilizzando una delle modellazioni descritte in precedenza ed adottando uno fra i metodi di analisi illustrati nel seguito.

I metodi di analisi si articolano in lineari e non lineari, in funzione delle caratteristiche della struttura e del modello di comportamento adottato.

Nel caso di analisi lineare, la domanda sismica per strutture a comportamento sia non dissipativo, sia dissipativo, può essere ridotta utilizzando un opportuno fattore di comportamento q. I valori attribuibili a q variano in funzione del comportamento strutturale (dissipativo o non dissipativo) e dello stato limite considerati, legandosi all'entità delle plasticizzazioni, che a ciascuno stato limite si accompagnano.


Per ciascuno degli stati limite e dei metodi di analisi considerati, nella tabella successiva sono riportati:

- *per l'analisi lineare*, il comportamento strutturale, le modalità di modellazione dell'azione sismica e i limiti da attribuire al fattore di comportamento q, a seconda dello stato limite considerato;
- per l'analisi non lineare, , il comportamento strutturale, le modalità di modellazione dell'azione sismica.

Tab. 7.3.I – Limiti su q e modalità di modellazione dell'azione sismica

STATI LIMITE		Lineare (Di	namica e Statica)	Non Lineare		
		Dissipativo	Dissipativo Non Dissipativo		Statica	
CLE	SLO	q = 1.0 § 3.2.3.4	q = 1.0 § 3.2.3.4			
SLE	SLD	q≤1,5 § 3.2.3.5	q ≤ 1,5 § 3.2.3.5	§ 7.3.4.1	§ 7.3.4.2	
SLU	SLV	q≥1,5 § 3.2.3.5	q ≤ 1,5 § 3.2.3.5			
	SLC					

Il limite superiore del fattore q allo SLV è specificato, per tutte le tipologie strutturali, nel § 7.3.1, richiamandolo poi, per i diversi materiali, nei successivi paragrafi specifici.

7.3.1. ANALISI LINEARE O NON LINEARE

L'analisi delle strutture soggette ad azione sismica può essere lineare o non lineare.

ANALISI LINEARI

L'analisi lineare può essere utilizzata per calcolare la domanda sismica nel caso di comportamento strutturale sia non dissipativo sia dissipativo (§ 7.2.2). In entrambi i casi, la domanda sismica è calcolata, quale che sia la modellazione utilizzata per l'azione sismica, riferendosi allo spettro di progetto (§ 3.2.3.4 e § 3.2.3.5) ottenuto, per ogni stato limite, assumendo per il fattore di comportamento q, i limiti riportati nella tabella 7.3.I con i valori dei fattori di base q₀ riportati in Tab. 7.3.II.

Valori del fattore di comportamento q

Nel caso di comportamento strutturale dissipativo (§ 7.2.2), il valore del fattore di comportamento q, da utilizzare per lo stato limite considerato e nella direzione considerata per l'azione sismica, dipende dalla tipologia strutturale, dal suo grado di iperstaticità e dai criteri di progettazione adottati e tiene conto, convenzionalmente, delle capacità dissipative del materiale. Le strutture possono essere classificate come appartenenti ad una tipologia in una direzione orizzontale e ad un'altra tipologia nella direzione orizzontale ortogonale alla precedente, utilizzando per ciascuna direzione il fattore di comportamento corrispondente.

Il limite superiore q_{lim} del fattore di comportamento relativo allo SLV è calcolato tramite la seguente espressione:

$$q_{lim} = q_{o} \cdot K_{R}$$
 [7.3.1]

dove:

- q_0 è il valore base del fattore di comportamento allo SLV, i cui massimi valori sono riportati in tabella 7.3.II in dipendenza della Classe di Duttilità, della tipologia strutturale, del coefficiente λ di cui al § 7.9.2.1 e del rapporto $\alpha_{\rm U}/\alpha_{\rm I}$ tra il valore dell'azione sismica per il quale si verifica la plasticizzazione in un numero di zone dissipative tale da rendere la struttura un meccanismo e quello per il quale il primo elemento strutturale raggiunge la plasticizzazione a flessione; la scelta di q_0 deve essere esplicitamente giustificata;
- K_R è un fattore che dipende dalle caratteristiche di regolarità in altezza della costruzione, con valore pari ad 1 per costruzioni regolari in altezza e pari a 0,8 per costruzioni non regolari in altezza.

 $\textbf{Tab. 7.3.II} - Valori\ massimi\ del\ valore\ di\ base\ q_0\ del\ fattore\ di\ comportamento\ allo\ SLV\ per\ diverse\ tecniche\ costruttive\ ed\ in\ funzione\ della\ tipologia\ strutturale\ e\ della\ classe\ di\ duttilità\ CD$

	q_0	
Tipologia strutturale	CD"A"	CD"B"
Costruzioni di calcestruzzo (§ 7.4.3.2)		
Strutture a telaio, a pareti accoppiate, miste (v. § 7.4.3.1)	$4.5 \ \alpha_{\mathrm{u}}/\alpha_{\mathrm{1}}$	$3.0 \ \alpha_{\rm u}/\alpha_{\rm 1}$
Strutture a pareti non accoppiate (v. § 7.4.3.1)	$4.0 \ \alpha_{\mathrm{u}}/\alpha_{\mathrm{1}}$	3,0
Strutture deformabili torsionalmente (v. § 7.4.3.1)	3,0	2,0
Strutture a pendolo inverso (v. § 7.4.3.1)	2,0	1,5
Strutture a pendolo inverso intelaiate monopiano (v. § 7.4.3.1)	3,5	2,5
Costruzioni con struttura prefabbricata (§ 7.4.5	.1)	
Strutture a pannelli	$4.0 \ \alpha_{\mathrm{u}}/\alpha_{\mathrm{1}}$	3,0
Strutture monolitiche a cella	3,0	2,0
Strutture con pilastri incastrati e orizzontamenti incernierati	3,5	2,5
Costruzioni d'acciaio (§ 7.5.2.2) e composte di acciaio-calcest	ruzzo (§ 7.6.2.2)	
Strutture intelaiate Strutture con controventi eccentrici	5,0 $\alpha_{\rm u}/\alpha_{\rm 1}$	4,0
Strutture con controventi concentrici a diagonale tesa attiva	4,0	4,0
Strutture con controventi concentrici a V	2,5	2,0
Strutture a mensola o a pendolo inverso	$2.0 \ \alpha_{\rm u}/\alpha_{\rm 1}$	2,0
Strutture intelaiate con controventi concentrici	$4.0 \ \alpha_{\rm u}/\alpha_{\rm 1}$	4,0
Strutture intelaiate con tamponature in murature	2,0	2,0
Costruzioni di legno (§ 7.7.3)		
Pannelli di parete a telaio leggero chiodati con diaframmi incollati, collegati mediante chiodi, viti e bulloni Strutture reticolari iperstatiche con giunti chiodati	3,0	2,0
Portali iperstatici con mezzi di unione a gambo cilindrico	4,0	2,5
Pannelli di parete a telaio leggero chiodati con diaframmi chiodati, collegati mediante chiodi, viti e bulloni.	5,0	3,0
Pannelli di tavole incollate a strati incrociati, collegati mediante chiodi, viti, bulloni Strutture reticolari con collegamenti a mezzo di chiodi, viti, bulloni o spinotti		2,5

Strutture cosiddette miste, con intelaiatura (sismo-resistente) in legno e			
tamponature non portanti			
Strutture isostatiche in genere, compresi portali isostatici con mezzi di unione a		1,5	
gambo cilindrico, e altre tipologie strutturali		1,5	
Costruzioni di muratura (§ 7.8.1.3)			
Costruzioni di muratura ordinaria	1,75 α	$\alpha_{\rm u}/\alpha_{\rm l}$	
Costruzioni di muratura armata	$2.5 \alpha_{\rm u}/\alpha_{\rm l}$		
Costruzioni di muratura armata con progettazione in capacità	$3.0 \alpha_{\rm u}/\alpha_1$		
Costruzioni di muratura confinata	$2,0 \alpha_{\rm u}/\alpha_1$		
Costruzioni di muratura confinata con progettazione in capacità	$3,0 \alpha_{\rm u}/\alpha_1$		
Ponti (§ 7.9.2.1)			
Pile in calcestruzzo armato			
Pile verticali inflesse	3,5 λ	1,5	
Elementi di sostegno inclinati inflessi	2,1 λ	1,2	
Pile in acciaio:	2.5	1.5	
Pile verticali inflesse	3,5	1,5	
Elementi di sostegno inclinati inflessi	2,0 2,5	1,2 1,5	
Pile con controventi concentrici	3,5	1,3	
Pile con controventi eccentrici	3,3	-	
Spalle			
In genere	1,5	1,5	
Se si muovono col terreno	1,0	1,0	

Per le costruzioni *regolari in pianta*, qualora non si proceda a un'analisi non lineare finalizzata alla sua valutazione, per il rapporto α_u/α_D possono essere adottati i valori indicati nei paragrafi successivi per le diverse tipologie costruttive.

Per le costruzioni *non regolari in pianta*, si possono adottare valori di α_u/α_1 pari alla media tra 1,0 e i valori di volta in volta forniti per le diverse tipologie costruttive.

Qualora nella costruzione siano presenti pareti di calcestruzzo armato, per prevenirne il collasso fragile, i valori di q_0 devono essere ridotti mediante il fattore k_w , con:

$$\mathbf{k}_{\mathrm{w}} = \begin{cases} 1,00 & \text{per strutture a telaio e miste equivalent a telai} \\ 0,5 \leq (1+\alpha_{_{0}})/3 \leq 1 & \text{per strutture a pareti, miste equivalent a pareti, torsionalmente deformability} \end{cases}$$

dove α_0 è il valore assunto in prevalenza dal rapporto tra altezza totale (dalle fondazioni o dalla struttura scatolare rigida di base di cui al § 7.2.1, fino alla sommità) e lunghezza delle pareti; nel caso in cui gli α_0 delle pareti non differiscano significativamente tra di loro, il valore di α_0 per l'insieme delle pareti può essere calcolato assumendo, come altezza, la somma delle altezze delle singole pareti, come lunghezza, la somma delle lunghezze.

Qualora la domanda in resistenza allo *SLV* risulti inferiore a quella allo *SLD*, si può scegliere di progettare la capacità in resistenza sulla base della domanda allo *SLD* invece che allo *SLV*. In tal caso il fattore di comportamento allo *SLV* deve essere scelto in modo che le ordinate dello spettro di progetto per lo *SLV* siano non inferiori a quelle dello spettro di progetto per lo *SLD*

Il valore di q utilizzato per la componente verticale dell'azione sismica allo SLV, a meno di adeguate analisi giustificative, è q = 1,5 per qualunque tipologia strutturale e di materiale, tranne che per i ponti per i quali è q = 1.

Per le strutture a comportamento strutturale non dissipativo si adotta un fattore di comportamento qnd, ridotto rispetto al valore minimo relativo alla CD"B" (Tab. 7.3.II) secondo l'espressione:

$$1 \le q_{ND} = \frac{2}{3} q_{CD''B''} \le 1,5$$
 [7.3.2]

Effetti delle non linearità geometriche

Le non linearità geometriche sono prese in conto attraverso il fattore θ che, in assenza di più accurate determinazioni, può essere definito come:

$$\theta = \frac{\mathbf{P} \cdot \mathbf{d}_{Er}}{\mathbf{V} \cdot \mathbf{h}} \tag{7.3.3}$$

dove

P è il carico verticale totale dovuto all'orizzontamento in esame e alla struttura ad esso sovrastante;

- d_{ER} è lo spostamento orizzontale medio d'interpiano allo SLV, ottenuto come differenza tra lo spostamento orizzontale dell'orizzontamento considerato e lo spostamento orizzontale dell'orizzontamento immediatamente sottostante, entrambi valutati come indicato al § 7.3.3.3;
- V è la forza orizzontale totale in corrispondenza dell'orizzontamento in esame, derivante dall'analisi lineare con fattore di comportamento q;
- h è la distanza tra l'orizzontamento in esame e quello immediatamente sottostante.

Gli effetti delle non linearità geometriche:

- possono essere trascurati, quando θ è minore di 0,1;
- possono essere presi in conto incrementando gli effetti dell'azione sismica orizzontale di un fattore pari a 1/(1-θ), quando θ è compreso tra 0.1 e 0.2:
- devono essere valutati attraverso un'analisi non lineare, quando θ è compreso tra 0,2 e 0,3.

Il fattore θ non può comunque superare il valore 0,3.

ANALISI NON LINEARE

L'analisi non lineare può essere utilizzata sia per sistemi strutturali a comportamento non dissipativo, sia per sistemi strutturali a comportamento dissipativo (§ 7.2.2) e tiene conto delle non linearità di materiale e geometriche. Nei sistemi strutturali a comportamento dissipativo i legami costitutivi utilizzati devono tener conto anche della riduzione di resistenza e della resistenza residua, se significative.

7.3.2. ANALISI DINAMICA O STATICA

Oltre che in relazione al fatto che l'analisi sia lineare o non lineare, i metodi d'analisi sono articolati anche in relazione al fatto che l'equilibrio sia trattato dinamicamente o staticamente.

Il metodo d'analisi lineare di riferimento per determinare gli effetti dell'azione sismica, per comportamenti strutturali sia dissipativi sia non dissipativi, è l'analisi modale con spettro di risposta o "analisi lineare dinamica". In essa l'equilibrio è trattato dinamicamente e l'azione sismica è modellata attraverso lo spettro di progetto definito al § 3.2.3.5.

In alternativa all'analisi modale si possono adottare tecniche di analisi più raffinate, quali l'integrazione al passo, modellando l'azione sismica attraverso storie temporali del moto del terreno.

Per le sole costruzioni la cui risposta sismica, in ogni direzione principale, non dipenda significativamente dai modi di vibrare superiori, è possibile utilizzare, per comportamenti strutturali sia dissipativi sia non dissipativi, il metodo delle forze laterali o "analisi lineare statica". In essa l'equilibrio è trattato staticamente, l'analisi della struttura è lineare e l'azione sismica è modellata attraverso lo spettro di progetto definito al § 3.2.3.5.

Infine, per determinare gli effetti dell'azione sismica si possono eseguire analisi non lineari; in esse l'equilibrio è trattato, alternativamente:

- a) dinamicamente ("analisi non lineare dinamica"), modellando l'azione sismica, mediante storie temporali del moto del terreno;
- b) staticamente ("analisi non lineare statica"), modellando l'azione sismica, mediante forze statiche fatte crescere monotonamente.

7.3.3. ANALISI LINEARE DINAMICA O STATICA

Sia per analisi lineare dinamica, sia per analisi lineare statica, si deve tenere conto dell'eccentricità accidentale del centro di

Per gli edifici, gli effetti di tale eccentricità possono essere determinati mediante l'applicazione di carichi statici costituiti da momenti torcenti di valore pari alla risultante orizzontale della forza agente al piano, determinata come in § 7.3.3.2, moltiplicata per l'eccentricità accidentale del baricentro delle masse rispetto alla sua posizione di calcolo, determinata come in § 7.2.6.

7.3.3.1 ANALISI LINEARE DINAMICA

L'analisi lineare dinamica consiste:

- nella determinazione dei modi di vibrare della costruzione (analisi modale);
- nel calcolo degli effetti dell'azione sismica, rappresentata dallo spettro di risposta di progetto, per ciascuno dei modi di vibrare individuati;
- nella combinazione di questi effetti.

Devono essere considerati tutti i modi con massa partecipante significativa. È opportuno a tal riguardo considerare tutti i modi con massa partecipante superiore al 5% e un numero di modi la cui massa partecipante totale sia superiore allo 85%.

Per la combinazione degli effetti relativi ai singoli modi deve essere utilizzata una combinazione quadratica completa degli effetti relativi a ciascun modo, quale quella indicata nell'espressione [7.3.4]:

$$E = \sqrt{\sum_{i} \sum_{i} \rho_{ij} \cdot E_{i} \cdot E_{j}}$$
 [7.3.4]

con:

Ei valore dell'effetto relativo al modo j;

Qij coefficiente di correlazione tra il modo i e il modo j, calcolato con formule di comprovata validità quale:

$$\rho_{ij} = \frac{8\sqrt{\xi_{i} \cdot \xi_{j}} \cdot \left(\beta_{ij} \cdot \xi_{i} + \xi_{j}\right) \cdot \beta_{ij}^{3/2}}{\left(1 - \beta_{ij}^{2}\right)^{2} + 4 \cdot \xi_{i} \cdot \xi_{j} \cdot \beta_{ij} \left(1 + \beta_{ij}^{2}\right) + 4 \cdot \left(\xi_{i}^{2} + \xi_{j}^{2}\right) \cdot \beta_{ij}^{2}}$$
 [7.3.5a]

 $\xi_{i,j}$ smorzamento viscoso dei modi i e j;

 β_{ij} rapporto tra l'inverso dei periodi di ciascuna coppia i-j di modi ($\beta_{ij} = T_i / T_i$).

La [7.3.5a], nel caso di uguale smorzamento ξ dei modi i e j, si esprime come:

$$\rho_{ij} = \frac{8\xi^2 \beta_{ij}^{3/2}}{(1 + \beta_{ij}) \cdot [(1 - \beta_{ij})^2 + 4\xi^2 \beta_{ij}]}$$
 [7.3.5b]

7.3.3.2 ANALISI LINEARE STATICA

L'analisi lineare statica consiste nell'applicazione di forze statiche equivalenti alle forze d'inerzia indotte dall'azione sismica e può essere effettuata per costruzioni che rispettino i requisiti specifici riportati nei paragrafi successivi, a condizione che il periodo del modo di vibrare principale nella direzione in esame (T_1) non superi 2,5 T_C o T_D e che la costruzione sia regolare in altezza.

Per costruzioni civili o industriali che non superino i 40 m di altezza e la cui massa sia distribuita in modo approssimativamente uniforme lungo l'altezza, T₁ (in secondi) può essere stimato, in assenza di calcoli più dettagliati, utilizzando la formula seguente:

$$T_1 = 2\sqrt{d} \tag{7.3.6}$$

dove d è lo spostamento laterale elastico del punto più alto dell'edificio, espresso in metri, dovuto alla combinazione di carichi [2.5.7] applicata nella direzione orizzontale.

L'entità delle forze si ottiene dall'ordinata dello spettro di progetto corrispondente al periodo T_1 e la loro distribuzione sulla struttura segue la forma del modo di vibrare principale nella direzione in esame, valutata in modo approssimato.

La forza da applicare a ciascuna massa della costruzione è data dalla formula seguente:

$$F_{i} = F_{h} \cdot z_{i} \cdot \frac{W_{i}}{\sum_{j} z_{j} W_{j}}$$
 [7.3.7]

dove:

 $F_h = S_d (T_1) W \lambda/g$

 F_{i} è la forza da applicare alla massa i-esima;

 W_{i} e W_{j} sono i pesi, rispettivamente, della massa i e della massa j;

z_i e z_i sono le quote, rispetto al piano di fondazione (v. § 3.2.3.1), delle masse i e j;

 $S_d(T_1)$ è l'ordinata dello spettro di risposta di progetto definito al § 3.2.3.5;

W è il peso complessivo della costruzione;

 λ è un coefficiente pari a 0,85 se $T_1 < 2T_C$ e la costruzione ha almeno tre orizzontamenti, uguale a 1,0 in tutti gli altri casi;

g è l'accelerazione di gravità.

7.3.3.3 VALUTAZIONE DEGLI SPOSTAMENTI DELLA STRUTTURA

Gli spostamenti dE sotto l'azione sismica di progetto relativa allo SLV si ottengono moltiplicando per il fattore di duttilità in spostamento μ_d i valori d_{Ee} ottenuti dall'analisi lineare, dinamica o statica, secondo l'espressione seguente:

$$\mathbf{d}_{\mathrm{E}} = \pm \mathbf{\mu}_{\mathrm{d}} \cdot \mathbf{d}_{\mathrm{Ee}} \tag{7.3.8}$$

Dove :

$$\mu_{d} = q \qquad \text{se } T_{1} \ge T_{C}$$

$$\mu_{d} = 1 + (q - 1) \cdot \frac{T_{C}}{T_{1}} \quad \text{se } T_{1} < T_{C}$$
[7.3.9]

In ogni caso $\mu_d \le 5q - 4$.

Gli spostamenti allo *SLC* si possono ottenere, in assenza di più accurate valutazioni che considerino l'effettivo rapporto delle ordinate spettrali in spostamento, moltiplicando per 1,25 gli spostamenti allo *SLV*.

7.3.4. ANALISI NON LINEARE DINAMICA O STATICA

L'analisi non lineare, dinamica o statica, si può utilizzare, tra gli altri, per gli scopi e nei casi seguenti:

- valutare gli spostamenti relativi allo SL di interesse;
- eseguire le verifiche di duttilità relative allo SLC;
- individuare la distribuzione della domanda inelastica nelle costruzioni progettate con il fattore di comportamento q;
- valutare i rapporti di sovraresistenza α_v/α_1 di cui ai §§ 7.4.3.2, 7.4.5.1, 7.5.2.2, 7.6.2.2, 7.7.3, 7.8.1.3 e 7.9.2.1;
- come metodo di progetto per gli edifici di nuova costruzione, in alternativa ai metodi di analisi lineare;
- come metodo per la valutazione della capacità di edifici esistenti.

7.3.4.1 ANALISI NON LINEARE DINAMICA

L'analisi non lineare dinamica consiste nel calcolo della risposta sismica della struttura mediante integrazione delle equazioni del moto, utilizzando un modello non lineare della struttura e le storie temporali del moto del terreno definite al § 3.2.3.6. Essa ha lo scopo di valutare il comportamento dinamico della struttura in campo non lineare, consentendo il confronto tra duttilità richiesta e duttilità disponibile allo *SLC* e le relative verifiche, nonché di verificare l'integrità degli elementi strutturali nei confronti di possibili comportamenti fragili.

L'analisi non lineare dinamica deve essere confrontata con un'analisi modale con spettro di risposta di progetto, al fine di controllare le differenze in termini di sollecitazioni globali alla base della struttura.

Nel caso delle costruzioni con isolamento alla base l'analisi dinamica non lineare è obbligatoria quando il sistema d'isolamento non può essere rappresentato da un modello lineare equivalente, come stabilito nel § 7.10.5.2. Gli effetti torsionali sul sistema d'isolamento sono valutati come precisato nel § 7.10.5.3.1, adottando valori delle rigidezze equivalenti coerenti con gli spostamenti risultanti dall'analisi. In proposito si può fare riferimento a documenti di comprovata validità.

7.3.4.2 ANALISI NON LINEARE STATICA

L'analisi non lineare statica richiede che al sistema strutturale reale sia associato un sistema strutturale equivalente non lineare.

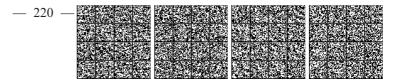
Nel caso in cui il sistema equivalente sia ad un grado di libertà, a detto sistema strutturale equivalente si applicano i carichi gravitazionali e, per la direzione considerata dell'azione sismica, in corrispondenza degli orizzontamenti della costruzione, forze orizzontali proporzionali alle forza d'inerzia aventi risultante (taglio alla base) F_b . Tali forze sono scalate in modo da far crescere monotonamente, sia in direzione positiva che negativa e fino al raggiungimento delle condizioni di collasso locale o globale, lo spostamento orizzontale d_c di un punto di controllo coincidente con il centro di massa dell'ultimo livello della costruzione (sono esclusi eventuali torrini). Vanno considerati anche punti di controllo alternativi, come le estremità della pianta dell'ultimo livello, quando sia significativo l'accoppiamento di traslazioni e rotazioni.

Il diagramma F_b – d_c rappresenta la curva di capacità della struttura.

Si devono considerare almeno due distribuzioni di forze d'inerzia, ricadenti l'una nelle distribuzioni principali (Gruppo 1) e l'altra nelle distribuzioni secondarie (Gruppo 2) appresso illustrate.

Gruppo 1 - Distribuzioni principali:

- se il modo di vibrare fondamentale nella direzione considerata ha una partecipazione di massa non inferiore al 75% si applica una delle due distribuzioni seguenti:


distribuzione proporzionale alle forze statiche di cui al § 7.3.3.2, utilizzando come seconda distribuzione la a) del Gruppo 2,

distribuzione corrispondente a un andamento di accelerazioni proporzionale alla forma del modo fondamentale di vibrare nella direzione considerata;

 in tutti i casi può essere utilizzata la distribuzione corrispondente all'andamento delle forze di piano agenti su ciascun orizzontamento calcolate in un'analisi dinamica lineare, includendo nella direzione considerata un numero di modi con partecipazione di massa complessiva non inferiore allo 85%. L'utilizzo di questa distribuzione è obbligatorio se il periodo fondamentale della struttura è superiore a 1,3 T_C.

Gruppo 2 - Distribuzioni secondarie:

- a) distribuzione di forze, desunta da un andamento uniforme di accelerazioni lungo l'altezza della costruzione;
- b) distribuzione adattiva, che cambia al crescere dello spostamento del punto di controllo in funzione della plasticizzazione della struttura:
- c) distribuzione multimodale, considerando almeno sei modi significativi.

7.3.5. RISPOSTA ALLE DIVERSE COMPONENTI DELL'AZIONE SISMICA ED ALLA VARIABILITÀ SPAZIALE DEL MOTO

ANALISI DINAMICA O STATICA, LINEARE O NON LINEARE

La risposta è calcolata unitariamente per le tre componenti, applicando l'espressione:

$$1,00 \cdot E_x + 0,30 \cdot E_y + 0,30 \cdot E_z$$

[7.3.10]

Gli effetti più gravosi si ricavano dal confronto tra le tre combinazioni ottenute permutando circolarmente i coefficienti moltiplicativi.

In ogni caso:

- la componente verticale deve essere tenuta in conto unicamente nei casi previsti al § 7.2.2.
- la risposta deve essere combinata con gli effetti pseudo-statici indotti dagli spostamenti relativi prodotti dalla variabilità spaziale del moto unicamente nei casi previsti al § 3.2.4.1, utilizzando, salvo per quanto indicato al § 7.2.2 in merito agli appoggi mobili, la radice quadrata della somma dei quadrati (SRSS).

ANALISI DINAMICA , LINEARE O NON LINEARE, CON INTEGRAZIONE AL PASSO

La risposta è valutata applicando simultaneamente le due componenti orizzontali della storia temporale del moto del terreno (e quella verticale, ove necessario). Si devono adottare almeno 3 storie temporali; si valutano gli effetti sulla struttura utilizzando i valori più sfavorevoli. Impiegando invece almeno 7 diverse storie temporali, gli effetti sulla struttura sono rappresentati dalla media dei valori più sfavorevoli.

Nel caso in cui sia necessario valutare gli effetti della variabilità spaziale del moto, l'analisi può essere eseguita imponendo alla base della costruzione storie temporali del moto del terreno differenziate, ma coerenti tra loro e generate in accordo con lo spettro di risposta appropriato per ciascun vincolo. In alternativa, si potranno eseguire analisi dinamiche con moto sincrono tenendo in dovuto conto gli effetti pseudo-statici di cui al § 3.2.4.

7.3.6. RISPETTO DEI REQUISITI NEI CONFRONTI DEGLI STATI LIMITE

Per tutti gli elementi strutturali primari e secondari, gli elementi non strutturali e gli impianti si deve verificare che il valore di ciascuna domanda di progetto, definito dalla tabella 7.3.III per ciascuno degli stati limite richiesti, sia inferiore al corrispondente valore della capacità di progetto.

Le verifiche degli elementi strutturali primari (ST) si eseguono, come sintetizzato nella tabella 7.3.III, in dipendenza della Classe d'Uso (CU):

- nel caso di comportamento strutturale non dissipativo, in termini di rigidezza (RIG) e di resistenza (RES), senza applicare le regole specifiche dei dettagli costruttivi e della progettazione in capacità;
- nel caso di comportamento strutturale dissipativo, in termini di rigidezza (RIG), di resistenza (RES) e di duttilità (DUT) (quando richiesto), applicando le regole specifiche dei dettagli costruttivi e della progettazione in capacità.

Le verifiche degli elementi strutturali secondari si effettuano solo in termini di duttilità.

Le verifiche degli elementi non strutturali (NS) e degli impianti (IM) si effettuano in termini di funzionamento (FUN) e stabilità (STA), come sintetizzato nella tabella 7.3.III, in dipendenza della Classe d'Uso (CU).

Tab. 7.3.III – Stati limite di elementi strutturali primari, elementi non strutturali e impianti

STATI LIMITE		CUI	CU II			CU III e IV		
		ST	ST	NS	IM	ST	NS	IM(*)
SLE -	SLO					RIG		FUN
	SLD	RIG	RIG			RES		
SLU	SLV	RES	RES	STA	STA	RES	STA	STA
	SLC		DUT(**)			DUT(**)		

^(*) Per le sole CU III e IV, nella categoria Impianti ricadono anche gli arredi fissi.

Le verifiche allo stato limite di prevenzione del collasso (*SLC*), a meno di specifiche indicazioni, si svolgono soltanto in termini di duttilità e solo qualora le verifiche in duttilità siano espressamente richieste (v.§7.3.6.1)

7.3.6.1 ELEMENTI STRUTTURALI (ST)

VERIFICHE DI RIGIDEZZA (RIG)

La condizione in termini di rigidezza sulla struttura si ritiene soddisfatta qualora la conseguente deformazione degli elementi strutturali non produca sugli elementi non strutturali danni tali da rendere la costruzione temporaneamente inagibile.

Nel caso delle costruzioni civili e industriali, qualora la temporanea inagibilità sia dovuta a spostamenti di interpiano eccessivi, questa condizione si può ritenere soddisfatta quando gli spostamenti di interpiano ottenuti dall'analisi in presenza dell'azione sismica di progetto corrispondente allo SL e alla CU considerati siano inferiori ai limiti indicati nel seguito.

^(**) Nei casi esplicitamente indicati dalle presenti norme.

Per le CU I e II ci si riferisce allo SLD (v. Tab. 7.3.III) e deve essere:

a) per tamponature collegate rigidamente alla struttura, che interferiscono con la deformabilità della stessa:

 $qd_r \le 0.0050 \cdot h$ per tamponature fragili [7.3.11a]

 $qd_r \le 0.0075 \cdot h$ per tamponature duttili [7.3.11b]

b) per tamponature progettate in modo da non subire danni a seguito di spostamenti d'interpiano d_{rp}, per effetto della loro deformabilità intrinseca oppure dei collegamenti alla struttura:

 $qd_r \le d_m \le 0.0100 \cdot h$ [7.3.12]

c) per costruzioni con struttura portante di muratura ordinaria

 $qd_{r} \le 0.0020 \cdot h$ [7.3.13]

d) per costruzioni con struttura portante di muratura armata

 $qd_r \le 0.0030 \cdot h$ [7.3.14]

e) per costruzioni con struttura portante di muratura confinata

 $qd_r < 0.0025 \cdot h$ [7.3.15]

dove:

- d_r è lo spostamento di interpiano, cioè la differenza tra gli spostamenti del solaio superiore e del solaio inferiore, calcolati, nel caso di analisi lineare, secondo il § 7.3.4, sul modello di calcolo non comprensivo delle tamponature,
- h è l'altezza del piano.

Per le CU III e IV ci si riferisce allo *SLO* (v. Tab. 7.3.III) e gli spostamenti d'interpiano devono essere inferiori ai 2/3 dei limiti in precedenza indicati.

In caso di coesistenza di diversi tipi di tamponamento o struttura portante nel medesimo piano della costruzione, deve essere assunto il limite di spostamento più restrittivo. Qualora gli spostamenti di interpiano siano superiori a 0,005 h (caso b), le verifiche della capacità di spostamento degli elementi non strutturali vanno estese a tutte le tamponature, alle tramezzature interne ed agli impianti.

VERIFICHE DI RESISTENZA (RES)

Si deve verificare che i singoli elementi strutturali e la struttura nel suo insieme possiedano una capacità in resistenza sufficiente a soddisfare la domanda allo *SLV*.

La capacità in resistenza delle membrature e dei collegamenti è valutata in accordo con le regole contenute nei capitoli precedenti, integrate dalle regole di progettazione definite di volta in volta nei successivi paragrafi.

Per le strutture a comportamento dissipativo, la capacità delle membrature è calcolata con riferimento al loro comportamento ultimo, come definito di volta in volta nei successivi paragrafi.

Per le strutture a comportamento non dissipativo, la capacità delle membrature è calcolata con riferimento al loro comportamento elastico o sostanzialmente elastico, come definito di volta in volta nei successivi paragrafi.

La resistenza dei materiali può essere ridotta per tener conto del degrado per deformazioni cicliche, giustificandolo sulla base di apposite prove sperimentali. In tal caso, ai coefficienti parziali di sicurezza sui materiali γ_M si attribuiscono i valori precisati nel Cap. 4 per le situazioni eccezionali.

VERIFICHE DI DUTTILITÀ (DUT)

Si deve verificare che i singoli elementi strutturali e la struttura nel suo insieme possiedano una capacità in duttilità:

- nel caso di analisi lineare, coerente con il fattore di comportamento q adottato e i relativi spostamenti, quali definiti in 7.3.3.3;
- nel caso di analisi non lineare, sufficiente a soddisfare la domanda in duttilità evidenziata dall'analisi.

Nel caso di analisi lineare la verifica di duttilità si può ritenere soddisfatta, rispettando per tutti gli elementi strutturali, sia primari sia secondari, le regole specifiche per i dettagli costruttivi precisate nel presente capitolo per le diverse tipologie costruttive; tali regole sono da considerarsi aggiuntive rispetto a quanto previsto nel Cap. 4 e a quanto imposto dalle regole della progettazione in capacità, il cui rispetto è comunque obbligatorio per gli elementi strutturali primari delle strutture a comportamento dissipativo.

Per strutture a comportamento dissipativo, qualora non siano rispettate le regole specifiche dei dettagli costruttivi, quali precisate nel presente capitolo, occorrerà procedere a verifiche di duttilità.

Per le sezioni allo spiccato dalle fondazioni o dalla struttura scatolare rigida di base di cui al § 7.2.1 degli elementi strutturali verticali primari la verifica di duttilità, indipendentemente dai particolari costruttivi adottati, è necessaria qualora non

diversamente specificato nei paragrafi successivi relativi alle diverse tipologie costruttive, accertando che la capacità in duttilità della costruzione sia almeno pari:

- a 1,2 volte la domanda in duttilità locale, valutata in corrispondenza dello SLV, nel caso si utilizzino modelli lineari,
- alla domanda in duttilità locale e globale allo SLC, nel caso si utilizzino modelli non lineari.

Le verifiche di duttilità non sono dovute nel caso di progettazione con $q \le 1,5$.

7.3.6.2 ELEMENTI NON STRUTTURALI (NS)

VERIFICHE DI STABILITÀ (STA)

Per gli elementi non strutturali devono essere adottati magisteri atti ad evitare la possibile espulsione sotto l'azione della F_a (v. § 7.2.3) corrispondente allo SL e alla CU considerati.

7.3.6.3 IMPIANTI (IM)

VERIFICHE DI FUNZIONAMENTO (FUN)

Per gli impianti, si deve verificare che gli spostamenti strutturali o le accelerazioni (a seconda che gli impianti siano più vulnerabili all'effetto dei primi o delle seconde) prodotti dalle azioni relative allo *SL* e alla CU considerati non siano tali da produrre interruzioni d'uso degli impianti stessi.

VERIFICHE DI STABILITÀ (STA)

Per ciascuno degli impianti principali, i diversi elementi funzionali costituenti l'impianto, compresi gli elementi strutturali che li sostengono e collegano, tra loro e alla struttura principale, devono avere capacità sufficiente a sostenere la domanda corrispondente allo *SL* e alla CU considerati.

7.4. COSTRUZIONI DI CALCESTRUZZO

7.4.1. GENERALITÀ

Nel caso di comportamento strutturale non dissipativo, la capacità delle membrature deve essere valutata in accordo con le regole di cui al § 4.1, senza nessun requisito aggiuntivo, a condizione che in nessuna sezione si superi il momento resistente massimo in campo sostanzialmente elastico, come definito al § 4.1.2.3.4.2. Per i nodi trave-pilastro di strutture a comportamento non dissipativo si devono applicare le regole di progetto relative alla CD "B" contenute nel § 7.4.4.3. Per le strutture prefabbricate a comportamento non dissipativo si devono applicare anche le regole generali contenute nel § 7.4.5.

Nel caso di comportamento strutturale dissipativo, la struttura deve essere concepita e dimensionata in modo tale che, sotto l'azione sismica relativa allo SLV, essa dia luogo alla formazione di un meccanismo dissipativo stabile fino allo SLC, nel quale la dissipazione sia limitata alle zone a tal fine previste. La capacità delle membrature e dei collegamenti deve essere valutata in accordo con le regole di cui dal § 7.1 al § 7.3, integrate dalle regole di progettazione e di dettaglio fornite dal § 7.4.4 al § 7.4.6.

Nel valutare la capacità, si può tener conto dell'effetto del confinamento (v. § 4.1.2.1.2.1), purché si consideri la perdita dei copriferri al raggiungimento, in essi, della deformazione ultima di compressione del calcestruzzo non confinato (0,35%).

Al riguardo, nel valutare la capacità degli elementi strutturali, sono ammesse tre diverse strategie di progettazione:

- 1) si trascura l'effetto del confinamento;
- 2) si considera l'effetto del confinamento per tutti gli elementi strutturali;
- 3) si considera l'effetto del confinamento per tutti gli elementi verticali secondari e per le zone dissipative allo spiccato dalle fondazioni o dalla struttura scatolare rigida di base di cui al § 7.2.1 degli elementi primari verticali (pilastri e pareti).

Le strutture devono essere progettate in maniera tale che i fenomeni di degrado e riduzione di rigidezza che si manifestano nelle zone dissipative non pregiudichino la stabilità globale della struttura.

Gli elementi non dissipativi delle strutture dissipative e i collegamenti tra le parti dissipative ed il resto della struttura devono possedere una capacità sufficiente a consentire lo sviluppo della plasticizzazione ciclica delle parti dissipative. Il rispetto delle presenti norme è volto a garantire tali principi.

Se tamponature di muratura appositamente progettate come collaboranti costituiscono parte del sistema strutturale resistente al sisma, si raccomanda che la loro progettazione e realizzazione siano eseguite in accordo con documenti di comprovata validità.

7.4.2. CARATTERISTICHE DEI MATERIALI

7.4.2.1 CONGLOMERATO

Non è ammesso l'uso di conglomerati di classe inferiore a C20/25 (v. § 4.1) o LC20/22.

7.4.2.2 ACCIAIO

Per le strutture si deve utilizzare acciaio B450C (v. § 11.3.2.1).

E' consentito l'utilizzo di acciai di tipo B450A, con diametri compresi tra 5 e 10 mm, per le reti e i tralicci; se ne consente inoltre l'uso per l'armatura trasversale unicamente se è rispettata almeno una delle seguenti condizioni: elementi in cui è impedita la plasticizzazione mediante il rispetto del criterio di gerarchia delle resistenze, elementi secondari di cui al §7.2.3, strutture con comportamento non dissipativo di cui al §7.2.2.

7.4.3. TIPOLOGIE STRUTTURALI E FATTORI DI COMPORTAMENTO

7.4.3.1 TIPOLOGIE STRUTTURALI

Le strutture sismo-resistenti in calcestruzzo armato previste dalle presenti norme possono essere classificate nelle seguenti tipologie:

- strutture a telaio, nelle quali la resistenza alle azioni sia verticali che orizzontali è affidata principalmente a telai spaziali, aventi resistenza a taglio alla base ≥ 65% della resistenza a taglio totale;
- strutture a pareti, nelle quali la resistenza alle azioni sia verticali che orizzontali è affidata principalmente a pareti (v. § 7.4.4.5), aventi resistenza a taglio alla base ≥ 65% della resistenza a taglio totale; le pareti, a seconda della forma in pianta, si definiscono semplici o composte (v. § 7.4.4.5), a seconda della assenza o presenza di opportune "travi di accoppiamento" duttili distribuite in modo regolare lungo l'altezza, si definiscono singole o accoppiate;
- strutture miste telaio-pareti, nelle quali la resistenza alle azioni verticali è affidata prevalentemente ai telai, la resistenza alle azioni orizzontali è affidata in parte ai telai ed in parte alle pareti, singole o accoppiate; se più del 50% dell'azione orizzontale è assorbita dai telai si parla di strutture miste equivalenti a telai, altrimenti si parla di strutture miste equivalenti a pareti;
- strutture a pendolo inverso, nelle quali almeno il 50% della massa è nel terzo superiore dell'altezza della costruzione e nelle quali la dissipazione d'energia avviene alla base di un singolo elemento strutturale;
- strutture a pendolo inverso intelaiate monopiano, nelle quali almeno il 50% della massa è nel terzo superiore dell'altezza della costruzione, in cui i pilastri sono incastrati in sommità alle travi lungo entrambe le direzioni principali dell'edificio. In ogni caso, per questo tipo di strutture, la forza assiale non può eccedere il 30% della resistenza a compressione della sola sezione di calcestruzzo;
- strutture deformabili torsionalmente, composte da telai e/o pareti, la cui rigidezza torsionale non soddisfa ad ogni piano la condizione r²/ls²≥ 1, nella quale:
 - r^2 = raggio torsionale al quadrato è, per ciascun piano, il rapporto tra la rigidezza torsionale rispetto al centro di rigidezza laterale e la maggiore tra le rigidezze laterali, tenendo conto dei soli elementi strutturali primari, per strutture a telaio o a pareti (purché snelle e a deformazione prevalentemente flessionale), r^2 può essere valutato, per ogni piano, riferendosi ai momenti d'inerzia flessionali delle sezioni degli elementi verticali primari.
 - l^2 = per ogni piano, è il rapporto fra il momento d'inerzia polare della massa del piano rispetto ad un asse verticale passante per il centro di massa del piano e la massa stessa del piano; nel caso di piano a pianta rettangolare l^2 = $(L^2 + B^2)/12$, essendo L e B le dimensioni in pianta del piano.

Una struttura a pareti, nei termini sopra definiti, è da considerarsi come **struttura a pareti estese debolmente armate** se le pareti sono caratterizzate da un'estensione a buona parte del perimetro della pianta strutturale e sono dotate di idonei provvedimenti per garantire la continuità strutturale così da produrre un efficace comportamento scatolare. Inoltre, nella direzione orizzontale d'interesse, la struttura deve avere un periodo fondamentale, in condizioni non fessurate e calcolato nell'ipotesi di assenza di rotazioni alla base, non superiore a T_C.

7.4.3.2 FATTORI DI COMPORTAMENTO

Il fattore di comportamento q da utilizzare per ciascuna direzione dell'azione sismica orizzontale è calcolato come riportato nel \S 7.3.1 e nella tabella 7.3.II.

Ai fini della determinazione del fattore di comportamento q, una struttura si considera *a pareti accoppiate* se è verificata la condizione che il momento totale alla base, prodotto dalle azioni orizzontali, è equilibrato, per almeno il 20%, dalla coppia prodotta dagli sforzi verticali indotti nelle pareti dall'azione sismica.

Le strutture a pareti possono essere progettate sia in CD"A" sia in CD"B", mentre le strutture a pareti estese debolmente armate solo in CD "B".

Le strutture aventi i telai resistenti all'azione sismica realizzati, anche in una sola delle direzioni principali, con travi a spessore devono essere progettate in CD "B" salvo che tali travi non si possano considerare elementi strutturali "secondari".

Per strutture regolari in pianta, possono essere adottati i seguenti valori di α_u/α_1 :

a) Strutture a telaio o miste equivalenti a telai

- strutture a telaio di un piano $\alpha_{\rm u}/\alpha_{\rm l}=1,1$

- strutture a telaio con più piani ed una sola campata $\alpha_{\rm u}/\alpha_{\rm l}$ = 1,2

- strutture a telaio con più piani e più campate α_{v}/α_{1} = 1,3

b) Strutture a pareti o miste equivalenti a pareti

- strutture con solo due pareti non accoppiate per direzione orizzontale

 $\alpha_{\rm u}/\alpha_{\rm 1}$ = 1,0

- altre strutture a pareti non accoppiate

 $\alpha_{\rm u}/\alpha_{\rm 1}$ = 1,1

- strutture a pareti accoppiate o miste equivalenti a pareti

 $\alpha_{\rm u}/\alpha_{\rm 1}$ = 1,2

Per tipologie strutturali diverse da quelle sopra definite, ove s'intenda adottare un valore q > 1,5 il valore adottato deve essere adeguatamente giustificato dal progettista mediante l'impiego di analisi non lineari.

7.4.4 DIMENSIONAMENTO E VERIFICA DEGLI ELEMENTI STRUTTURALI PRIMARI E SECONDARI

Le indicazioni successive si applicano solo agli elementi strutturali primari delle strutture in elevazione. Per essi si eseguono verifiche di resistenza e di duttilità nei modi indicati nel § 7.3.6.1.

I fattori di sovraresistenza γ_{Rd} da utilizzare nelle singole verifiche, secondo le regole della progettazione in capacità, sono riportati nella Tab. 7.2.I.

Per le strutture di fondazione vale quanto indicato nel § 7.2.5.

Per gli elementi strutturali secondari delle strutture in elevazione vale quanto indicato nel § 7.2.3.

Per le strutture, o parti di esse, progettate con comportamento strutturale non dissipativo, la capacità delle membrature soggette a flessione o pressoflessione deve essere calcolata, a livello di sezione, al raggiungimento della curvatura di prima plasticizzazione ϕ_{rd} di cui al § 7.4.4.1.2.

7.4.4.1 Travi

7.4.4.1.1 Verifiche di resistenza (RES)

In ogni sezione la capacità deve essere superiore o uguale alla corrispondente domanda.

Flessione

La domanda a flessione è quella ottenuta dall'analisi globale della struttura per le combinazioni di carico di cui al § 2.5.3.

La capacità a flessione deve essere valutata come indicato nel § 4.1.2.3.4 sulla base delle armature flessionali effettivamente presenti, compreso il contributo di quelle poste all'interno della larghezza collaborante di eventuali solette piene, se ancorate al di fuori della campata in esame (vedi Fig. 7.4.1).

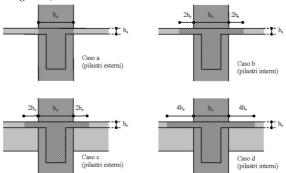


Fig. 7.4.1 – Larghezza collaborante delle travi

 $La \ larghezza \ collaborante \`e \ da \ assumersi \ uguale \ alla \ larghezza \ del \ pilastro \ b_C \ (vedi \ Fig. \ 7.4.1a) \ su \ cui \ la \ trave \ confluisce, più:$

- due volte l'altezza della soletta da ciascun lato, nel caso di travi confluenti in pilastri interni (vedi Fig. 7.4.1b);
- due o quattro volte l'altezza della soletta da ciascun lato in cui è presente una trave trasversale di altezza simile, nel caso di travi confluenti rispettivamente in pilastri esterni o interni (vedi Fig. 7.4.1c e 7.4.1d).

Nel caso di travi perimetrali si considera unicamente la soletta collaborante dal lato interno.

Taglio

La domanda a taglio, per ciascuna direzione e ciascun verso di applicazione delle azioni sismiche, si ottiene dalla condizione di equilibrio della trave, considerata incernierata agli estremi, soggetta ai carichi gravitazionali e all'azione della capacità flessionale di progetto nelle due sezioni di plasticizzazione (generalmente quelle di estremità) determinati come indicato in § 4.1.2.3.4 e amplificati del fattore di sovraresistenza γ_{Rd} di cui alla Tab. 7.2.I.

La domanda a taglio, nei casi in cui le zone dissipative non si localizzino nella trave ma negli elementi che la sostengono, è calcolata sulla base della capacità flessionale di progetto di tali elementi.

Per le strutture in CD"B", la capacità a taglio è valutata come indicato nel § 4.1.2.3.5.

Per le strutture in CD"A", vale quanto segue:

- la capacità a taglio si valuta come indicato in § 4.1.2.3., assumendo nelle zone dissipative $ctg\theta$ =1;
- se nelle zone dissipative il rapporto tra le domande a taglio, minima e massima, risulta inferiore a -0,5, e se il maggiore tra i valori assoluti delle due domande supera il valore:

$$V_{R1} = \left(2 - \left| \frac{V_{Ed,min}}{V_{Ed,max}} \right| \right) \cdot f_{ctd} \cdot b_w \cdot d$$
 [7.4.1]

dove b_W è la larghezza dell'anima della trave e d è l'altezza utile della sua sezione, allora nel piano verticale di inflessione della trave devono essere disposti due ordini di armature diagonali, l'uno inclinato di +45° e l'altro di -45° rispetto all'asse della trave. In tal caso, la capacità a taglio deve essere affidata per metà alle staffe e per metà ai due ordini di armature inclinate, per le quali deve risultare:

$$V_{Ed,max} \le \frac{A_s \cdot f_{yd}}{\sqrt{2}}$$
 [7.4.2]

dove A_S è l'area di ciascuno dei due ordini di armature inclinate.

7.4.4.1.2 Verifiche di duttilità (DUT)

La duttilità si quantifica mediante il fattore di duttilità che, per ciascuno dei parametri abitualmente considerati (curvatura, spostamento), è il rapporto tra il valore massimo raggiunto dal parametro in esame e il valore del parametro stesso all'atto della prima plasticizzazione.

Qualora sia necessario verificare (ai sensi del § 7.3.6.1) che la struttura possieda una capacità in duttilità, locale e globale, superiore alla corrispondente domanda si deve operare come segue, riferendosi alla duttilità in curvatura (locale) e alla duttilità in spostamento (globale).

La domanda in duttilità di curvatura allo *SLC* nelle zone dissipative, espressa mediante il fattore di duttilità in curvatura μ_{φ} , qualora non si proceda ad una determinazione diretta mediante analisi non lineare, può essere valutata in via approssimata come:

$$\mu_{\phi} = \begin{cases} 1, 2 \cdot (2q_0 - 1) & \text{per } T_1 \ge T_C \\ 1, 2 \cdot \left(1 + 2(q_0 - 1)\frac{T_C}{T_1}\right) & \text{per } T_1 < T_C \end{cases}$$
 [7.4.3]

dove T₁ è il periodo proprio fondamentale della struttura.

La capacità in duttilità di curvatura può essere calcolata come indicato al § 4.1.2.3.4.2.

Tra il fattore di duttilità in spostamento μ_d (v. § 7.3.3.3) e il fattore di duttilità in curvatura μ_{φ} sussiste la relazione μ_{φ} = $2\mu_d$ -1 (usualmente conservativa per le strutture in c.a.), mentre tra il fattore di duttilità in spostamento μ_d e il fattore di comportamento q sussistono le relazioni [7.3.9] (v. § 7.3.3.3).

7.4.4.2 PILASTRI

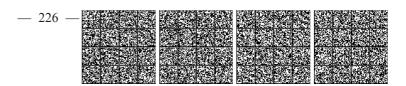
7.4.4.2.1 Verifiche di resistenza (RES)

In ogni sezione la capacità deve essere superiore o uguale alla corrispondente domanda.

Presso-flessione

Per le strutture in CD "A" e in CD "B" la domanda a compressione non deve eccedere, rispettivamente, il 55% e il 65% della capacità massima a compressione della sezione di solo calcestruzzo, per tutte le combinazioni considerate.

Ai fini della progettazione in capacità, per ciascuna direzione e ciascun verso di applicazione delle azioni sismiche, per ogni nodo trave-pilastro (ad eccezione dei nodi in corrispondenza della sommità dei pilastri dell'ultimo orizzontamento), la capacità a flessione complessiva dei pilastri deve essere maggiore della capacità a flessione complessiva delle travi amplificata del coefficiente γRd , in accordo con la formula:


$$\sum M_{c,Rd} \ge \gamma_{Rd} \cdot \sum M_{b,Rd}$$
 [7.4.4]

dove

per il valore di γ_{Rd} si veda la Tab. 7.2.I;

M_{c,Rd} è la capacità a flessione del pilastro convergente nel nodo, calcolata per i livelli di sollecitazione assiale presenti nelle combinazioni sismiche delle azioni;

Mb,Rd è la capacità a flessione della trave convergente nel nodo.

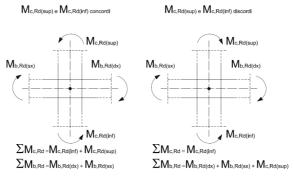


Fig. 7.4.2 - Progettazione in capacità dei pilastri

Nella [7.4.4] si assume il nodo in equilibrio ed i momenti, sia nei pilastri sia nelle travi, tra loro concordi. Nel caso in cui i momenti nel pilastro al di sopra e al di sotto del nodo siano tra loro discordi, al primo membro della formula [7.4.4] va posto il momento maggiore in valore assoluto, mentre il minore va sommato ai momenti resistenti delle travi (v. fig. 7.4.2).

Per la sezione di base dei pilastri del piano terreno si adotta come domanda a flessione il maggiore tra il momento risultante dall'analisi e la capacità a flessione $M_{C,Rd}$ della sezione di sommità del pilastro.

Il confronto capacità-domanda a presso-flessione può essere condotto in maniera semplificata eseguendo, per ciascuna direzione di applicazione del sisma, una verifica a presso-flessione retta con la capacità a flessione del pilastro ridotta del 30%.

Nel caso in cui si sia adottato il modello elastico incrudente di fig. 4.1.3.a, le capacità a flessione $M_{c,Rd}$ e $M_{b,Rd}$ si determinano come specificato nel § 4.1.2.3.4.

Taglio

Ai fini della progettazione in capacità, per ciascuna direzione di applicazione del sisma la domanda a taglio V_{Ed} si ottiene imponendo l'equilibrio con i momenti delle sezioni di estremità (superiore e inferiore) del pilastro $M_{i,d}^s$ $M_{i,d}^i$, determinate come appresso indicato ed amplificate del fattore di sovraresistenza γ_{Rd} , secondo l'espressione:

$$V_{Ed}l_{p} = \gamma_{Rd} (M_{i,d}^{s} + M_{i,d}^{i})$$
 [7.4.5]

dove

per il valore di γ_{Rd} si veda la Tab. 7.2.I;

$$M_{i,d} = M_{c,Rd} \cdot min(1, \frac{\sum M_{b,Rd}}{\sum M_{c,Rd}}) \text{ è il momento nella sezione di estremità (superiore o inferiore) in corrispondenza della$$

formazione delle cerniere nelle travi, dove i valori in sommatoria sono quelli impiegati nella 17 4 41·

 $M_{c,Rd}$ è la capacità a flessione nella sezione di estremità (superiore o inferiore);

lp è la lunghezza del pilastro.

Nel caso in cui le tamponature non si estendano per l'intera altezza dei pilastri adiacenti, la domanda a taglio da considerare per la parte del pilastro priva di tamponamento è valutata utilizzando la relazione [7.4.5], dove l'altezza l_p è assunta pari all'estensione della parte di pilastro priva di tamponamento.

La capacità a taglio delle sezioni dei pilastri è calcolata come indicato nel § 4.1.2.3.5.

7.4.4.2.2 Verifiche di duttilità (DUT)

Vale quanto enunciato al § 7.4.4.1.2.

7.4.4.3 Nodi trave-pilastro

Si definisce nodo la zona del pilastro che si sovrappone alle travi in esso concorrenti.

Si distinguono due tipi di nodi:

- interamente confinati: quando in ognuna delle quattro facce verticali si innesta una trave; il confinamento si considera realizzato quando, su ogni faccia del nodo, la sezione della trave copre per almeno i 3/4 la larghezza del pilastro e, su entrambe le coppie di facce opposte del nodo, le sezioni delle travi si ricoprono per almeno i 3/4 dell'altezza;
- non interamente confinati: quando non appartenenti alla categoria precedente.

7.4.4.3.1 Verifiche di resistenza (RES)

Il nodo deve essere progettato in maniera tale da evitare una sua rottura anticipata rispetto alle zone delle travi e dei pilastri in esso concorrenti.

In ogni nodo la capacità a taglio deve essere superiore o uguale alla corrispondente domanda.

La domanda a taglio in direzione orizzontale deve essere calcolata tenendo conto delle sollecitazioni più gravose che, per effetto dell'azione sismica, si possono verificare negli elementi che vi confluiscono. In assenza di più accurate valutazioni, la domanda a taglio agente nel nucleo di calcestruzzo del nodo può essere calcolata, per ciascuna direzione dell'azione sismica, come:

$$\begin{split} V_{jbd} &= \gamma_{Rd} \cdot \left(A_{S1} + A_{S2} \right) \cdot f_{yd} - V_C \quad \text{per nodi interni} \\ V_{jbd} &= \gamma_{Rd} \cdot A_{S1} \cdot f_{yd} - V_C \quad \text{per nodi esterni} \end{split} \tag{7.4.6}$$

in cui per il valore di γ_{Rd} si veda la Tab. 7.2.I, A_{S1} ed A_{S2} sono rispettivamente l'area dell'armatura superiore ed inferiore della trave e V_C è la forza di taglio nel pilastro al di sopra del nodo, derivante dall'analisi in condizioni sismiche.

Le forze di taglio che agiscono sui nodi devono corrispondere alla più avversa direzione di provenienza dell'azione sismica, la quale si riflette sulla scelta dei valori di A_{s1} , A_{s2} e V_{C} da utilizzare nelle espressioni [7.4.6] e [7.4.7].

La capacità a taglio del nodo è fornita da un meccanismo a traliccio che, a seguito della fessurazione diagonale, vede operare contemporaneamente un meccanismo di taglio compressione ed un meccanismo di taglio trazione. Si devono pertanto soddisfare requisiti atti a garantire l'efficacia dei due meccanismi.

La compressione nel puntone diagonale indotta dal meccanismo a traliccio non deve eccedere la resistenza a compressione del calcestruzzo. In assenza di modelli più accurati, il requisito può ritenersi soddisfatto se:

$$V_{jbd} \le \eta \cdot f_{cd} \cdot b_j \cdot h_{jc} \cdot \sqrt{1 - \frac{\nu_d}{\eta}}$$
 [7.4.8]

in cui

$$\eta = \alpha_{j} \cdot \left(1 - \frac{f_{ck}}{250}\right) \qquad con \; f_{ck} \; espresso \; in \; MPa \eqno(7.4.9)$$

ed α_j è un coefficiente che vale 0,6 per nodi interni e 0,48 per nodi esterni, v_d è la forza assiale nel pilastro al di sopra del nodo, normalizzata rispetto alla resistenza a compressione della sezione di solo calcestruzzo, h_{jC} è la distanza tra le giaciture più esterne delle armature del pilastro, b_j è la larghezza effettiva del nodo. Quest'ultima è assunta pari alla minore tra:

- a) la maggiore tra le larghezze della sezione del pilastro e della sezione della trave;
- b) la minore tra le larghezze della sezione del pilastro e della sezione della trave, ambedue aumentate di metà altezza della sezione del pilastro.

Per evitare che la massima trazione diagonale del calcestruzzo ecceda la fetal deve essere previsto un adeguato confinamento. In assenza di modelli più accurati, si possono disporre nel nodo staffe orizzontali di diametro non inferiore a 6 mm, in modo che:

$$\frac{A_{sh} \cdot f_{ywd}}{b_{j} \cdot h_{jw}} \ge \frac{[V_{jbd}/(b_{j} \cdot h_{jc})]^{2}}{f_{ctd} + v_{d} \cdot f_{cd}} - f_{ctd}$$
 [7.4.10]

in cui i simboli già utilizzati hanno il significato in precedenza illustrato, A_{sh} è l'area totale della sezione delle staffe e h_{jw} è la distanza tra le giaciture di armature superiori e inferiori della trave.

In alternativa, l'integrità del nodo a seguito della fessurazione diagonale può essere garantita integralmente dalle staffe orizzontali se:

$$\begin{aligned} A_{sh} \cdot f_{ywd} &\geq \gamma_{Rd} \cdot \left(A_{s1} + A_{s2}\right) \cdot f_{yd} \cdot \left(1 - 0.8v_{d}\right) & \text{per nodi interni} \\ A_{sh} \cdot f_{ywd} &\geq \gamma_{Rd} \cdot A_{s2} \cdot f_{vd} \cdot \left(1 - 0.8v_{d}\right) & \text{per nodi esterni} \end{aligned}$$
[7.4.11]

dove per il valore di γ_{Rd} si veda la Tab. 7.2.I, A_{s1} ed A_{s2} hanno il valore visto in precedenza, v_d è la forza assiale normalizzata agente al di sopra del nodo, per i nodi interni, al di sotto del nodo, per i nodi esterni.

7.4.4.4 DIAFRAMMI ORIZZONTALI

7.4.4.4.1 Verifiche di resistenza (RES)

Gli orizzontamenti devono essere in grado di trasmettere le forze ottenute dall'analisi, aumentate del 30%.

7.4.4.5 PARETI

Si definisce parete un elemento strutturale di supporto per altri elementi che abbia una sezione trasversale rettangolare o ad essa assimilabile, anche per tratti, caratterizzata in ciascun tratto da un rapporto tra dimensione massima l_w e dimensione minima b_w in pianta $l_w/b_w > 4$ (v. fig. 7.4.3). Le pareti possono avere sezione orizzontale composta da uno (parete semplice) o più (parete composta) segmenti rettangolari. Pareti semplici possono avere appendici con $l_w/b_w \le 4$. Si raccomanda che pareti composte da

20-2-2018

più segmenti rettangolari collegati o che si intersecano (sezioni a L, T, U o simili) siano considerate unità intere, che consistono di una o più anime parallele, o approssimativamente parallele, alla direzione della forza di taglio sismica agente e di una o più flange normali o approssimativamente normali ad essa. Le pareti si definiscono snelle se il rapporto $h_w/l_w > 2$, tozze in caso contrario, essendo h_w l'altezza totale della parete (v. fig. 7.4.3) misurata a partire dalla sua base

7.4.4.5.1 Verifiche di resistenza (RES)

La capacità deve essere superiore o uguale alla corrispondente domanda.

Nel caso di pareti semplici, la verifica di resistenza si esegue con riferimento al rettangolo di base avente dimensione maggiore l_w e dimensione minore b_w . A tal fine si intende per base della parete l'estradosso del suo piano di fondazione o la sommità della struttura scatolare interrata avente diaframmi rigidi e pareti perimetrali; in quest'ultimo caso la verifica della struttura scatolare di base è comunque necessaria.

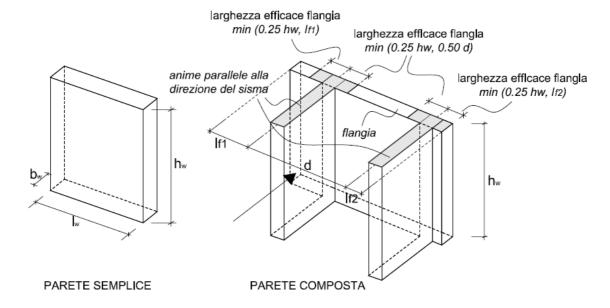


Fig. 7.4.3 – Sezioni resistenti delle pareti semplici e composte (la freccia indica la direzione del sisma)

Nel caso di pareti composte, la verifica di resistenza si esegue considerando la parte di sezione costituita dalle anime parallele, o approssimativamente parallele, alla direzione dell'azione sismica esaminata ed assumendo che la larghezza efficace della flangia su ciascun lato dell'anima considerata si estenda, dalla faccia dell'anima, del valore minimo tra (v. fig. 7.4.3):

- a) la larghezza reale (lí) della flangia;
- b) il 25% dell'altezza totale della parete (hw) al di sopra del livello considerato;
- c) la metà della distanza (d) tra anime adiacenti.

Tra pareti sismiche primarie (v. §7.2.3) è permessa, per la singola parete, una ridistribuzione degli effetti dell'azione sismica fino al 30%, purché non si verifichi una riduzione della domanda totale di resistenza delle pareti. Si raccomanda che le forze di taglio siano ridistribuite insieme con i momenti flettenti, in modo tale che nelle singole pareti il rapporto tra i momenti flettenti e le forze di taglio non vari in maniera apprezzabile. Nelle pareti soggette a grandi variazioni dell'azione assiale, come per esempio nelle pareti accoppiate, si raccomanda che i momenti e i tagli siano ridistribuiti dalle pareti soggette a modesta compressione o a trazione semplice a quelle soggette a un'elevata compressione assiale.

Tra travi di collegamento di pareti accoppiate è permessa, per la singola trave, una ridistribuzione degli effetti dell'azione sismica fino al 20%, purché non vari l'azione assiale sismica alla base di ogni singola parete.

In mancanza di analisi più accurate, la domanda di progetto nelle pareti può essere determinata mediante le procedure semplificate illustrate nel seguito.

Presso-flessione

Per le sole pareti snelle, sia in CD"A" sia in CD"B", la domanda in termini di momenti flettenti lungo l'altezza della parete (linea c di fig. 7.4.4) è ottenuta per traslazione verso l'alto dell'inviluppo del diagramma dei momenti (linea b di fig. 7.4.4) derivante dai momenti forniti dall'analisi (linea a di fig. 7.4.4); l'inviluppo può essere assunto lineare se la struttura non presenta significative discontinuità in termini di massa, rigidezza e resistenza lungo l'altezza.

La traslazione deve essere in accordo con l'inclinazione degli elementi compressi nel meccanismo resistente a taglio e può essere assunta pari ad h_{CT} (altezza della zona inelastica dissipativa di base).

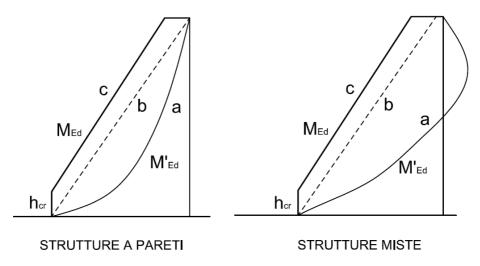


Fig. 7.4.4 – Traslazione del diagramma dei momenti flettenti per strutture a pareti e strutture miste

In assenza di analisi più accurate, si può assumere che l'altezza della zona dissipativa h_{cr} al di sopra della base della parete, possa essere valutata rispettando le condizioni seguenti:

$$h_{cr} = max(l_w, h_w/6) \text{ purchè } h_{cr} \le \begin{cases} 2 \cdot l_w \\ h_s & \text{per } n \le 6 \text{ piani} \\ 2 \cdot h_s & \text{per } n \ge 7 \text{ piani} \end{cases}$$
 [7.4.13]

dove l_w e h_w hanno il significato mostrato in fig. 7.4.3, n è il numero di piani della costruzione, h_s è l'altezza libera di piano. Per tutte le pareti, la domanda in forza normale di compressione non deve eccedere rispettivamente il 35% in CD"A" e il 40% in CD"B" della capacità massima a compressione della sezione di solo calcestruzzo, per tutte le combinazioni considerate.

Le verifiche devono essere condotte nel modo indicato per i pilastri nel § 7.4.4.2.1 tenendo conto, nella determinazione della capacità, di tutte le armature longitudinali presenti nella parete.

Per le *pareti estese debolmente armate*, occorre limitare le tensioni di compressione nel calcestruzzo per prevenire l'instabilità fuori dal piano, secondo quanto indicato nel § 4.1.2.3.9.2 per i pilastri singoli. Se il fattore di comportamento q è superiore a 2, si deve tener conto della domanda in forza assiale dinamica aggiuntiva che si genera nelle pareti per effetto dell'apertura e chiusura di fessure orizzontali e del sollevamento dal suolo. In assenza di più accurate analisi essa può essere assunta pari al ±50% della domanda in forza assiale dovuta ai carichi gravitazionali relativi alla combinazione sismica di progetto.

Taglio

Per le pareti si deve tener conto del possibile incremento delle forze di taglio a seguito della formazione della cerniera plastica alla base della parete. A tal fine, la domanda di taglio di progetto deve essere incrementata del fattore:

$$1.5 \le q \cdot \sqrt{\left(\frac{\gamma_{rd}}{q} \cdot \frac{M_{Rd}}{M_{Ed}}\right)^2 + 0.1 \cdot \left(\frac{S_e(T_C)}{S_e(T_1)}\right)^2} \le q \text{ per pareti snelle}$$
 [7.4.14]

$$\gamma_{Rd} \cdot \frac{M_{Rd}}{M_{Ed}} \le q \text{ per pareti tozze}$$
 [7.4.15]

dove per γ_{Rd} si veda la Tab. 7.2.I, e con M_{Ed} ed M_{Rd} si indicano i momenti flettenti di progetto, rispettivamente, di domanda e di capacità alla base della parete, con T_1 il periodo fondamentale di vibrazione dell'edificio nella direzione dell'azione sismica, con $S_e(T)$ l'ordinata dello spettro di risposta elastico corrispondente all'ascissa T.

Nelle strutture miste, il taglio nelle pareti snelle deve tener conto delle sollecitazioni dovute ai modi di vibrare superiori. A tal fine, il taglio derivante dall'analisi (linea $\bf a$ di fig. 7.4.5) può essere sostituito dal taglio incrementato (linea $\bf b$ di fig. 7.4.5) e quest'ultimo dal diagramma inviluppo (linea $\bf c$ di Fig. 7.4.5); $\bf h_W$ è l'altezza della parete, $\bf V_A$ è il taglio alla base già incrementato, $\bf V_B$ è il taglio ad 1/3 dell'altezza $\bf h_W$, che comunque deve essere assunto almeno pari a $\bf V_A/2$.

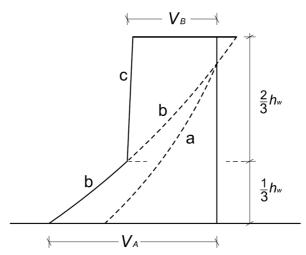


Fig. 7.4.5 – Diagramma di inviluppo delle forze di taglio nelle pareti di strutture miste

Nelle *pareti estese debolmente armate*, per garantire che lo snervamento a flessione preceda il raggiungimento dello stato limite ultimo per taglio, il taglio derivante dall'analisi deve essere amplificato, ad ogni piano, del fattore (q+1)/2.

Nelle verifiche delle pareti, sia in CD "A" sia in CD "B", si deve considerare: la possibile rottura a taglio-compressione del calcestruzzo dell'anima, la possibile rottura a taglio-trazione delle armature dell'anima e la possibile rottura per scorrimento nelle zone dissipative.

Verifica a taglio-compressione del calcestruzzo dell'anima

La determinazione della resistenza è condotta in accordo con il \S 4.1.2.3.5, assumendo un braccio delle forze interne z pari a $0.8 \, \mathrm{lw}$ ed un'inclinazione delle diagonali compresse pari a 45° . Nelle zone dissipative tale resistenza va moltiplicata per un fattore riduttivo 0.4.

Verifica a taglio-trazione dell'armatura dell'anima

Il calcolo dell'armatura d'anima deve tener conto del rapporto di taglio $\alpha_S = M_{Ed} / (V_{Ed} \ l_W)$. Per la verifica va considerato, ad ogni piano, il massimo valore di α_S .

Se $\alpha_S \ge 2$, la determinazione della resistenza è condotta in accordo con il § 4.1.2. .3.5, assumendo un braccio delle forze interne z pari a 0,8 lw ed un'inclinazione delle diagonali compresse pari a 45°. Altrimenti si utilizzano le seguenti espressioni:

$$V_{Ed} \le V_{Rd,c} + 0.75 \cdot Q_h \cdot f_{yd,h} \cdot b_w \cdot \alpha_S \cdot l_w$$
 [7.4.16]

$$Q_h \cdot f_{yd,h} \cdot b_w \cdot z \le Q_V \cdot f_{yd,v} \cdot b_w \cdot z + \min N_{Ed}$$
 [7.4.17]

in cui ϱ_h e ϱ_v sono i rapporti tra l'area della sezione dell'armatura orizzontale o verticale d'anima, rispettivamente, e l'area della relativa sezione di calcestruzzo, $f_{yd,h}$ e $f_{yd,v}$ sono i valori di progetto della resistenza delle armature orizzontali e verticali, N_{Ed} è la forza assiale di progetto (positiva se di compressione), $V_{Rd,c}$ è la resistenza a taglio degli elementi non armati, determinata in accordo con il § 4.1.2..3.5.1, da assumersi nulla nelle zone dissipative quando N_{Ed} è di trazione.

Verifica a scorrimento nelle zone dissipative

Sui possibili piani di scorrimento (per esempio le riprese di getto o i giunti costruttivi) posti all'interno delle zone dissipative deve risultare:

$$V_{Ed} \le V_{Rd,S} \tag{7.4.18}$$

dove V_{RdS} è il valore di progetto della resistenza a taglio nei confronti dello scorrimento

$$V_{RdS} = V_{dd} + V_{id} + V_{fd}$$
 [7.4.19]

nella quale V_{dd} , V_{id} e V_{fd} rappresentano, rispettivamente, il contributo dell'effetto "spinotto" delle armature verticali, il contributo delle armature inclinate presenti alla base, il contributo della resistenza per attrito, e sono dati dalle espressioni:

$$V_{dd} = \min \begin{cases} 1.3 \cdot \sum A_{sj} \cdot \sqrt{f_{cd} \cdot f_{yd}} \\ 0.25 \cdot f_{vd} \cdot \sum A_{sj} \end{cases}$$
 [7.4.20]

$$V_{id} = f_{yd} \cdot \sum A_{si} \cdot \cos(\phi_i)$$
 [7.4.21]

$$V_{\text{fd}} = min \begin{cases} \mu_{\text{f}} \cdot \left[\left(\sum A_{\text{sj}} \cdot f_{\text{yd}} + N_{\text{Ed}} \right) \cdot \xi + M_{\text{Ed}} / z \right] \\ 0.5 \cdot \eta \cdot f_{\text{cd}} \cdot \xi \cdot l_{\text{w}} \cdot b_{\text{wo}} \end{cases}$$
[7.4.22]

dove η è dato dall'espressione [7.4.9] (in cui α_j = 0,60), μ_f è il coefficiente d'attrito calcestruzzo-calcestruzzo sotto azioni cicliche (può essere assunto pari a 0,60), $\sum A_{sj}$ è la somma delle aree delle barre verticali intersecanti il piano contenente la potenziale superficie di scorrimento, ξ è l'altezza della parte compressa della sezione normalizzata all'altezza della sezione, A_{si} è l'area di ciascuna armatura inclinata che attraversa il piano detto formando con esso un angolo φ_i .

Per le pareti tozze deve risultare $V_{id}>V_{Ed}/2$.

La presenza di armature inclinate comporta un incremento della resistenza a flessione alla base della parete che deve essere considerato quando si determina il taglio di progetto V_{Ed} .

7.4.4.5.2 Verifiche di duttilità (DUT)

La domanda in duttilità di curvatura nelle zone dissipative delle pareti può essere espressa mediante il fattore di duttilità in curvatura μ_{φ} ; qualora non si proceda ad una determinazione diretta mediante analisi non lineare, tale domanda può essere valutata attribuendo a μ_{Φ} i valori forniti dalle [7.4.3] del § 7.4.4.1.2 con il valore di q in queste espressioni ridotto del fattore M_{Ed}/M_{Rd} , dove M_{Ed} è il momento flettente di progetto alla base della parete fornito dall'analisi nella situazione sismica di progetto e M_{Rd} è la resistenza flessionale di progetto.

La capacità in duttilità di curvatura può essere calcolata, in termini di fattore di duttilità in curvatura μ_{φ} come rapporto tra la curvatura ϕ_u cui corrisponde una riduzione del 15% della massima resistenza a flessione – oppure il raggiungimento della deformazione ultima del calcestruzzo e/o dell'acciaio – e la curvatura convenzionale ϕ_{yd} di prima plasticizzazione quale definita nel § 4.1.2.3.4.2.

Nelle sole regioni di estremità della sezione trasversale, dette "elementi di bordo", si può tener conto, nel calcolo della capacità, dell'effetto del confinamento purché congiuntamente all'espulsione dei copriferri al raggiungimento, in essi, della deformazione ultima di compressione del calcestruzzo non confinato (0,35%); gli elementi di bordo (zone campite di fig. 7.4.6) si assumono di larghezza b_0 pari alla larghezza b_w della sezione diminuita dello spessore dei copriferri e di lunghezza l_C pari all'estensione della zona nella quale la deformazione a compressione del calcestruzzo supera ϵ_{cu2} =0,35%. In ogni caso: $l_C \ge \max$ (0,15· l_W), 0,15· l_W).

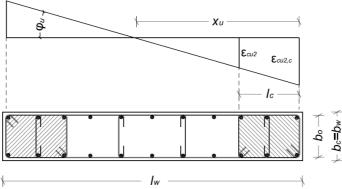


Fig. 7.4.6 – Elementi di bordo di una parete, diagramma delle corrispondenti curvature, schema esemplificativo delle armature di confinamento

Il valore di x_u si ricava dalla condizione di equilibrio della sezione nella combinazione di progetto sismica facendo riferimento, per la valutazione della deformazione ultima del calcestruzzo ε_{cu2,c_r} alla quantità di armatura di confinamento effettivamente presente (v. § 4.1.2.1.2.1).

Nel caso si utilizzi la formulazione semplificata indicata al § 7.4.6.2.4 per eseguire la verifica di duttilità, si può porre $l_e \ge \max(0.20 \cdot l_w, 1.5 \cdot b_w)$.

7.4.4.6 TRAVI DI ACCOPPIAMENTO DEI SISTEMI A PARETI

La verifica delle travi di accoppiamento è da eseguire con i procedimenti contenuti nel \S 7.4.4.1 se è soddisfatta almeno una delle due condizioni seguenti:

- il rapporto tra luce netta e altezza è uguale o superiore a 3;

- la sollecitazione di taglio di progetto risulta:

$$V_{Ed} \le f_{ctd} \cdot b \cdot d$$
 [7.4.23]

essendo b la larghezza e d l'altezza utile della sezione.

Se le condizioni precedenti non sono soddisfatte la sollecitazione di taglio deve essere assorbita da due ordini di armature diagonali, opportunamente staffate, disposte ad X sulla trave che si ancorano nelle pareti adiacenti, con sezione pari, per ciascuna diagonale, ad A_s tale da soddisfare la relazione:

$$V_{iE} \le 2 \cdot A_s \cdot f_{yd} \cdot sen(\phi)$$
 [7.4.24]

essendo φ l'angolo minimo tra ciascuna delle due diagonali e l'asse orizzontale.

Travi aventi altezza pari allo spessore del solaio non sono da considerare efficaci ai fini dell'accoppiamento.

7.4.5 COSTRUZIONI CON STRUTTURA PREFABBRICATA

La prefabbricazione di parti di una struttura progettata per rispondere alle prescrizioni relative agli edifici in calcestruzzo armato richiede la dimostrazione che il collegamento in opera delle parti sia tale da conferire alla struttura stessa le prestazioni assunte, in termini di resistenza, rigidezza e duttilità, nel modello di calcolo.

Per la trasmissione di forze orizzontali tra parti della struttura non è mai consentito confidare sull'attrito conseguente ai carichi gravitazionali, salvo in presenza di dispositivi espressamente progettati per tale scopo.

Le prescrizioni di cui al presente § 7.4.5 sono aggiuntive rispetto a quelle contenute nei capitoli precedenti, per quanto applicabili e non esplicitamente modificate.

7.4.5.1 TIPOLOGIE STRUTTURALI E FATTORI DI COMPORTAMENTO

Si considerano le tipologie di sistemi strutturali già definite al § 7.4.3.1 con, in aggiunta, le seguenti:

- strutture a pannelli;
- strutture monolitiche a cella;
- strutture con pilastri incastrati alla base ed orizzontamenti ad essi incernierati.

I valori massimi di qo per queste ultime categorie sono contenuti nella tabella 7.3.II.

Altre tipologie possono essere utilizzate giustificando i fattori di comportamento adottati e impiegando regole di dettaglio tali da garantire i requisiti generali di sicurezza di cui alle presenti norme.

Nelle strutture prefabbricate il meccanismo di dissipazione energetica è associato prevalentemente alle rotazioni plastiche nelle zone dissipative. In aggiunta, la dissipazione può avvenire attraverso meccanismi plastici a taglio nelle connessioni, purché le forze di richiamo non diminuiscano significativamente al susseguirsi dei cicli dell'azione sismica e si evitino fenomeni d'instabilità. Nella scelta del fattore di comportamento complessivo q possono essere considerate le capacità di dissipazione per meccanismi a taglio, specialmente nei sistemi a pareti prefabbricate, tenendo conto dei valori di duttilità locali a scorrimento $\mu_{\rm S}$.

Nelle strutture con pilastri incastrati alla base e orizzontamenti collegati ad essi mediante cerniere fisse, la dissipazione di energia avviene unicamente nelle sezioni dei pilastri allo spiccato dalle fondazioni o dalla struttura scatolare rigida di base di cui al § 7.2.1. Per assicurare l'efficacia di tale dissipazione, in tali zone è richiesta la verifica di duttilità, indipendentemente dai particolari costruttivi adottati. A tal fine, non è consentito il ricorso alla [7.4.29] di cui al § 7.4.6.2.2.

7.4.5.2 COLLEGAMENTI

I collegamenti tra gli elementi prefabbricati - e tra questi e le fondazioni - condizionano in modo sostanziale il comportamento statico dell'organismo strutturale e la sua risposta sotto azioni sismiche.

I collegamenti tra gli elementi prefabbricati, strutturali e non, devono essere appositamente progettati per garantire le condizioni di vincolo previste dallo schema strutturale adottato e per possedere capacità di spostamento e di resistenza maggiori delle corrispondenti domande.

I dispositivi meccanici che realizzano tali collegamenti devono essere qualificati secondo le procedure di cui al § 11.8.

Per le strutture a pannelli l'idoneità dei collegamenti tra i pannelli realizzati con giunti gettati o saldati deve essere adeguatamente dimostrata mediante le prove sperimentali di idoneità.

Per strutture a telaio i collegamenti tra elementi monodimensionali (trave-pilastro) devono garantire la congruenza degli spostamenti verticali e orizzontali, e il trasferimento delle sollecitazioni deve essere assicurato da dispositivi meccanici. A questo vincolo può accoppiarsi, all'altro estremo della trave, un appoggio mobile. L'ampiezza del piano di scorrimento deve risultare, con ampio margine, maggiore dello spostamento dovuto all'azione sismica.

Per strutture a pilastri incastrati alla base e orizzontamenti collegati ad essi, il collegamento tra pilastro ed elemento orizzontale deve essere di tipo cerniera (rigida o elastica). Appoggi mobili sono possibili in corrispondenza di giunti. Le travi prefabbricate in semplice appoggio devono essere strutturalmente connesse ai pilastri o alle pareti (di supporto). Le connessioni devono assicurare la trasmissione delle forze orizzontali nella situazione sismica di progetto senza fare affidamento sull'attrito. Ciò vale anche per le connessioni tra gli elementi secondari dell'impalcato e le travi portanti.

Per gli elementi di collegamento va controllato che non diano luogo a dissesti locali sul conglomerato sotto l'applicazione di cicli di carico ripetuti.

In tutti i casi, i collegamenti devono essere in grado di assorbire gli spostamenti relativi e di trasferire le forze risultanti dall'analisi, con adeguati margini di sicurezza.

In aggiunta alle precedenti regole generali, nelle strutture a comportamento dissipativo si applicano anche le seguenti regole specifiche.

Negli elementi prefabbricati e nei loro collegamenti si deve tener conto del possibile degrado a seguito delle deformazioni cicliche in campo plastico. Quando necessario, la resistenza di progetto dei collegamenti prefabbricati valutata per carichi non ciclici deve essere opportunamente ridotta per le verifiche sotto azioni sismiche.

In caso di collegamenti tra elementi prefabbricati di natura non monolitica, che influenzino in modo sostanziale il comportamento statico dell'organismo strutturale, e quindi anche la sua risposta sotto azioni sismiche, sono possibili le tre situazioni seguenti, a ciascuna delle quali deve corrispondere un opportuno criterio di dimensionamento:

- a) collegamenti situati al di fuori delle previste zone dissipative, che quindi non influiscono sulle capacità dissipative della struttura;
- b) collegamenti situati in prossimità delle previste zone dissipative alle estremità degli elementi prefabbricati, ma sovradimensionati in modo tale da non pregiudicare la plasticizzazione delle zone dissipative stesse;
- c) collegamenti situati nelle previste zone dissipative alle estremità degli elementi prefabbricati, dotati delle necessarie caratteristiche in termini di duttilità e di quantità di energia dissipabile.

7.4.5.2.1 Regole di progetto

STRUTTURE INTELAIATE

Alle strutture intelaiate a comportamento dissipativo si applicano le seguenti regole di progetto.

Collegamenti lontani dalle zone dissipative o di tipo a)

Il collegamento deve essere posizionato ad una distanza dalla estremità dell'elemento, trave o pilastro, dove si ha la zona dissipativa, pari almeno alla lunghezza del tratto ove è prevista armatura trasversale di contenimento, ai sensi del § 7.4.4.1.2 e del § 7.4.4.2.2, aumentata di una volta l'altezza utile della sezione.

La resistenza del collegamento deve essere non inferiore alla sollecitazione locale di progetto. Per il momento di domanda si assume il maggiore tra il valore derivante dall'analisi e il valore ricavato, con la progettazione in capacità, dai momenti di capacità delle zone dissipative adiacenti moltiplicati per il fattore di sovraresistenza γ_{Rd} di cui alla Tab. 7.2.I. Il taglio di progetto è determinato con le regole della progettazione in capacità di cui al § 7.4.4.1.1 (travi) e § 7.4.4.2.1 (pilastri), utilizzando il fattore di sovraresistenza γ_{Rd} di cui alla Tab. 7.2.I.

Collegamenti sovradimensionati o di tipo b)

Le parti degli elementi adiacenti alle unioni devono essere dimensionate con gli stessi procedimenti della progettazione in capacità previsti nel § 7.4.4 per le strutture gettate in opera, in funzione della classe di duttilità adottata, e dotate dei relativi dettagli di armatura che ne assicurino la prevista duttilità. Si utilizza il fattore di sovraresistenza di cui alla Tab. 7.2.I.

Le armature longitudinali delle connessioni devono essere completamente ancorate prima delle sezioni terminali delle zone dissipative. Le armature delle zone dissipative devono essere completamente ancorate fuori delle connessioni.

 $Per\ strutture\ in\ CD''A''\ non\ \grave{e}\ ammessa\ la\ giunzione\ dei\ pilastri\ all'interno\ dei\ nodi\ e\ delle\ zone\ dissipative.$

Collegamenti che dissipano energia o di tipo c)

Previa dimostrazione analitica che il funzionamento del collegamento è equivalente a quello di uno interamente realizzato in opera e che soddisfi le prescrizioni di cui al § 7.4.4, la struttura è assimilabile ad una di tipo monolitico.

L'idoneità di giunzioni atte a realizzare il meccanismo plastico previsto per le strutture a telaio e a soddisfare le richieste globali e locali di duttilità ciclica nella misura corrispondente alle CD"A" e "B" può essere desunta da normative di comprovata validità oppure da prove sperimentali in scala reale che includano almeno tre cicli completi di deformazione di ampiezza corrispondente al fattore di comportamento q, eseguite su sotto-insiemi strutturali significativi.

STRUTTURE A PILASTRI INCASTRATI ALLA BASE E ORIZZONTAMENTI AD ESSI INCERNIERATI

I collegamenti ad appoggio mobile sono consentiti per le sole strutture monopiano e devono essere dimensionati come indicato al § 7.2.2.

In aggiunta alle precedenti regole generali, nelle strutture a comportamento dissipativo si applicano anche le seguenti regole specifiche.

Per le strutture monopiano, la resistenza a taglio dei collegamenti a cerniera non deve essere inferiore alla forza orizzontale necessaria per indurre nella sezione di base del pilastro un momento flettente pari al momento resistente ultimo, moltiplicata per un fattore di sovraresistenza γ_{Rd} di cui alla Tab. 7.2.I.

Per le strutture pluripiano, i collegamenti a cerniera devono essere dimensionati nei confronti della forza di piano in equilibrio con il diagramma del taglio risultante dalle indicazioni fornite nella sezione "Pilastri" del § 7.4.5.3.

7.4.5.2.2 Valutazione della resistenza

La resistenza delle connessioni tra elementi prefabbricati deve essere valutata con gli stessi coefficienti parziali di sicurezza applicabili alle situazioni non sismiche, come indicato nei §§ 4.1.2.1.1, 4.2.4.1.1, 4.2.4.1.4 o 4.2.8 secondo quanto di competenza.

Nella valutazione della resistenza allo scorrimento si deve trascurare l'attrito dovuto agli sforzi esterni di compressione.

Nelle strutture a comportamento dissipativo gli elementi di acciaio utilizzati per realizzare la connessione devono possedere caratteristiche di resistenza, duttilità e dissipazione conformi a quanto previsto nel progetto.

7.4.5.3 Elementi strutturali

Per gli elementi strutturali si applicano le regole progettuali degli elementi non prefabbricati.

Pilactri

Per strutture a pilastri incastrati alla base e orizzontamenti ad essi incernierati, le colonne devono essere fissate in fondazione con vincoli d'incastro.

Per le strutture a comportamento dissipativo, connessioni pilastro-pilastro all'interno delle zone dissipative sono permesse solo per strutture in CD"B".

Per strutture a comportamento dissipativo con pilastri pluripiano incastrati alla base e con travi incernierate ai pilastri stessi, deve essere considerato l'incremento del taglio, da valutarsi in accordo alla [7.4.14].

Pareti di pannelli prefabbricati

Deve essere evitato il degrado della resistenza delle connessioni. Tale requisito si ritiene soddisfatto se tutte le connessioni verticali sono ruvide o provviste di connettori a taglio e verificate a taglio.

Nella verifica delle connessioni orizzontali la forza assiale di trazione deve essere portata da un'armatura longitudinale verticale disposta nella zona tesa del pannello e ancorata completamente nel corpo dei pannelli soprastanti e sottostanti. Per le connessioni che sono solo parzialmente tese sotto le azioni sismiche, la verifica di resistenza a taglio deve essere fatta considerando esclusivamente la zona compressa; in questo caso come valore della forza assiale si deve considerare il valore della risultante di compressione su questa zona.

Diaframmi

Il comportamento a diaframma è reso più efficace se nelle zone di collegamento degli orizzontamenti sono predisposti appositi supporti. Un'appropriata cappa di calcestruzzo armato gettato in opera può migliorare significativamente la rigidezza dei diaframmi.

Le forze di trazione devono essere portate da apposite armature disposte lungo il perimetro del diaframma e nelle connessioni interne con gli altri elementi prefabbricati. Se si prevede una cappa di calcestruzzo armato gettato in opera, dette armature possono essere posizionate nella cappa stessa.

Gli elementi di sostegno, sia al di sotto sia al di sopra del diaframma, devono essere adeguatamente connessi ad esso; a tal fine non si considerano le forze di attrito dovute alle forze di compressione esterne. Per le strutture a comportamento dissipativo, le forze di taglio lungo le connessioni piastra-piastra o piastra-trave devono essere moltiplicate per un fattore maggiorativo pari a 1,30.

7.4.6 DETTAGLI COSTRUTTIVI PER LE STRUTTURE A COMPORTAMENTO DISSIPATIVO

Le indicazioni fornite nel seguito in merito ai dettagli costruttivi si applicano alle strutture in c.a. a comportamento dissipativo, sia gettate in opera sia prefabbricate. I dettagli costruttivi sono articolati in termini di:

- limitazioni geometriche,
- limitazioni di armatura.

7.4.6.1 LIMITAZIONI GEOMETRICHE


7.4.6.1.1 Travi

La larghezza b della trave deve essere ≥ 20 cm e, per le travi "a spessore di solaio", deve essere non maggiore della larghezza del pilastro, aumentata da ogni lato di metà dell'altezza della sezione trasversale della trave stessa, risultando comunque non maggiore di due volte b_C , essendo b_C la larghezza del pilastro misurata ortogonalmente all'asse della trave.

Il rapporto b/h tra larghezza e altezza della trave deve essere \geq 0,25.

Non deve esserci eccentricità tra l'asse delle travi che sostengono pilastri in falso e l'asse dei pilastri che le sostengono. Le travi devono avere almeno due supporti, costituiti da pilastri o pareti.

Le zone dissipative si estendono, per CD"A" e CD"B", per una lunghezza pari rispettivamente a 1,5 e 1,0 volte l'altezza della sezione della trave, misurata a partire dalla faccia del nodo trave-pilastro o da entrambi i lati a partire dalla sezione di prima plasticizzazione. Per travi che sostengono un pilastro in falso, si assume una lunghezza pari a 2 volte l'altezza della sezione misurata da entrambe le facce del pilastro. Le pareti non possono appoggiarsi in falso su travi o solette.

7.4.6.1.2 Pilastri

La dimensione minima della sezione trasversale non deve essere inferiore a 25 cm.

Se θ , quale definito nel § 7.3.1, risulta > 0,1, la dimensione della sezione trasversale nella direzione parallela al piano d'inflessione non deve essere inferiore ad un ventesimo della maggiore tra le distanze tra il punto in cui si annulla il momento flettente e le estremità del pilastro. Quest'ultima limitazione geometrica non si applica quando gli effetti del secondo ordine siano presi in conto incrementando gli effetti dell'azione sismica di un fattore pari a $1/(1-\theta)$ quando θ è compreso tra 0.1 e 0.2 o computati attraverso un'analisi non lineare quando θ è compreso tra 0.2 e 0.3.

In assenza di analisi più accurate, si può assumere che la lunghezza della zona dissipativa sia la maggiore tra: l'altezza della sezione, 1/6 dell'altezza libera del pilastro, 45 cm, l'altezza libera del pilastro se questa è inferiore a 3 volte l'altezza della sezione.

7.4.6.1.3 Nodi trave-pilastro

Sono da evitare, per quanto possibile, eccentricità tra l'asse della trave e l'asse del pilastro concorrenti in un nodo. Qualora tale eccentricità superi 1/4 della larghezza del pilastro, la trasmissione degli sforzi deve essere assicurata da armature adeguatamente dimensionate allo scopo.

7.4.6.1.4 Pareti

Le pareti non possono appoggiarsi in falso su travi o solette.

Lo spessore delle pareti, anche se estese debolmente armate, deve essere non inferiore al massimo tra 15 cm (20 cm nel caso in cui nelle travi di collegamento siano da prevedersi, ai sensi del § 7.4.4.6, armature inclinate) e 1/20 dell'altezza libera d'interpiano.

Possono derogare a tale limite, su motivata indicazione del progettista, le strutture a funzionamento scatolare a un solo piano non destinate ad uso abitativo.

Devono essere evitate aperture distribuite irregolarmente, salvo che la loro presenza non sia specificamente considerata nell'analisi, nel dimensionamento e nella disposizione delle armature.

7.4.6.2 LIMITAZIONI DI ARMATURA

Le giunzioni di barre mediante saldatura o dispositivi meccanici sono vietate in corrispondenza delle zone dissipative degli elementi strutturali. Nelle colonne e nelle pareti, la giunzione di barre mediante dispositivi meccanici di collegamento è concessa se dispositivi ed elementi, qualificati secondo quanto indicato al § 11.3.2.9, sono oggetto di prove appropriate in condizioni compatibili con la classe di duttilità scelta.

7.4.6.2.1 Travi

Armature longitudinali

Almeno due barre di diametro non inferiore a 14 mm devono essere presenti superiormente e inferiormente, per tutta la lunghezza della trave.

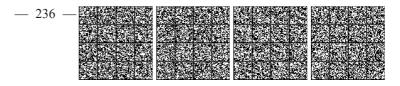
In ogni sezione della trave, salvo giustificazioni che dimostrino che le modalità di collasso della sezione sono coerenti con la classe di duttilità adottata, il rapporto geometrico ϱ relativo all'armatura tesa, indipendentemente dal fatto che l'armatura tesa sia quella al lembo superiore della sezione $A_{\rm S}$ o quella al lembo inferiore della sezione $A_{\rm i}$, deve essere compreso entro i seguenti limiti:

$$\frac{1.4}{f_{yk}} < \rho < \rho_{comp} + \frac{3.5}{f_{yk}}$$
 [7.4.26]

dove:

è il rapporto geometrico relativo all'armatura tesa, pari ad $A_s/(b \cdot h)$ oppure ad $A_i/(b \cdot h)$;

Q_{comp} è il rapporto geometrico relativo all'armatura compressa;


 f_{vk} è la tensione caratteristica di snervamento dell'acciaio (in MPa).

Inoltre deve essere $\varrho_{comp} \ge 0.25~\varrho$ ovunque e nelle zone dissipative $\varrho_{comp} \ge 1/2~\varrho$.

L'armatura superiore, disposta per il momento negativo alle estremità delle travi, deve essere contenuta, per almeno il 75%, entro la larghezza dell'anima e comunque, per le sezioni a T o ad L, entro una fascia di soletta pari, rispettivamente, alla larghezza del pilastro, od alla larghezza del pilastro aumentata di 2 volte lo spessore della soletta da ciascun lato del pilastro, a seconda che nel nodo manchi o sia presente una trave ortogonale. Almeno ¼ della suddetta armatura deve essere mantenuta per tutta la lunghezza della trave.

Le armature longitudinali delle travi, sia superiori sia inferiori, devono attraversare, di regola, i nodi senza ancorarsi o giuntarsi per sovrapposizione in essi. Quando ciò non risulti possibile, sono da rispettare le seguenti prescrizioni:

- le barre vanno ancorate oltre la faccia opposta a quella di intersezione con il nodo, oppure rivoltate verticalmente in corrispondenza di tale faccia, a contenimento del nodo;
- la lunghezza di ancoraggio delle armature tese va calcolata in modo da sviluppare una tensione nelle barre pari a 1,25 f_{yk}, e misurata a partire da una distanza pari a 6 diametri dalla faccia del pilastro verso l'interno.

La parte dell'armatura longitudinale della trave che si ancora oltre il nodo non può terminare all'interno di una zona dissipativa, ma deve ancorarsi oltre di essa.

La parte dell'armatura longitudinale della trave che si ancora nel nodo, deve essere collocata all'interno delle staffe del pilastro. Per prevenire lo sfilamento di queste armature il diametro delle barre non inclinate deve essere $\leq \alpha_{bL}$ volte l'altezza della sezione del pilastro, essendo

$$\alpha_{bL} = \begin{cases} \frac{7.5 \cdot f_{ctm}}{\gamma_{Rd} \cdot f_{yd}} \cdot \frac{1 + 0.8v_d}{1 + 0.75k_D \cdot \rho_{comp}/\rho} & \text{per nodi interni} \\ \frac{7.5 \cdot f_{ctm}}{\gamma_{Rd} \cdot f_{yd}} \cdot \left(1 + 0.8v_d\right) & \text{per nodi esterni} \end{cases}$$
[7.4.27]

dove:

v_d è la forza assiale di progetto normalizzata;

k_D vale 1 o 2/3, rispettivamente per CD"A" e per CD"B";

 γ_{Rd} vale 1,2 o 1, rispettivamente per CD"A" e per CD"B".

Se per nodi esterni non è possibile soddisfare tale limitazione, si può prolungare la trave oltre il pilastro, si possono usare piastre saldate alla fine delle barre, si possono piegare le barre per una lunghezza minima pari a 10 volte il loro diametro disponendo un'apposita armatura trasversale dietro la piegatura.

Armature trasversali

Nelle zone dissipative devono essere previste staffe di contenimento. La prima staffa di contenimento deve distare non più di 5 cm dalla sezione a filo pilastro; le successive devono essere disposte ad un passo non superiore alla minore tra le grandezze seguenti:

- un quarto dell'altezza utile della sezione trasversale;
- 175 mm e 225 mm, rispettivamente per CD"A" e CD "B";
- 6 volte e 8 volte il diametro minimo delle barre longitudinali considerate ai fini delle verifiche, rispettivamente per CD"A" e CD
 "B"
- 24 volte il diametro delle armature trasversali.

Per staffa di contenimento si intende una staffa rettangolare, circolare o a spirale, di diametro minimo 6 mm, con ganci a 135° prolungati, alle due estremità, per almeno 10 diametri. I ganci devono essere assicurati alle barre longitudinali.

7.4.6.2.2 Pilastri

Nel caso in cui le tamponature non si estendano per l'intera altezza dei pilastri adiacenti, l'armatura risultante deve essere estesa per una distanza pari alla profondità del pilastro oltre la zona priva di tamponamento. Nel caso in cui l'altezza della zona priva di tamponamento fosse inferiore a 1,5 volte la profondità del pilastro, devono essere utilizzate armature bi-diagonali.

Nel caso precedente, qualora il tamponamento sia presente su un solo lato di un pilastro, l'armatura trasversale da disporre alle estremità del pilastro ai sensi del § 7.4.5.3. deve essere estesa all'intera altezza del pilastro.

Armature longitudinali

Per tutta la lunghezza del pilastro, l'interasse tra le barre non deve essere superiore a 25 cm.

Nella sezione corrente del pilastro, la percentuale geometrica ϱ di armatura longitudinale, con ϱ rapporto tra l'area dell'armatura longitudinale e l'area della sezione del pilastro, deve essere compresa entro i seguenti limiti:

$$1\% \le \varrho \le 4\%$$
 [7.4.28]

Se sotto l'azione del sisma la forza assiale su un pilastro è di trazione, la lunghezza di ancoraggio delle barre longitudinali deve essere incrementata del 50%.

Armature trasversali

Alle estremità di tutti i pilastri primari e secondari per una lunghezza pari a quella delle zone dissipative devono essere rispettate le condizioni seguenti: le barre disposte sugli angoli della sezione devono essere contenute dalle staffe; la distanza tra due barre vincolate consecutive, deve essere non superiore a 15 cm e 20 cm, rispettivamente per CD"A" e CD"B".

A tal fine si intendono barre vincolate quelle direttamente trattenute da staffe o da legature.

Il diametro delle staffe di contenimento e legature deve essere non inferiore a:

 $max[6\,mm;(0.4\cdot d_{bl,max}\cdot \sqrt{f_{yd,l}/f_{yd,st}}\,)]\,\,per\,CD''A''\,e\,6\,mm\,per\,CD''B'',\,dove\,d_{bl,max}\,\grave{e}\,il\,\,diametro\,\,massimo\,\,delle\,\,barre\,\,longitudinali,\,\,diametro\,\,delle\,\,barre\,\,longitudinali,\,\,diametro\,\,delle\,\,barre\,\,longitudinali,\,\,diametro\,\,delle\,\,barre\,\,longitudinali,\,\,diametro\,\,delle$

 $f_{yd,l} \ e \ f_{yd,st} \ sono, \ rispettivamente, \ la \ tensione \ di \ snervamento \ di \ progetto \ delle \ barre \ longitudinali \ e \ delle \ staffe.$

Il passo delle staffe di contenimento e legature deve essere non superiore alla più piccola delle quantità seguenti:

- 1/3 e 1/2 del lato minore della sezione trasversale, rispettivamente per CD"A" e CD"B";
- 12,5 cm e 17,5 cm, rispettivamente per CD"A" e CD"B";
- 5 6 e 8 volte il diametro delle barre longitudinali che collegano, rispettivamente per CD"A" e CD"B".

In ogni caso alle estremità di tutti i pilastri primari, per una lunghezza pari a quella delle zone dissipative, il rapporto ω_{wd} definito in [7.4.30] deve essere non minore di 0,08.

Dettagli costruttivi per la duttilità

Per le zone dissipative allo spiccato dei pilastri primari e per le zone terminali di tutti i pilastri secondari devono essere eseguite le verifiche di duttilità indicate al § 7.4.4.2.2. In alternativa, tali verifiche possono ritenersi soddisfatte se, per ciascuna zona dissipativa, si rispettano le limitazioni seguenti:

$$\alpha \cdot \omega_{wd} \ge 30\mu_{\phi} \cdot \nu_{d} \cdot \varepsilon_{sy,d} \cdot \frac{b_{c}}{b_{0}} - 0,035$$
 [7.4.29]

$$\begin{split} \alpha \cdot \omega_{wd} &\geq 30 \mu_{\phi} \cdot \nu_{d} \cdot \epsilon_{sy,d} \cdot \frac{b_{c}}{b_{0}} - 0,035 \\ \omega_{wd} &= \frac{volume \, delle \, staffe \, di \, confinamento}{volume \, del \, nucleo \, di \, calcestruzzo} \cdot \frac{f_{yd}}{f_{cd}} \end{split} \eqno(7.4.29)$$

 ω_{wd} è il rapporto meccanico dell'armatura trasversale di confinamento all'interno della zona dissipativa (il nucleo di calcestruzzo è individuato con riferimento alla linea media delle staffe) che deve essere non minore di 0,12 in CD"A" .

 μ_{ϕ} è la domanda in duttilità di curvatura allo SLC;

 v_d è la forza assiale adimensionalizzata di progetto relativa alla combinazione sismica SLV ($v_d = N_{Ed}/A_c \cdot f_{cd}$);

εsy,d è la deformazione di snervamento dell'acciaio;

h_c è la profondità della sezione trasversale lorda;

h₀ è la profondità del nucleo confinato (con riferimento alla linea media delle staffe);

b_c è la larghezza minima della sezione trasversale lorda;

b₀ è la larghezza del nucleo confinato corrispondente a b_c (con riferimento alla linea media delle staffe);

 α è il coefficiente di efficacia del confinamento, uguale a $\alpha = \alpha_n \cdot \alpha_s$, con:

per sezioni trasversali rettangolari

$$\alpha_{n} = 1 - \sum b_{i}^{2} / (6 \cdot b_{0} \cdot h_{0})$$
 [7.4.31a]

$$\begin{split} \alpha_{n} &= 1 - \sum_{n} b_{i}^{2} / \left(6 \cdot b_{0} \cdot h_{0} \right) \\ \alpha_{s} &= \left[1 - s / \left(2 \cdot b_{0} \right) \right] \cdot \left[1 - s / \left(2 \cdot h_{0} \right) \right] \end{split} \tag{7.4.31a}$$

dove: n è il numero totale di barre longitudinali contenute lateralmente da staffe o legature, bi è la distanza tra barre consecutive contenute e s è il passo delle staffe;

per sezioni trasversali circolari con diametro del nucleo confinato Do (con riferimento alla linea media delle staffe)

$$\alpha_{n} = 1$$
 [7.4.31c]
$$\alpha_{s} = [1 - s/(2 \cdot D_{0})]^{\beta}$$
 [7.4.31d]

dove: n è il numero totale di barre longitudinali contenute lateralmente da staffe o legature, bi è la distanza tra barre consecutive contenute, β = 2 per staffe circolari singole, β = 1 per staffa a spirale.

7.4.6.2.3 Nodi trave-pilastro

Oltre a quanto richiesto dalla verifica nel § 7.4.4.3.1, lungo le armature longitudinali del pilastro che attraversano i nodi devono essere disposte staffe di contenimento in quantità almeno pari alla maggiore prevista nelle zone adiacenti al nodo del pilastro inferiore e superiore; nel caso di nodi interamente confinati il passo risultante dell'armatura di confinamento orizzontale nel nodo può essere raddoppiato, ma non può essere maggiore di 15 cm.

7.4.6.2.4 Pareti

Nelle parti della parete, in pianta ed in altezza, al di fuori di una zona dissipativa, vanno seguite le regole del Capitolo 4, con un'armatura minima verticale e orizzontale, finalizzata a controllare la fessurazione da taglio, avente rapporto geometrico o riferito, rispettivamente, all'area della sezione orizzontale e verticale almeno pari allo 0,2%. Tuttavia, in quelle parti della sezione dove, nella situazione sismica di progetto, la deformazione a compressione ϵ_c è maggiore dello 0,2%, si raccomanda di fornire un rapporto geometrico di armatura verticale $o \ge 0.5\%$.

Le armature, sia orizzontali sia verticali, devono avere diametro non superiore ad 1/10 dello spessore della parete, devono essere disposte su entrambe le facce della parete, ad un passo non superiore a 30 cm, devono essere collegate con legature, in ragione di almeno 9 legature ogni metro quadrato.

Armature longitudinali

Negli elementi di bordo delle zone dissipative l'armatura longitudinale deve rispettare le prescrizioni fornite per le zone dissipative dei pilastri primari nel § 7.4.6.2.2.

Armature trasversali

Negli elementi di bordo delle zone dissipative l'armatura trasversale deve rispettare le prescrizioni fornite per le zone dissipative dei pilastri primari nel § 7.4.6.2.2.

Armature inclinate

Le armature inclinate che attraversano potenziali superfici di scorrimento devono essere efficacemente ancorate al di sopra e al di sotto della superficie di scorrimento ed attraversare tutte le sezioni della parete poste al di sopra di essa e distanti da essa meno della minore tra ½hw e ½lw.

Dettagli costruttivi per la duttilità

Per le zone dissipative di base delle pareti primarie devono essere eseguite le verifiche di duttilità indicate al § 7.4.4.5.2. In alternativa, tali verifiche possono ritenersi soddisfatte se, per ciascuna zona dissipativa, il rapporto volumetrico di armatura trasversale negli elementi di bordo rispetta le limitazioni seguenti:

$$\alpha \cdot \omega_{\text{wd}} \ge 30\mu_{\phi} \cdot \left(\nu_{\text{d}} + \omega_{\text{v}}\right) \cdot \varepsilon_{\text{sy,d}} \cdot \frac{b_{\text{c}}}{b_{\text{0}}} - 0,035$$
 [7.4.32]

$$\omega_{wd} = \frac{\text{volume delle staffe di confinamento}}{\text{volume del nucleo di calcestruzzo degli elementi di bordo}} \cdot \frac{f_{yd}}{f_{cd}}$$
 [7.4.33]

dove i simboli hanno il significato della [7.4.29] e $\omega_{\rm v} = \rho_{\rm v} \cdot f_{\rm yd,v}/f_{\rm cd}$, essendo $\rho_{\rm v}$ e $f_{\rm yd,v}$, rispettivamente, il rapporto geometrico e la resistenza di snervamento di progetto dell'armatura verticale al di fuori degli elementi di bordo.

7.4.6.2.5 Travi di accoppiamento

Nel caso di armatura ad X, ciascuno dei due fasci di armatura deve essere racchiuso da armatura a spirale o da staffe di contenimento con passo non superiore a 100 mm.

In questo caso, in aggiunta all'armatura diagonale deve essere disposta nella trave armatura di diametro almeno 10 mm distribuita a passo 10 cm in direzione sia longitudinale che trasversale ed armatura corrente di 2 barre da 16 mm ai bordi superiore ed inferiore.

Gli ancoraggi delle armature nelle pareti devono essere del 50% più lunghi di quanto previsto per il dimensionamento in condizioni non sismiche.

7.5. COSTRUZIONI DI ACCIAIO

Nel caso di comportamento strutturale non dissipativo la capacità delle membrature e dei collegamenti deve essere valutata in accordo con le regole di cui al § 4.2 delle presenti norme, senza nessun requisito aggiuntivo.

Nel caso di comportamento strutturale dissipativo la capacità delle membrature e dei collegamenti deve essere valutata in accordo con le regole di cui dal § 7.1 al § 7.3 delle presenti norme, integrate dalle regole di progettazione e di dettaglio fornite dal § 7.5.3 al § 7.5.6. Le strutture devono essere progettate in maniera tale che i fenomeni di degrado e riduzione di rigidezza che si manifestano nelle zone dissipative non pregiudichino la stabilità globale della struttura.

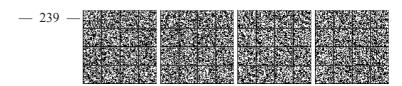
Nelle zone dissipative, al fine di assicurare che le stesse si formino in accordo con quanto previsto in progetto, la possibilità che il reale limite di snervamento dell'acciaio sia maggiore del limite nominale deve essere tenuta in conto attraverso un opportuno coefficiente γ_{ov} , definito al § 7.5.1.

Gli elementi non dissipativi delle strutture dissipative e i collegamenti tra le parti dissipative ed il resto della struttura devono possedere una capacità sufficiente a consentire lo sviluppo della plasticizzazione ciclica delle parti dissipative.

7.5.1. CARATTERISTICHE DEI MATERIALI

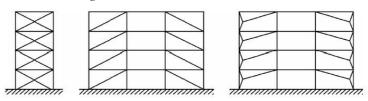
L'acciaio strutturale deve essere conforme ai requisiti del § 11.3.4.9.

La distribuzione delle proprietà del materiale, nella struttura, quali la tensione di snervamento e la tenacità deve essere tale che le zone dissipative si formino dove stabilito nella progettazione.

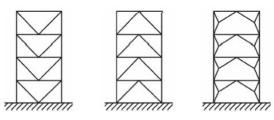

Ai fini della progettazione, il fattore di sovraresistenza del materiale, γ_{ov} è assunto pari a 1,25 per gli acciai tipo S235, S275 ed S355 e pari a 1,15 per gli acciai tipo S420 e S460.

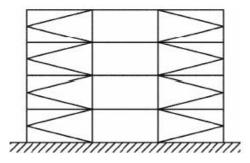
7.5.2. TIPOLOGIE STRUTTURALI E FATTORI DI COMPORTAMENTO

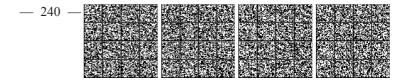
7.5.2.1 TIPOLOGIE STRUTTURALI


Le strutture sismo-resistenti d'acciaio possono essere distinte, in accordo con il loro comportamento, nelle seguenti tipologie strutturali:

a) Strutture intelaiate: sono composte da telai che resistono alle forze orizzontali con un comportamento prevalentemente flessionale. In queste strutture le zone dissipative sono principalmente collocate alle estremità delle travi, in prossimità dei collegamenti trave-colonna, dove si possono formare le cerniere plastiche e l'energia è dissipata per mezzo della flessione ciclica plastica.




- b) Strutture con controventi concentrici: in esse le forze orizzontali sono assorbite principalmente da membrature soggette a forze assiali. In queste strutture le zone dissipative sono principalmente collocate nelle diagonali tese. Pertanto, possono essere considerati in questa tipologia solo quei controventi per cui lo snervamento delle diagonali tese precede il raggiungimento della resistenza delle aste strettamente necessarie ad equilibrare i carichi esterni. I controventi reticolari concentrici possono essere distinti nelle seguenti tre categorie (Fig. 7.5.1):
 - b1) controventi con diagonale tesa attiva, in cui la resistenza alle forze orizzontali e le capacità dissipative sono affidate alle aste diagonali soggette a trazione;
 - b2) *controventi a V,* in cui le forze orizzontali devono essere assorbite considerando sia le diagonali tese che quelle compresse. Il punto d'intersezione di queste diagonali giace su di una membratura orizzontale che deve essere continua:
 - b3) *controventi a K*, in cui il punto d'intersezione delle diagonali giace su una colonna. Questa categoria non deve essere considerata dissipativa, poiché il meccanismo di collasso coinvolge la colonna.
- c) Strutture con controventi eccentrici: in esse le forze orizzontali sono principalmente assorbite da membrature caricate assialmente, ma la presenza di eccentricità di schema permette la dissipazione di energia nei traversi per mezzo del comportamento ciclico a flessione e/o a taglio. I controventi eccentrici possono essere classificati come dissipativi quando la plasticizzazione dei traversi dovuta alla flessione e/o al taglio precede il raggiungimento della resistenza ultima delle altre parti strutturali.
- d) Strutture a mensola o a pendolo inverso: in esse almeno il 50% della massa è nel terzo superiore dell'altezza della costruzione oppure la dissipazione di energia è localizzata principalmente alla base. Strutture ad un solo piano che posseggano più di una colonna, con le estremità superiori delle colonne collegate nelle direzioni principali dell'edificio e con il valore del carico assiale normalizzato della colonna non maggiore di 0,3 in alcun punto, possono essere considerate strutture a telaio.
- e) Strutture intelaiate con controventi concentrici: in esse le azioni orizzontali sono assorbite sia da telai sia da controventi agenti nel medesimo piano verticale.
- f) **Strutture intelaiate con tamponature:** sono costituite da strutture intelaiate con le quali le tamponature in muratura o calcestruzzo sono in contatto, non collegate.


b1) Strutture con controventi concentrici a diagonale tesa attiva

b2) Strutture con controventi concentrici a V

b3) Strutture con controventi concentrici a K

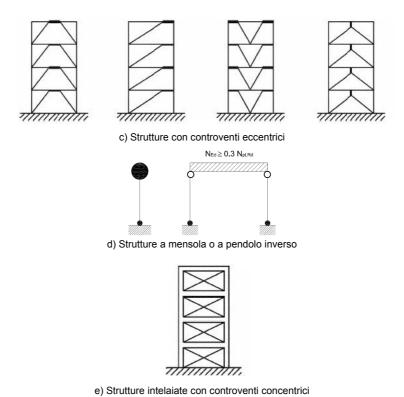


Fig. 7.5.1. - Tipologie strutturali

Da tale classificazione sono escluse le strutture di acciaio in cui la dissipazione di energia è realizzata mediante l'impiego di appositi dispositivi antisismici.

Per le strutture di acciaio in cui le forze orizzontali sono assorbite da nuclei o pareti di controvento in calcestruzzo armato si rimanda al $\S 7.4$.

Tipologie strutturali diverse da quelle sopraelencate possono essere utilizzate basandosi su criteri di progettazione non difformi da quelli considerati nella presente norma. Il grado di sicurezza raggiunto utilizzando tali criteri deve essere comunque non inferiore a quello garantito dalla presente norma.

7.5.2.2 FATTORI DI COMPORTAMENTO

Per ciascuna tipologia strutturale il valore massimo per q₀ è indicato in Tab. 7.3.II.

Per le strutture regolari in pianta possono essere adottati i seguenti valori di $\alpha_{\text{u}}/\alpha_{1}$:

– edifici a un piano	$\alpha_{\rm u}/\alpha_{\rm 1}$ = 1,1
– edifici a telaio a più piani, con una sola campata	$\alpha_{\rm u}/\alpha_{\rm 1}$ = 1,2
– edifici a telaio con più piani e più campate	$\alpha_{\rm u}/\alpha_{\rm 1}$ = 1,3
- edifici con controventi eccentrici a più piani	$\alpha_{\rm u}/\alpha_{\rm 1}$ = 1,2
- edifici con strutture a mensola o a pendolo inverso	$\alpha_{\rm u}/\alpha_{\rm 1}$ = 1,0

Tali valori di q_0 sono da intendersi validi a patto che vengano rispettate le regole di progettazione e di dettaglio fornite nei paragrafi dal § 7.5.3 al § 7.5.6.

7.5.3. REGOLE DI PROGETTO GENERALI PER ELEMENTI STRUTTURALI DISSIPATIVI

Le regole di progetto seguenti si applicano alle parti delle strutture sismo-resistenti progettate per avere un comportamento strutturale dissipativo. Le zone dissipative devono avere un'adeguata duttilità ed una sufficiente capacità.

Nelle disposizioni di cui al presente capitolo, le zone dissipative sono localizzate nelle membrature; pertanto i collegamenti e tutte le componenti non dissipative della struttura devono essere dotate di adeguata capacità.

7.5.3.1 VERIFICHE DI RESISTENZA (RES)

I collegamenti in zone dissipative devono consentire la plasticizzazione delle parti dissipative collegate, garantendo il soddisfacimento del seguente requisito:

$$R_{i,d} \ge 1, 1 \cdot \gamma_{ov} \cdot R_{pl,Rd} = R_{U,Rd}$$
 [7.5.1]

dove

R i,d è la capacità di progetto del collegamento;

R pl.Rd è la capacità al limite plastico della membratura dissipativa collegata;

R_{U.Rd} è il limite superiore della capacità della membratura collegata.

Nel caso di membrature tese con collegamenti bullonati, la capacità corrispondente al raggiungimento della tensione di snervamento della sezione deve risultare inferiore alla capacità corrispondente al raggiungimento della tensione di rottura della sezione netta in corrispondenza dei fori per i dispositivi di collegamento; si deve quindi verificare che:

$$\frac{A_{res}}{A} \ge 1, 1 \cdot \frac{\gamma_{M2}}{\gamma_{M0}} \cdot \frac{f_{yk}}{f_{tk}}$$
 [7.5.2]

essendo A l'area lorda e A_{res} l'area resistente costituita dall'area netta in corrispondenza dei fori, integrata da un'eventuale area di rinforzo. I fattori parziali γ_{M0} e γ_{M2} sono definiti nella Tab. 4.2.V del § 4.2.3.1.1. delle presenti norme.

7.5.3.2 VERIFICHE DI DUTTILITA' (DUT)

In ogni zona o elemento dissipativo si deve garantire una capacità in duttilità superiore alla corrispondente domanda in duttilità. La verifica deve essere effettuata adottando le misure di deformazione adeguate ai meccanismi duttili previsti per le diverse tipologie strutturali.

Per le tipologie indicate in § 7.5.2.1, si possono utilizzare le seguenti misure di deformazione locale θ:

- elementi inflessi o presso inflessi di strutture intelaiate: rotazione alla corda;
- elementi prevalentemente tesi e compressi di strutture controventate: allungamento complessivo della diagonale;
- elementi sottoposti a taglio e flessione di strutture con controventi eccentrici (elementi di collegamento): rotazione rigida tra l'elemento di connessione e l'elemento contiguo.

La duttilità locale è definita come segue:

 $\mu = \theta_0/\theta_v$

La domanda in duttilità locale è definita dal rapporto tra il valore di deformazione θ_0 misurato mediante analisi non lineare e il valore di deformazione θ_0 al limite elastico. Nel caso di analisi strutturale lineare con fattore di comportamento, la domanda di deformazione può essere dedotta dal campo di spostamenti ultimi ottenuti come in § 7.3.3.3.

La capacità in duttilità locale è data dal rapporto tra la misura di deformazione al collasso θ_u , valutata in corrispondenza della riduzione del 15% della massima resistenza dell'elemento, e la deformazione θ_y corrispondente al raggiungimento della prima plasticizzazione.

La capacità in duttilità locale, quando non sia determinata mediante sperimentazione diretta, deve essere valutata utilizzando metodi di calcolo che descrivano in modo adeguato il comportamento in campo non-lineare, inclusi i fenomeni di instabilità dell'equilibrio, e tengano conto dei fenomeni di degrado connessi al comportamento ciclico.

La verifica di duttilità si ritiene comunque soddisfatta qualora siano rispettate, in funzione della classe di duttilità e del valore di base del fattore di comportamento q_0 utilizzato in fase di progetto, le prescrizioni relative alle classi di sezioni trasversali per le zone/elementi dissipativi riportate in Tab. 7.5.I nonché le prescrizioni specifiche di cui ai successivi paragrafi relativi a ciascuna tipologia strutturale e sia soddisfatta, per le sezioni delle colonne primarie delle strutture a telaio in cui si prevede la formazione di zone dissipative, la relazione:

$$N_{Ed} / N_{pl,Rd} \le 0.3$$
 [7.5.3]

dove N_{Ed} è il valore della domanda a sforzo normale e $N_{pl,Rd}$ è il valore della capacità a sforzo normale determinata secondo criteri di cui al \S 4.2.4.1.2.

 $extbf{Tab. 7.5.I}$ - Classe della sezione trasversale di elementi dissipativi in funzione della classe di duttilità e di $extbf{q}_0$

Classe di duttilità	Valore di base q ₀ del fattore di comportamento	Classe di sezione trasversale richiesta
CD "B"	$2 < q_0 \le 4$	Classe 1 o 2
CD "A"	$q_0 > 4$	Classe 1

7.5.4. REGOLE DI PROGETTO SPECIFICHE PER STRUTTURE INTELAIATE

Al fine di conseguire un comportamento duttile, i telai devono essere progettati in modo che le zone dissipative si formino nelle travi piuttosto che nelle colonne.

Questo requisito non è richiesto per le sezioni delle colonne alla base ed alla sommità dei telai multipiano e per gli edifici monopiano.

7.5.4.1 TRAVI

Verifiche di resistenza (RES)

Nelle sezioni in cui è attesa la formazione delle zone dissipative devono essere verificate le seguenti relazioni:

$$M_{Ed}/M_{pl,Rd} \le 1$$
 [7.5.4]

$$N_{Ed}/N_{pl,Rd} \le 0.15$$
 [7.5.5]

$$(V_{Ed,G} + V_{Ed,M})/V_{pl,Rd} \le 0,50$$
 [7.5.6]

dove:

 $M_{\text{Ed}},\,N_{\text{Ed}}\,e\,V_{\text{Ed}}$ sono i valori della domanda a flessione, sforzo normale e taglio;

M_{p,l,Rd}, N_{p,l,Rd} e V_{p,l,Rd} sono i valori della capacità a flessione, sforzo normale e taglio determinate secondo criteri di cui al §

4.2.4.1.2;

 $V_{\text{Ed,G}}$ è la domanda a taglio dovuta alle azioni non-sismiche;

 $V_{\text{Ed,M}}$ è la domanda a taglio dovuta all'applicazione di momenti plastici equiversi $M_{pl,Rd}$ nelle sezioni in cui è

attesa la formazione delle zone dissipative.

Le travi devono avere capacità sufficiente nei confronti dell'instabilità flessionale e flesso-torsionale, determinata come in §4.2.4.1.3. ed assumendo la formazione delle zone dissipative nella sezione caratterizzata dalla domanda più elevata in condizioni sismiche.

7.5.4.2 COLONNE

Verifiche di resistenza (RES)

La capacità delle colonne deve essere confrontata con la combinazione più sfavorevole della domanda a flessione ed a sforzo normale.

La domanda deve essere determinata come segue:

$$N_{Ed} = N_{Ed,G} + 1, 1 \cdot \gamma_{ov} \cdot \Omega \cdot N_{Ed,E}$$
 [7.5.7]

$$\mathbf{M}_{\mathrm{Ed}} = \mathbf{M}_{\mathrm{Ed,G}} + 1, 1 \cdot \gamma_{\mathrm{ov}} \cdot \Omega \cdot \mathbf{M}_{\mathrm{Ed,E}}$$
 [7.5.8]

$$V_{Ed} = V_{Ed,G} + 1, 1 \cdot \gamma_{ov} \cdot \Omega \cdot V_{Ed,E}$$
 [7.5.9]

in cui

 $M_{\rm Ed}, N_{\rm Ed}$ e $V_{\rm Ed}$ sono i valori della domanda a flessione, sforzo normale e taglio;

 $N_{\text{Ed},G'} \ M_{\text{Ed},G'} \ V_{\text{Ed},G}$ sono i valori della domanda a sforzo normale, flessione e taglio dovuta alle azioni non sismiche incluse

nella combinazione delle azioni per la condizione sismica di progetto;

 $N_{\text{Ed,E}}, M_{\text{Ed,E}}, V_{\text{Ed,E}}$ sono i valori della domanda a sforzo normale, flessione e taglio dovuta alle azioni sismiche di

progetto;

 γ_{ov} è il fattore di sovraresistenza relativo al materiale di cui al § 7.5.1;

 $\Omega \qquad \qquad \text{è il minimo valore tra gli } \Omega_{\hat{l}} = \left(M_{pl,Rd,i} - M_{Ed,G,i}\right) / M_{Ed,E,i} \text{ valutati per tutte le travi in cui si attende la proposition de la proposition della proposition$

formazione di zone dissipative, essendo $M_{\text{Ed},E,i}$ la domanda a flessione dovuta alle azioni sismiche di progetto, $M_{\text{Ed},G,i}$ la domanda a flessione dovuta alle azioni non sismiche incluse nella combinazione della azioni per la condizione sismica di progetto e $M_{\text{pl},Rd,i}$ il valore dalla capacità a flessione dalla i-

esima trave.

Nelle colonne in cui si attende la formazione di zone dissipative, la domanda deve essere calcolata nell'ipotesi che in corrispondenza di tali zone sia raggiunta la capacità a flessione $M_{pl,Rd}$.

Il rapporto tra la domanda e la capacità a taglio deve rispettare la seguente limitazione:

$$V_{Ed} / V_{pl,Rd} \le 0.50$$
 [7.5.10]

Per assicurare lo sviluppo del meccanismo globale dissipativo, deve inoltre essere rispettata la seguente diseguaglianza per ogni nodo trave-colonna del telaio

$$\sum M_{C,pl,Rd} \ge \gamma_{Rd} \cdot \sum M_{b,pl,Rd}$$
 [7.5.11]

dove γ_{Rd} è dato in Tab. 7.2.I, $M_{C,pl,Rd}$ è la capacità a flessione della colonna calcolata per i livelli di domanda a sforzo normale valutata nelle combinazioni sismiche delle azioni ed $M_{b,pl,Rd}$ è la capacità delle travi che convergono nel nodo trave-colonna.

Nella [7.5.11] si assume il nodo in equilibrio ed i momenti, sia nelle colonne sia nelle travi, tra loro concordi. Nel caso in cui i momenti nella colonna al di sopra e al di sotto del nodo siano tra loro discordi, al primo membro della formula [7.5.11] va posta la maggiore tra le capacità a flessione delle colonne, mentre la minore va sommata alle capacità a flessione delle travi.

7.5.4.3 COLLEGAMENTI TRAVE-COLONNA

Verifiche di resistenza (RES)

I collegamenti trave-colonna devono essere progettati in modo da consentire la formazione delle zone dissipative alle estremità delle travi secondo le indicazioni di cui al § 7.5.3.1. In particolare, la capacità a flessione del collegamento trave-colonna, $M_{j,Rd}$, deve soddisfare la seguente relazione

$$M_{j,Rd} \ge 1, 1 \cdot \gamma_{ov} \cdot M_{b,pl,Rd}$$
 [7.5.12]

 $dove\ M_{b,pl,Rd}\ \grave{e}\ la\ capacit\grave{a}\ a\ flessione\ della\ trave\ collegata\ e\ \gamma_{ov}\ \grave{e}\ il\ coefficiente\ di\ sovraresistenza.$

7.5.4.4 PANNELLI D'ANIMA DEI COLLEGAMENTI TRAVE-COLONNA

Verifiche di resistenza (RES)

I pannelli d'anima devono essere progettati in modo da consentire lo sviluppo del meccanismo dissipativo della struttura, cioè la plasticizzazione delle sezioni delle travi convergenti nel nodo trave-colonna evitando fenomeni di plasticizzazione e instabilizzazione a taglio.

Tale requisito si può ritenere soddisfatto quando:

$$V_{vp Ed} / min(V_{vp Rd}, V_{vb Rd}) < 1$$
 [7.5.13]

essendo $V_{vp,Ed}$, $V_{vp,Rd}$ e $V_{vb,Rd}$ rispettivamente la domanda a taglio, la capacità a taglio per plasticizzazione del pannello e la capacità a taglio per instabilità del pannello, queste ultime valutate come in § 4.2.4.1.2 e 4.2.4.1.3.

La domanda a taglio $V_{vp,Ed}$ deve essere determinata assumendo il raggiungimento della capacità a flessione nelle sezioni delle travi convergenti nel nodo trave-colonna, secondo lo schema e le modalità previste in fase di progetto.

7.5.4.5 COLLEGAMENTI COLONNA-FONDAZIONE

Verifiche di resistenza (RES)

Il collegamento colonna-fondazione deve essere progettato in modo tale che la sua capacità sia maggiore della capacità della colonna ad esso collegata.

In particolare, la capacità a flessione del collegamento deve rispettare la seguente disuguaglianza

$$M_{C,Rd} \ge 1,1 \cdot \gamma_{ov} \cdot M_{c,pl,Rd}(N_{Ed})$$
 [7.5.14]

dove $M_{c,pl,Rd}$ è la capacità a flessione della colonna, valutata per la domanda a sforzo normale N_{Ed} che fornisce la condizione più gravosa per il collegamento di base. Il coefficiente γ_{ov} è fornito nel § 7.5.1.

7.5.5. REGOLE DI PROGETTO SPECIFICHE PER STRUTTURE CON CONTROVENTI CONCENTRICI

Nelle strutture con controventi concentrici le membrature costituenti le travi e le colonne ed i collegamenti devono possedere una capacità sufficiente a consentire lo sviluppo delle zone dissipative nelle diagonali.

Le diagonali di controvento hanno essenzialmente funzione portante nei confronti delle azioni sismiche e, a tal fine, tranne che per i controventi a V, devono essere considerate le sole diagonali tese.

La risposta carico-spostamento laterale deve essere sostanzialmente indipendente dal verso dell'azione sismica.

Per edifici con più di due piani, la snellezza adimensionale delle diagonali deve rispettare le seguenti condizioni:

 $1,3 \le \overline{\lambda} \le 2$ in telai con controventi ad X;

 $\overline{\lambda} \le 2$ in telai con controventi a V.

Verifiche di Resistenza (RES)

Travi e colonne considerate soggette prevalentemente a sforzi assiali in condizioni di sviluppo del meccanismo dissipativo previsto per tale tipo di struttura devono rispettare la condizione

$$N_{Ed}/N_{b,Rdp}(M_{Ed}) \le 1$$
 [7.5.15]

essendo

 $N_{b,Rd}$ la capacità nei confronti dell'instabilità, calcolata come in § 4.2.4.1.3.1 tenendo conto dell'interazione con il momento flettente M_{Ed} ,

 N_{Ed} ed M_{Ed} i valori della domanda a sforzo normale e flessione dovuta alle combinazioni sismiche di progetto, valutate rispettivamente mediante le espressioni 7.5.7 e 7.5.8, ponendo Ω il minimo valore tra gli Ω_i = $N_{Pl,Rd,i}$ / $N_{Ed,i}$ dove $N_{pl,Rd,i}$ è la capacità a sforzo normale della i-esima diagonale e $N_{Ed,i}$ la domanda a sforzo normale per la combinazione sismica, calcolati per tutti gli elementi di controvento in cui si attende la formazione di zone dissipative.

Per garantire un comportamento dissipativo omogeneo delle diagonali all'interno della struttura, i valori massimo e minimo dei coefficienti $\Omega_i = N_{pl,Rd,i} / N_{Ed,\nu}$ dove $N_{pl,Rd,i}$ è la capacità a sforzo normale della i-esima diagonale e $N_{Ed,i}$ la domanda a sforzo normale per la combinazione sismica, calcolati per tutti gli elementi di controvento in cui si attende la formazione di zone dissipative, devono differire non più del 25%.

Nei telai con controventi a V le travi devono avere capacità sufficiente a rispondere alla domanda relativa alle azioni di natura non sismica senza considerare il contributo fornito dalle diagonali.

Le travi devono inoltre avere capacità sufficiente per rispondere alla domanda che si sviluppa a seguito della plasticizzazione delle diagonali tese e dell'instabilizzazione delle diagonali compresse in condizioni sismiche. Per determinare il valore di tale domanda si può considerare la presenza, nelle diagonali tese, di una sollecitazione pari alla capacità a sforzo normale $N_{pl,Rd}$ e, nelle diagonali compresse, di una sollecitazione pari a γ_{pb} · $N_{pl,Rd}$, essendo γ_{pb} = 0,30 il fattore che permette di stimare la capacità residua dopo l'instabilizzazione della diagonale.

I collegamenti delle diagonali alle altre parti strutturali devono garantire il rispetto dei requisiti di cui al § 7.5.3.1.

Verifiche di Duttilità (DUT)

Qualora non si eseguano le specifiche verifiche di duttilità di cui al § 7.5.3.2, le membrature di controvento devono appartenere alla prima o alla seconda classe di cui al § 4.2.3.1 secondo la Tab. 7.5.I. Qualora esse siano costituite da sezioni circolari cave, il rapporto tra il diametro esterno d e lo spessore t deve soddisfare la limitazione $d/t \le 36$. Nel caso in cui le aste di controvento siano costituite da profili tubolari a sezione rettangolare, i rapporti larghezza/spessore delle parti che costituiscono la sezione non devono eccedere 18, a meno che le pareti del tubo non siano irrigidite.

7.5.6 REGOLE DI PROGETTO SPECIFICHE PER STRUTTURE CON CONTROVENTI ECCENTRICI

I controventi eccentrici dividono le travi dei telai in due o più parti. Ad una di queste parti, chiamata «elemento di connessione», è affidato il compito di dissipare l'energia sismica attraverso deformazioni plastiche cicliche taglianti e/o flessionali. Gli elementi di connessione possono essere componenti orizzontali o verticali.

Gli elementi di connessione vengono denominati "corti" quando la plasticizzazione avviene per taglio, "lunghi" quando la plasticizzazione avviene per flessione e "intermedi" quando la plasticizzazione è un effetto combinato di taglio e flessione. In relazione alla lunghezza "e" dell'elemento di connessione, si adotta la classificazione seguente:

"corti":
$$e \le 0.8(1+\alpha)\frac{M_{1,Rd}}{V_{1,Rd}}$$
 [7.5.16a]

"intermedi":
$$0.8(1+\alpha)\frac{M_{1,Rd}}{V_{1,Rd}} < e < 1.5(1+\alpha)\frac{M_{1,Rd}}{V_{1,Rd}}$$
 [7.5.16b]

"lunghi":
$$e \ge 1,5(1+\alpha)\frac{M_{1,Rd}}{V_{1,Rd}}$$
 [7.5.16c]

dove $M_{l,Rd}$ sono, rispettivamente, la capacità a flessione e la capacità a taglio dell'elemento di connessione, α è il rapporto tra il valore minore ed il maggiore della domanda a flessione attesa alle due estremità dell'elemento di connessione.

Verifiche di Resistenza (RES)

Per le sezioni ad I la capacità a flessione, $M_{l,Rdr}$ e la capacità a taglio, $V_{l,Rdr}$ dell'elemento di connessione sono definiti, in assenza di domanda a sforzo normale, rispettivamente dalle formule:

$$M_{l,Rd} = f_v \cdot b \cdot t_f \cdot (h - t_f)$$
 [7.5.17]

$$V_{l,Rd} = \frac{f_y}{\sqrt{3}} \cdot t_w \cdot (h - t_f)$$
 [7.5.18]

essendo b e t_f la larghezza e lo spessore della flangia, h l'altezza della sezione e t_w lo spessore dell'anima del profilo costituente la sezione

Quando sia soddisfatta la relazione $N_{Ed}/N_{pl,Rd} < 0.15$ occorre che ad entrambe le estremità del collegamento la capacità a taglio ed a flessione siano maggiori della corrispondente domanda:

$$V_{Ed} \le V_{LRd} \tag{7.5.19}$$

$$M_{Ed} \le M_{1Rd} \tag{7.5.20}$$

essendo N_{Ed} , V_{Ed} , e M_{Ed} i valori della domanda a sforzo normale, taglio e flessione agenti in corrispondenza delle estremità dell'elemento di connessione e $N_{pl,Rd}$ la capacità a sforzo normale della sezione costituente l'elemento di connessione.

Quando il valore di progetto della domanda a sforzo normale N_{Ed} agente sull'elemento di connessione supera il 15% della corrispondente capacità della sezione costituente l'elemento $N_{pl,Rd}$, tale domanda va tenuta opportunamente in conto riducendo la capacità a taglio, $V_{l,Rd}$, e a flessione, $M_{l,Rd}$, dell'elemento di connessione stesso, adottando le seguenti espressioni

$$V_{l,Rd,r} = V_{l,Rd} \left[1 - \left(N_{Ed} / N_{pl,Rd} \right)^2 \right]^{0.5}$$
 [7.5.21

$$\mathbf{M}_{l,Rd,r} = \mathbf{M}_{l,Rd} \left[1 - \left(N_{Ed} / N_{pl,Rd} \right) \right]$$
 [7.5.22]

Se $N_{Ed}/N_{pl,Rd} \ge 0.15$ occorre anche che sia:

$$e \le 1, 6 \cdot M_{LRd} / V_{LRd}$$
 se R < 0,3 [7.5.23]

$$e \le (1,15-0,5\cdot R)1,6\cdot M_{1Rd}/V_{1Rd}$$
 se $R \ge 0.3$ [7.5.24]

dove R = NEd tw (d -2tr) / (VEd A), in cui A è l'area lorda del collegamento.

Le membrature non contenenti elementi di connessione, come le colonne e gli elementi diagonali, se sono utilizzati elementi di connessione orizzontali, e le travi, se sono utilizzati elementi di connessione verticali, devono possedere una capacità tale da soddisfare la combinazione più sfavorevole della domanda a sforzo normale e della domanda a flessione:

$$N_{\text{Ed}}\left(M_{\text{Ed}}, V_{\text{Ed}}\right) \le N_{\text{Ed}G} + 1, 1 \cdot \gamma_{\text{ov}} \cdot \Omega \cdot N_{\text{Ed}E}$$
 [7.5.25]

dove:

NRd (MEd,VEd) è la capacità a sforzo normale di progetto della colonna o dell'elemento diagonale valutata tenendo conto dell'interazione con la domanda a flessione ed a taglio, MEd e VEd nella combinazione sismica;

N_{Ed,G} è la domanda a sforzo normale nella colonna o nell'elemento diagonale, dovuta ad azioni di tipo non-sismico incluse nella combinazione sismica di progetto;

Ned, E è la domanda a sforzo normale nella colonna o nell'elemento diagonale per l'azione sismica di progetto;

 γ_{ov} è il coefficiente di sovraresistenza del materiale di cui al § 7.5.1;

 Ω è pari al valore minimo dei coefficienti Ω_i = 1,5 $V_{l,Rd,i}$ / $V_{Ed,i}$ per elementi di connessione corti in cui si localizzano le zone dissipative e Ω_i = 1,5 $M_{l,Rd,i}$ / $M_{Ed,i}$ per tutti gli elementi di connessione lunghi e intermedi in cui si localizzano le zone dissipative, dove $V_{Ed,i}$ e $M_{Ed,i}$ sono i valori della domanda a taglio e flessione dell'i-esimo elemento di connessione per la combinazione sismica di progetto, $V_{l,Rd,i}$ e $M_{l,Rd,i}$ sono le capacità a taglio e flessione dell'i-esimo elemento di connessione.

I collegamenti degli elementi di connessione devo avere una capacità sufficiente a soddisfare una domanda pari a:

$$\mathbf{E}_{\mathbf{d}} = \mathbf{E}_{\mathbf{d},\mathbf{G}} + 1, 1 \cdot \gamma_{\mathbf{o}\mathbf{v}} \cdot \Omega_{\mathbf{i}} \cdot \mathbf{E}_{\mathbf{d},\mathbf{E}}$$
 [7.5.26]

dove:

E_{d,G} è la domanda agente sul collegamento per le azioni di tipo non-sismico incluse nella combinazione sismica di progetto; E_{d,E} è la domanda agente sul collegamento per l'azione sismica di progetto;

γον è il coefficiente di sovraresistenza;

 Ω_i è il coefficiente relativo all'elemento di connessione considerato e calcolato come indicato nel presente paragrafo.

Per garantire un comportamento dissipativo omogeneo degli elementi di collegamento all'interno della struttura, i coefficienti Ω_i calcolati per tutti gli elementi di connessione come indicato in precedenza nel presente paragrafo, devono differire tra il massimo ed il minimo di non più del 25%.

Verifiche di Duttilità (DUT)

Qualora non si effettuino specifiche verifiche di duttilità di cui al § 7.5.3.2:

- gli elementi di collegamento lunghi e intermedi devono appartenere alla prima o alla seconda classe di cui al § 4.2.3.1 secondo la Tab. 7.5.1;
- negli elementi di collegamento intermedi e corti devono essere evitati i fenomeni di instabilità locale fino al raggiungimento della completa plasticizzazione della sezione;
- devono essere soddisfatte le prescrizioni sui dettagli costruttivi di cui al presente paragrafo;
- la domanda di rotazione rigida θ_p tra l'elemento di connessione e l'elemento contiguo non deve eccedere i seguenti valori:

elementi corti: $\theta_p \le 0.08 \text{ rad}$ [7.5.26a] elementi lunghi: $\theta_p \le 0.02 \text{ rad}$ [7.5.26a]

Per gli elementi di connessione «intermedi» si interpola linearmente tra i valori precedenti.

Dettagli costruttivi

Il comportamento degli elementi di connessione lunghi è dominato dalla plasticizzazione per flessione. Le modalità di collasso tipiche di tali elementi di connessione sono rappresentate dalla instabilità locale della piattabanda compressa e dalla instabilità flesso-torsionale. Al fine di evitare tali fenomeni, occorre disporre irrigidimenti ad una distanza massima pari a 1.5 b, essendo b la larghezza della flangia del profilo costituente l'elemento di connessione, dall'estremità dell'elemento di connessione stesso.

In tutti i casi, gli irrigidimenti d'anima devono essere disposti da ambo i lati in corrispondenza delle estremità delle diagonali. Nel caso di elementi di connessione corti e travi di modesta altezza (minore di 600 mm) è sufficiente che gli irrigidimenti siano disposti da un solo lato dell'anima, impegnando almeno i 3/4 della altezza dell'anima stessa. Tali irrigidimenti devono avere spessore non inferiore a $t_{\rm w}$, e comunque non inferiore a 10 mm, e larghezza pari a (b/2)- $t_{\rm w}$, essendo $t_{\rm w}$ lo spessore dell'anima del profilo costituente l'elemento di connessione.

Nel caso degli elementi di connessione lunghi e degli elementi di connessione intermedi, gli irrigidimenti hanno lo scopo di ritardare l'instabilità locale e, pertanto, devono impegnare l'intera altezza dell'anima.

Le saldature che collegano il generico elemento di irrigidimento all'anima devono possedere una capacità tale da soddisfare una domanda pari a A_{st} f_{y'} essendo A_{st} l'area dell'elemento di irrigidimento; le saldature che lo collegano alle piattabande devono possedere una capacità superiore a A_{st} f_y/4.

7.6. COSTRUZIONI COMPOSTE DI ACCIAIO-CALCESTRUZZO

Gli edifici con struttura sismo-resistente composta acciaio-calcestruzzo devono essere progettati assumendo uno dei seguenti comportamenti strutturali:

- a) comportamento strutturale non dissipativo.
- comportamento strutturale dissipativo, con zone dissipative localizzate in componenti e membrature composte acciaiocalcestruzzo;
- c) comportamento strutturale dissipativo, con zone dissipative localizzate in componenti e membrature in acciaio;

Nel caso di comportamento strutturale non dissipativo, la capacità delle membrature e dei collegamenti deve essere valutata in accordo con le regole di cui al § 4.3. delle presenti norme, senza nessun requisito aggiuntivo.

Nel caso di comportamento strutturale dissipativo, la capacità delle membrature e dei collegamenti deve essere valutata in accordo con le regole di cui al § 4.3. delle presenti norme, integrate dalle regole di progettazione e di dettaglio fornite dal § 7.6.4 al §7.6.8. Le strutture devono essere progettate in maniera tale che le zone dissipative si sviluppino ove la plasticizzazione o l'instabilità locale o altri fenomeni di degrado dovuti al comportamento isteretico non influenzino la stabilità globale della struttura.

L'assunzione del comportamento strutturale tipo c) è subordinata all'adozione di misure specifiche atte a prevenire l'eventualità che componenti in calcestruzzo contribuiscano alla capacità delle zone dissipative.

Pertanto durante l'evento sismico le zone dissipative devono essere localizzate esclusivamente nei componenti in acciaio strutturale; deve essere quindi garantita l'integrità dei componenti di calcestruzzo soggetti a compressione.

Gli elementi non dissipativi delle strutture dissipative ed i collegamenti tra le parti dissipative ed il resto della struttura devono possedere una capacità sufficiente a consentire lo sviluppo della plasticizzazione ciclica delle parti dissipative.

7.6.1. CARATTERISTICHE DEI MATERIALI

7.6.1.1 CALCESTRUZZO

Non è ammesso l'impiego di calcestruzzo di classe inferiore a C20/25 o LC20/22.

Nella progettazione, nel campo di applicazione delle presenti norme, non è consentito l'impiego di calcestruzzi di classe superiore alla C40/50 o LC40/44.

7.6.1.2 ACCIAIO PER C.A.

L'acciaio per c.a. deve essere del tipo B450C, di cui al § 11.3.2.1 delle presenti norme; l'uso dell'acciaio B450A è consentito nei casi previsti nel § 7.4.2.2.

7.6.1.3 ACCIAIO STRUTTURALE

L'acciaio strutturale deve corrispondere alle qualità di cui al § 7.5 e al § 11.3.4. delle presenti norme.

7.6.2. TIPOLOGIE STRUTTURALI E FATTORI DI COMPORTAMENTO

7.6.2.1 TIPOLOGIE STRUTTURALI

Le costruzioni composte acciaio-calcestruzzo possono essere realizzate con riferimento alle tipologie strutturali seguenti, il cui funzionamento è descritto nel § 7.5.2:

- a) strutture intelaiate;
- b) strutture con controventi concentrici realizzati in acciaio strutturale;
- c) strutture con controventi eccentrici nelle quali gli elementi di connessione, dove si localizzano le zone dissipative, devono essere realizzati in acciaio strutturale;
- d) strutture a mensola o a pendolo inverso;
- e) strutture intelaiate controventate.

Per strutture con pareti o nuclei in c.a., nelle quali la resistenza all'azione sismica è affidata agli elementi strutturali di calcestruzzo armato, si rimanda al § 7.4. Le pareti possono essere accoppiate mediante travi in acciaio o composte acciaio-calcestruzzo.

7.6.2.2 FATTORI DI COMPORTAMENTO

Si applicano le prescrizioni di cui al \S 7.5.2 e, per quanto riguarda il valore massimo del valore di base q_0 del fattore di comportamento, si applica la tabella 7.3.II, a condizione che siano rispettate le prescrizioni e le regole esposte nel presente capitolo.

7.6.3. RIGIDEZZA DELLA SEZIONE TRASVERSALE COMPOSTA

La rigidezza elastica delle sezioni in cui il calcestruzzo è in compressione deve essere valutata utilizzando un coefficiente di omogeneizzazione $n = E_a/E_{cm} = 7$, essendo E_{cm} il modulo di elasticità secante del calcestruzzo. Inoltre il calcolo del momento d'inerzia non fessurato, I_1 , delle travi composte con calcestruzzo in compressione deve essere valutato includendo nel calcolo la porzione della soletta di calcestruzzo compresa nella larghezza efficace, determinata come al § 7.6.5.1.

Nei casi in cui il calcestruzzo è in trazione, la rigidezza della sezione composta dipende dal momento d'inerzia della sezione fessurata I_{2r} calcolato assumendo il calcestruzzo non reagente e come attive le sole componenti metalliche della sezione, profilo strutturale ed armatura, collocate nella larghezza efficace.

7.6.4. CRITERI DI PROGETTO E DETTAGLI PER STRUTTURE DISSIPATIVE

7.6.4.1 CRITERI DI PROGETTO PER STRUTTURE DISSIPATIVE

Le regole di progetto seguenti si applicano agli elementi composti acciaio-calcestruzzo delle strutture sismo-resistenti progettati per avere un comportamento strutturale dissipativo. Tali elementi devono avere un'adeguata capacità in termini di resistenza e duttilità. La duttilità è ottenuta rispettando i criteri di progetto e i dettagli costruttivi.

Nel caso di comportamento tipo b) di cui al § 7.6, la capacità deve essere valutata per gli elementi in acciaio secondo quanto indicato nel § 7.5.

Nelle disposizioni di cui al presente capitolo, le zone dissipative sono localizzate nelle membrature, pertanto i collegamenti e tutte le componenti non dissipative della struttura devono essere dotati di adeguata capacità.

7.6.4.2 VERIFICHE DI RESISTENZA (RES)

La progettazione sismica delle strutture composte acciaio-calcestruzzo è basata sulla valutazione del limite inferiore ($E_{pl,Rd}$) e del limite superiore ($E_{U.Rd}$) della capacità.

Il limite inferiore della capacità delle zone dissipative, $E_{pl,Rd\nu}$ deve essere confrontato con la domanda ottenuta dalla combinazione sismica delle azioni $E_{Sd\nu}$ per cui deve risultare $E_{Sd} < E_{pl,Rd}$.

Il limite superiore della capacità delle zone dissipative ($E_{U,Rd}$) deve essere utilizzato nella verifica della capacità delle altre componenti strutturali coinvolte nello sviluppo dei meccanismi di collasso prescelti. Tale valore deve essere assunto analogamente a quanto previsto nelle strutture in acciaio pari a $E_{U,Rd}$ = 1,1 γ_{ov} $E_{pl,Rd}$, con γ_{ov} definito nel § 7.5.1.

In particolare per il progetto dei collegamenti adiacenti le zone dissipative deve risultare:

$$R_{i,d} \ge R_{U,Rd} \tag{7.6.1}$$

dove:

 $R_{j,d}$ è la capacità del collegamento;

 $R_{U,Rd}$ è il limite superiore della capacità della membratura collegata, valutata come indicato nel presente paragrafo.

Nei nodi trave-colonna adiacenti le zone dissipative di telai con colonne costituite da profili rivestiti completamente o parzialmente di calcestruzzo, la capacità a taglio del pannello d'anima della colonna può essere calcolata come la somma dei contributi del calcestruzzo e del pannello in acciaio. In particolare, se l'altezza della sezione della trave non differisce da quella del pilastro di più del 40%, la capacità a taglio si ottiene sommando i due contributi forniti, rispettivamente, dall'acciaio e dal calcestruzzo:

$$V_{wp,Rd} = 0.8(V_{wp,s,Rd} + V_{wp,c,Rd})$$
 [7.6.2]

dove $V_{wp,s,Rd}$ è la capacità del pannello d'anima in acciaio calcolato secondo i metodi indicati nel § 4.2, $V_{wp,c,Rd}$ è la capacità a taglio fornito dal calcestruzzo che deve essere determinato utilizzando appropriati modelli tirante-puntone tipici delle strutture in calcestruzzo. La domanda a taglio, $V_{wp,Sd}$, con cui confrontare la capacità $V_{wp,Rd}$, è calcolata considerando il raggiungimento della capacità a flessione nelle sezioni delle travi convergenti nel nodo trave-colonna secondo lo schema e le modalità previste in fase di progetto.

7.6.4.3 VERIFICHE DI DUTTILITA' (DUT)

In ogni zona o elemento dissipativo si deve garantire una capacità in duttilità superiore alla corrispondente domanda in duttilità. La verifica deve essere effettuata adottando le misure di deformazione adeguate ai meccanismi duttili previsti per le diverse tipologie strutturali.

Per le tipologie indicate in § 7.5.2.1, si possono utilizzare le seguenti misure di deformazione locale q:

- elementi inflessi o presso inflessi di strutture intelaiate: rotazione alla corda;
- elementi prevalentemente tesi e compressi di strutture controventate: allungamento complessivo del diagonale;
- elementi sottoposti a taglio e flessione di strutture con controventi eccentrici (elementi di collegamento): rotazione rigida tra l'elemento di connessione e l'elemento contiguo.

La duttilità locale è definita come segue: μ = $q_{\rm u}$ /q $_{\!y}$.

La domanda di prestazione in duttilità locale è definita dal rapporto tra il valore di deformazione q_u misurato mediante analisi non lineare e il valore di deformazione q_y al limite elastico. Nel caso di analisi strutturale lineare con fattore di comportamento, la domanda di deformazione può essere dedotta dal campo di spostamenti ultimi ottenuti come in § 7.3.3.3.

La capacità in duttilità locale è data dal rapporto tra la misura di deformazione al collasso qua valutato in corrispondenza della riduzione del 15% della massima resistenza dell'elemento, e la deformazione qya corrispondente al raggiungimento della prima plasticizzazione, La capacità in duttilità, quando non sia determinata mediante sperimentazione diretta, deve essere valutata utilizzando metodi di calcolo che descrivano in modo adeguato il comportamento in campo non-lineare, inclusi i fenomeni di instabilità dell'equilibrio, e tengano conto dei fenomeni di degrado connessi al comportamento ciclico.

La verifica di duttilità si ritiene comunque soddisfatta qualora siano rispettate, le prescrizioni ed i dettagli costruttivi per le zone dissipative riportati nel seguito nel presente paragrafo, le prescrizioni ed i dettagli costruttivi riportati nei paragrafi successivi per ciascuna tipologia ed elemento strutturale e sia soddisfatta, per le sezioni delle colonne primarie delle strutture a telaio in cui si prevede la formazione di zone dissipative, la relazione:

$$N_{Ed} / N_{pl,Rd} \le 0.3$$
 [7.6.3]

dove N_{Ed} è il valore della domanda a sforzo normale e $N_{pl,Rd}$ è il valore della capacità a sforzo normale determinata secondo criteri di cui al 8.4.2.4.1.2

Nelle zone dissipative, il rapporto tra la larghezza e lo spessore dei pannelli d'anima e delle ali deve rispettare i seguenti limiti:

- per le zone dissipative in solo acciaio (non rivestite in calcestruzzo) valgono le indicazioni di cui al precedente § 7.5.6;
- per le zone dissipative rivestite in calcestruzzo i valori dei rapporti larghezza-spessore per le facce dei profilati metallici impiegati devono rispettare le limitazioni di cui alla Tab. 7.6.I.

Tab. 7.6.I -Valori limite della snellezza per i profilati metallici

Valore di base \mathbf{q}_0 del fattore di comportamento	$1.5 \div 2 \le q_0 \le 4$	$q_0 > 4$
Sezione ad H o I parzialmente o totalmente rivestita in calcestruzzo: limiti per le sporgenze delle ali $c/t_{\rm f}$	14 ε	9 ε
Sezione rettangolare cava riempita di calcestruzzo: h/t limite	38 ε	24 ε
Sezione circolare cava riempita di calcestruzzo: d/t limite	85 ε²	80 ε²

Essendo:

 $\varepsilon = (235/f_{vk})^{0.5}$

c/t_f: il rapporto tra la larghezza e lo spessore della parte in aggetto dell'ala definita nella Fig. 7.6.1

d/t ed h/t: i rapporti tra massima dimensione esterna e spessore.

7.6.4.4 Dettagli costruttivi

La plasticizzazione delle barre di armatura della soletta di calcestruzzo delle travi composte è ammessa solo quando esse soddisfano le prescrizioni di cui al § 7.6.5.2 circa la profondità dell'asse neutro adimensionalizzato a rottura (Tab. 7.6.II).

Nelle zone di intersezione tra trave e colonna apposite armature metalliche devono essere disposte nella soletta di calcestruzzo al fine di governare gli effetti locali di diffusione delle tensioni. Il dimensionamento di tali armature longitudinali deve essere effettuata con modelli che soddisfino l'equilibrio.

7.6.5 REGOLE SPECIFICHE PER LE MEMBRATURE

Nel progetto delle colonne composte si può tener conto della resistenza della sola sezione in acciaio o della sezione composta acciaio-calcestruzzo. La dimensione minima delle colonne completamente rivestite di calcestruzzo, base o altezza per le sezioni rettangolari o diametro minimo per le sezioni circolari, deve essere non inferiore a 250 mm.

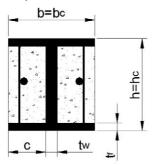


Fig. 7.6.1 - Rapporti dimensionali

Le colonne non devono essere progettate per dissipare energia, con l'esclusione delle zone al piede della struttura in specifiche tipologie strutturali. Per compensare le incertezze connesse all'effettiva risposta dell'organismo strutturale alle azioni sismiche, è necessario predisporre armatura trasversale per il confinamento delle zone in cui potrebbero localizzarsi imprevisti fenomeni di plasticizzazione.

Quando è necessario sfruttare interamente la capacità di una colonna composta per soddisfare la progettazione in capacità o le verifiche di resistenza, si deve garantire la completa collaborazione tra la componente in acciaio e quella in calcestruzzo.

In tutti i casi in cui è insufficiente il trasferimento degli sforzi tangenziali per aderenza ed attrito, è richiesto l'uso di connettori a taglio per il trasferimento mediante interazione meccanica e il ripristino dell'azione composta, calcolati secondo quanto indicato in § 4.3.

7.6.5.1 TRAVI CON SOLETTA COLLABORANTE

Verifiche di resistenza (RES)

Nelle travi con soletta collaborante il grado di connessione $N/N_{\rm f}$, definito al § 4.3.4.3., deve risultare non inferiore a 0,8 e la complessiva capacità a taglio dei connettori nella zona in cui il calcestruzzo della soletta è teso non deve essere inferiore alla capacità delle armature longitudinali.

La capacità dei connettori a piolo si ottiene, a partire da quella indicata al § 4.3.4.3.1, applicando un fattore di riduzione pari a 0,75.

La determinazione delle caratteristiche geometriche della sezione composta va effettuata considerando un'appropriata larghezza collaborante della soletta e delle relative armature longitudinali.

La larghezza collaborante b_{eff} si determina con le modalità indicate nel § 4.3.2.3 e si ottiene come somma delle due aliquote b_{e1} e b_{e2} ai due lati dell'asse della trave e della larghezza b_{C} impegnata direttamente dai connettori.

$$b_{eff} = b_{e1} + b_{e2} + b_{c}$$
 [7.6.4]

Ciascuna aliquota b_{el} , b_{e2} deve essere calcolata sulla base delle indicazioni contenute nelle Tabelle 7.6.II e 7.6.IV e non deve superare, rispettivamente, la metà dell'interasse tra le travi o l'intera distanza del bordo libero della soletta dall'asse della trave adiacente.

Nelle Tab. 7.6.III e 7.6.IV, con riferimento alla diversa collocazione delle membrature nell'ambito del telaio, sono rispettivamente riportati i valori della larghezza efficace parziale b_{ei} da utilizzare nella analisi elastica della struttura (momento d'inerzia/rigidezza flessionale) e per il calcolo dei momenti plastici.

I termini utilizzati sono definiti nella Fig. 7.6.2. Nella Tab. 7.6.IV con b_{magg} è individuata la larghezza di eventuali piastre addizionali saldate alle piattabande delle colonne con lo scopo di aumentare la capacità portante del calcestruzzo in prossimità dell'area nodale; qualora queste non siano installate, tale parametro coincide con la larghezza b_C della colonna.

Verifiche di duttilità (DUT)

Qualora non si effettuino specifiche verifiche di duttilità di cui al § 7.5.3.2, nelle zone dissipative soggette a momento positivo deve essere verificato il rapporto x/d dato da:

$$x/d < \varepsilon_{cu} / (\varepsilon_{cu} + \varepsilon_a)$$
 [7.6.

nella quale:

- x è la profondità dell'asse neutro a rottura;
- d è l'altezza totale della sezione composta;
- $\epsilon_{
 m cu}$ è la deformazione a rottura del calcestruzzo, valutata tenendo conto degli effetti di degrado ciclico del materiale;
- $\epsilon_a~$ è la deformazione totale al lembo teso del profilo metallico.

Il suddetto requisito di duttilità può ritenersi soddisfatto quando il rapporto x/d soddisfa i limiti riportati in Tab. 7.6.II.

Tab. 7.6.II - Valori limite del rapporto x/d per le travi composte, al variare del fattore q_0

6 (N/mm²)	$1,5 < q_0 \le 4$	$q_0 > 4$
f _y (N/mm²)	(x/d) _{limite}	(x/d) _{limite}
235	0,36	0,27
275	0,32	0,24
355	0,27	0,20

7.6.5.2 MEMBRATURE COMPOSTE PARZIALMENTE RIVESTITE DI CALCESTRUZZO

Criteri di dettaglio

L'adozione dei dettagli d'armatura trasversale riportati in Fig. 7.6.1 può ritardare l'innesco dei fenomeni di instabilità locale nelle zone dissipative. In particolare i limiti riportati in Tab. 7.6.1 per le piattabande possono essere incrementati se tali barre sono caratterizzate da un interasse longitudinale, s_{ν} minore della lunghezza netta, c, della piattabanda, $s_{\nu}/c < 1,0$:

- per s_1/c ≤ 0,5, i limiti di Tab. 7.6.I possono essere moltiplicati per un coefficiente 1,50;
- per 0,5 < s $_{\rm l}$ /c <1,0 si può interpolare linearmente tra i coefficienti 1,50 e 1,00.

Deve essere inoltre garantito uno spessore del copriferro netto di almeno 20 mm e non superiore a 40 mm.

I valori minimi dell'interasse delle staffe sono devono essere ricavati dalle limitazioni di cui al \S 7.6.5.3

Tab. 7.6.III - Definizione della larghezza efficace parziale per il calcolo della rigidezza flessionale

	Membratura trasversale	Larghezza efficace parziale b _{ei}		
Nodo/Colonna interni	Presente o non presente	Per M ⁻ : 0,05 L		
Nodo/Colonna esterni	Presente	Per M ⁺ : 0,0375 L		
Nodo/Colonna esterni	Non presente/Armatura non ancorata	Per M ⁺ : 0 Per M ⁺ : 0,025 L		

Tab. 7.6.IV -Definizione della larghezza efficace parziale per il calcolo del momento plastico

Segno del momento flettente	Posizione	Membratura trasversale	Larghezza efficace parziale b _{ei}
Negativo, M	Colonna interna	Armatura sismica incrociata	0,10 L
Negativo, M	Colonna esterna	Armature ancorate alle travi di facciata o al cordolo di estremità	0,10 L
Negativo, M	Colonna esterna	Armature non ancorate alle travi di facciata o al cordolo di estremità	0
Positivo, M ⁺	Colonna interna	Armatura sismica incrociata	0,075 L
Positivo, M ⁺	Colonna esterna	Trave in acciaio trasversale dotata di connettori; Soletta disposta in modo da raggiungere o superare il filo esterno della colonna disposta in asse forte	0,075 L
Positivo, M ⁺	Colonna esterna	Trave trasversale assente o priva di connettori; Soletta disposta in modo da raggiungere o superare il filo esterno della colonna disposta in asse forte	b _{magg} /2+0,7 h _C /2
Positivo, M ⁺	Colonna esterna	Disposizioni differenti	b _{magg} /2 ≤ 0,05 L

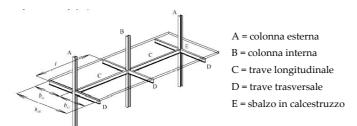


Fig. 7.6.2 - Definizione degli elementi in una struttura intelaiata

7.6.5.3 COLONNE COMPOSTE COMPLETAMENTE RIVESTITE DI CALCESTRUZZO

Criteri di dettaglio

La dimensione minima, base o altezza per le sezioni rettangolari o diametro per le sezioni circolari, delle colonne completamente rivestite di calcestruzzo deve essere non inferiore a 250 mm.

Nelle strutture intelaiate le zone dissipative delle colonne si localizzano in corrispondenza di entrambe le estremità dei tratti di lunghezza libera delle colonne stesse, e nei sistemi di controventi eccentrici nelle porzioni di colonna adiacenti agli elementi di connessione. Per la determinazione della loro lunghezza si rimanda al § 7.4.6.1.2.

Quando l'armatura trasversale nelle zone dissipative sia disposta secondo un interasse s minore della larghezza c della piattabanda del profilo, possono essere seguite le indicazioni fornite in § 7.6.5.2 che modificano i valori limite della snellezza delle piattabande dei profilati metallici.

Nelle zone dissipative deve essere disposta un'armatura trasversale, in grado di produrre un efficace effetto di confinamento sul calcestruzzo, con un interasse che non deve eccedere il minimo dei seguenti valori: metà della dimensione minima del nucleo di calcestruzzo contenuto nelle staffe, 175 mm oppure 8 volte il diametro minimo dell'armatura longitudinale disposta lungo la colonna. Tale interasse nei pilastri del livello più basso è da assumere pari al minimo dei seguenti valori: metà della dimensione minima del nucleo di calcestruzzo contenuto nelle staffe, 150 mm oppure 6 volte il diametro minimo dell'armatura longitudinale disposta lungo la colonna.

Il diametro minimo delle armature trasversali non deve essere inferiore a 6 mm e comunque pari al maggiore dei seguenti valori: 6 mm e 0.35 volte il diametro massimo delle armature longitudinali moltiplicato per $(f_{ydi}/f_{ydw})^{0.5}$, essendo f_{ydi} e f_{ydw} le tensioni di progetto della piattabanda e dell'armatura.

7.6.5.4 COLONNE COMPOSTE RIEMPITE DI CALCESTRUZZO

Verifiche di resistenza (RES)

La capacità a taglio nelle zone dissipative può essere valutata facendo riferimento alla sola sezione di acciaio o sulla base di quella in calcestruzzo armato. In quest'ultimo caso, il rivestimento in acciaio può essere utilizzato come armatura a taglio.

7.6.6. REGOLE SPECIFICHE PER STRUTTURE INTELAIATE

7.6.6.1 ANALISI STRUTTURALE

Nelle travi composte è possibile assumere un momento d'inerzia equivalente costante lungo l'intera trave, I_{eq} , dato dalla relazione:

$$I_{eq} = 0, 6 \cdot I_1 + 0, 4 \cdot I_2$$
 [7.6.6]

La rigidezza flessionale delle colonne composte può essere assunta pari a:

$$(E \cdot I)_{c} = 0,9 \cdot (E \cdot I_{a} + r \cdot E_{cm} \cdot I_{c} + E \cdot I_{s})$$
 [7.6.7]

nella quale E e E_{cm} sono i moduli di elasticità dell'acciaio e del calcestruzzo; $I_{a'}$ I_{c} e I_{s} sono i momenti di inerzia della sezione in acciaio, del calcestruzzo e delle armature, rispettivamente. Il coefficiente di riduzione r dipende dal tipo di sezione trasversale; in assenza di più accurate determinazioni, può essere assunto pari a 0.5.

7.6.6.2 TRAVI E COLONNE

I tralicci composti non possono essere usati come elementi dissipativi.

Verifiche di resistenza (RES)

Per le travi si applicano le prescrizioni di cui al § 7.5.4.1 mentre per le colonne si applicano le regole di cui al § 7.5.4.2.

La capacità delle travi deve essere verificata nei confronti della domanda per instabilità flessionale e flesso-torsionale in accordo con il § 4.3.4 assumendo il raggiungimento della capacità per flessione, con soletta di calcestruzzo tesa, ad una estremità dell'elemento.

Per assicurare lo sviluppo del meccanismo globale dissipativo, deve inoltre essere rispettata la seguente diseguaglianza per ogni nodo trave-colonna del telaio:

$$\sum M_{C,pl,Rd} \ge \gamma_{Rd} \cdot \sum M_{b,pl,Rd}$$
 [7.6.8]

dove γ_{Rd} è dato in Tab. 7.2.I, $M_{C,pl,Rd}$ è la capacità a flessione della colonna calcolato per i livelli di domanda a sforzo normale valutata nelle combinazioni sismiche delle azioni e $M_{b,pl,Rd}$ è la capacità delle travi che convergono nel nodo trave-colonna.

7.6.6.3 COLLEGAMENTI TRAVE-COLONNA

I collegamenti trave-colonna devono essere progettati secondo le indicazioni contenute al § 7.5.4.3.

7.6.6.4 COLLEGAMENTI COLONNA-FONDAZIONE

I collegamenti colonna-fondazione devono essere progettati secondo le indicazioni contenute al punto § 7.5.4.5.

7.6.6.5 CONDIZIONE PER TRASCURARE IL CARATTERE COMPOSTO DELLE TRAVI CON SOLETTA

La capacità plastica di una sezione composta di una trave con soletta (limite superiore o inferiore della capacità plastica delle zone dissipative) può essere calcolata tenendo conto del solo contributo della sezione di acciaio (progettazione in conformità al principio b) di cui al § 7.6) se la soletta è non collegata al telaio di acciaio in corrispondenza della colonna cui la trave è collegata per una zona circolare di diametro 2 beti, essendo beti la maggiore delle larghezze efficaci delle travi collegate a quella colonna.

A tal fine, occorre che non vi sia contatto tra la soletta e qualsiasi lato verticale di qualsiasi elemento di acciaio (per esempio colonne, connettori a taglio, piastre di collegamento, flangia ondulata, lamiera di acciaio collegata con chiodi alla flangia della sezione di acciaio).

Si raccomanda che nelle travi parzialmente rivestite sia tenuto in conto il contributo del calcestruzzo tra le flange della sezione di acciaio

7.6.7. REGOLE SPECIFICHE PER STRUTTURE CON CONTROVENTI CONCENTRICI

I telai composti con controventi concentrici devono essere progettati secondo le regole di progetto e di dettaglio di cui al § 7.5.5.

7.6.8. REGOLE SPECIFICHE PER STRUTTURE CON CONTROVENTI ECCENTRICI

I telai composti con controventi eccentrici devono essere progettati in modo tale che la dissipazione di energia sia localizzata nell'elemento di collegamento.

A tal proposito devono essere seguite le regole di cui al § 7.5.6.

7.7. COSTRUZIONI DI LEGNO

Per le costruzioni di legno, si definiscono i seguenti termini:

- duttilità statica: si intende il rapporto tra lo spostamento ultimo e lo spostamento al limite del comportamento elastico, valutati con prove quasi-statiche in accordo alle pertinenti normative sui metodi di prova per le strutture di legno;
- nodi semi-rigidi: giunzioni con deformabilità significativa, tale da dovere essere presa in considerazione nelle analisi strutturali e da valutarsi secondo documenti di comprovata validità;
- nodi rigidi: giunzioni con deformabilità trascurabile ai fini del comportamento strutturale, da valutarsi secondo documenti di comprovata validità;
- unioni con mezzi di unione a gambo cilindrico: unioni realizzate con mezzi meccanici a gambo cilindrico (chiodi, viti, spinotti, bulloni ecc.), sollecitati perpendicolarmente al loro asse;
- nodi di carpenteria: collegamenti nei quali le azioni sono trasferite per mezzo di zone di contatto, e senza l'utilizzo di mezzi di unione meccanici; esempi di giunzioni di questo tipo sono: l'incastro a dente semplice, il giunto tenone-mortasa, il giunto a mezzo legno ed altri tipi frequentemente utilizzati nelle costruzioni tradizionali.

7.7.1. ASPETTI CONCETTUALI DELLA PROGETTAZIONE

Gli edifici sismoresistenti di legno devono essere progettati con una concezione strutturale in accordo a uno dei seguenti comportamenti, anche tenuto conto delle disposizioni di cui al § 7.7.7:

- a) comportamento strutturale dissipativo;
- b) comportamento strutturale non dissipativo.

Le strutture progettate secondo il comportamento strutturale dissipativo devono appartenere alla CD "A" o alla CD "B", nel rispetto dei requisiti di cui al § 7.7.3, in relazione a: tipologia strutturale, tipologia di connessione e duttilità della connessione.

Le zone dissipative devono essere localizzate, in accordo al meccanismo di collasso duttile globale prescelto, in alcuni dei collegamenti o in elementi specificatamente progettati; le membrature lignee devono essere considerate a comportamento elastico, salvo che non siano adottati per gli elementi strutturali provvedimenti tali da soddisfare i requisiti di duttilità di cui al § 7.7.3.

Ai fini dell'applicazione dei criteri della progettazione in capacità, per assicurare la plasticizzazione delle zone dissipative (i collegamenti prescelti e/o gli elementi specificatamente progettati), queste devono possedere una capacità almeno pari alla domanda mentre le componenti non dissipative (gli altri collegamenti e gli elementi strutturali) adiacenti, debbono possedere una capacità pari alla capacità della zona dissipativa amplificata del fattore di sovraresistenza γ_{Rd} , di cui alla Tab. 7.2.I; valori inferiori del fattore di sovraresistenza ed in ogni caso maggiori o uguali a 1,3 per CD "A" e a 1,1 per CD "B" devono essere giustificati sulla base di idonee evidenze teorico-sperimentali.

Le proprietà dissipative devono essere valutate sulla base di comprovata documentazione tecnico-scientifica, basata su sperimentazione dei singoli collegamenti o dell'intera struttura o di parte di essa, in accordo con normative di comprovata validità.

Nel caso di comportamento strutturale non dissipativo, la capacità delle membrature e dei collegamenti deve essere valutata in accordo con le regole di cui al §4.4 delle presenti norme, senza nessun requisito aggiuntivo

7.7.2. MATERIALI E PROPRIETÀ DELLE ZONE DISSIPATIVE

Si applica, per quanto riguarda il legno, quanto previsto al § 4.4; con riferimento alle altre parti strutturali, si applica quanto contenuto nel Capitolo 4 per gli altri materiali.

Qualora si faccia affidamento a comportamenti strutturali dissipativi (CD "A" o "B"), in mancanza di più precise valutazioni teoriche e sperimentali, si devono applicare le seguenti regole:

- a) nelle zone considerate dissipative possono essere utilizzati solamente materiali e mezzi di unione che garantiscono un adeguato comportamento di tipo oligociclico;
- b) le unioni incollate devono essere considerate, in generale, come non dissipative, a meno che non siano poste in serie con un elemento duttile applicando i criteri della progettazione in capacità;
- c) i nodi di carpenteria possono essere utilizzati solamente quando possono garantire una sufficiente dissipazione energetica, senza presentare rischi di rottura fragile per taglio o per trazione ortogonale alla fibratura, e con la presenza di dispositivi atti ad evitarne la sconnessione.

Quanto richiesto nel precedente capoverso a) può considerarsi soddisfatto se è rispettato quanto riportato nel successivo § 7.7.3.

Per l'utilizzo nelle pareti di taglio e nei diaframmi orizzontali, i pannelli strutturali di rivestimento devono rispettare le seguenti condizioni:

- a) i pannelli di particelle (UNI EN 312) devono avere uno spessore non inferiore a 13 mm e massa volumica caratteristica in accordo a UNI EN 12369-1);
- b) i pannelli di compensato (UNI EN 636) devono avere spessore non inferiore a 9 mm;
- c) i pannelli di OSB (UNI EN 300) devono avere spessore non inferiore ai 12 mm se disposti a coppia, non inferiore a 15 mm se disposti singolarmente.

I mezzi di unione meccanici devono soddisfare i seguenti requisiti:

- a) i connettori a gambo cilindrico devono essere conformi ai requisiti di cui al § 11.7.8 delle presenti norme;
- b) gli elementi di carpenteria metallica, realizzati in composizione anche saldata, devono rispettare le prescrizioni riportate nella presente normativa relativamente alle costruzioni di acciaio.

7.7.3. TIPOLOGIE STRUTTURALI E FATTORI DI COMPORTAMENTO

In funzione del loro comportamento duttile e della capacità di dissipazione di energia sotto carichi ciclici, con riferimento a quanto definito nel § 7.2.2, le costruzioni di legno possono avere comportamento strutturale non dissipativo o comportamento strutturale dissipativo (CD "A" o CD "B").

Nel caso di strutture con comportamento dissipativo, è obbligo del Progettista giustificare la scelta dei valori assunti nei calcoli per il fattore q_0 , sulla base della capacità dissipativa del sistema strutturale nonché dei criteri di dimensionamento dei collegamenti, che devono essere in grado di garantire una adeguata capacità, prevenendo rotture fragili mediante una puntuale applicazione dei principi della progettazione in capacità.

Nella Tab. 7.3.II sono riportati, per ciascuna classe di duttilità, alcuni esempi di strutture con i valori massimi del fattore di comportamento q_0 . Nel caso in cui il controventamento della struttura sia affidato a materiali diversi (calcestruzzo armato, acciaio), si deve fare riferimento ai pertinenti paragrafi della presente norma.

7.7.3.1 Precisazioni

Le zone considerate dissipative devono essere in grado di deformarsi plasticamente per almeno tre cicli a inversione completa, con un rapporto di duttilità statica pari a 4, per le strutture in CD "B", e pari a 6, per le strutture in CD "A", senza che si verifichi una riduzione della loro resistenza maggiore del 20%.

Le disposizioni di cui al precedente capoverso possono considerarsi soddisfatte nelle zone dissipative di ogni tipologia strutturale se si rispettano le seguenti prescrizioni:

- *a*) i collegamenti legno-legno o legno-acciaio sono realizzati con perni o con chiodi presentanti diametro *d* non maggiore di 12 mm ed uno spessore delle membrature lignee collegate non minore di 10*d*;
- b) nelle pareti e nei diaframmi con telaio in legno, il diametro *d* dei chiodi non è superiore a 3,1 mm e il materiale di rivestimento strutturale è di legno o di materiale da esso derivato, con uno spessore minimo pari a 4*d*.

Qualora alcune o tutte le precedenti prescrizioni non siano rispettate, ma sia almeno assicurato lo spessore minimo degli elementi collegati pari, rispettivamente, a 8*d* per il caso a) e a 3*d* per il caso b), le zone dissipative saranno da considerare in classe di duttilità CD "B".

In alternativa alle prescrizioni di cui sopra, per le zone dissipative di classe CD "B", i collegamenti meccanici a gambo cilindrico possono essere progettati per garantire lo sviluppo di almeno una cerniera plastica nel gambo dei connettori metallici in accordo ai meccanismi di collasso riportati nelle normative e documenti tecnici di comprovata validità di cui al Capitolo 12. Particolare attenzione dovrà essere rivolta a impedire rotture fragili tipo fessure da spacco longitudinale, espulsione di tasselli di legno, rotture a taglio e a trazione del materiale base.

7.7.4. ANALISI STRUTTURALE

Nell'analisi della struttura si deve tener conto, di regola, della deformabilità dei collegamenti.

Si devono utilizzare i valori di modulo elastico per "azioni istantanee", ricavati a partire dai valori medi di modulo elastico degli elementi resistenti.

Nel modello strutturale gli impalcati devono essere, in generale, assunti con la loro deformabilità; essi possono essere assunti come rigidi, senza necessità di ulteriori verifiche, se:

- a) per gli impalcati sono rispettate le disposizioni costruttive date nel successivo § 7.7.5.3 o, in alternativa e se pertinente, nel § 7.7.7.2;
- b) eventuali aperture presenti non influenzano significativamente la rigidezza globale di lastra nel proprio piano.

Travi e solette su cui poggiano elementi in falso (pilastri o pareti) devono essere sempre dimensionate tenendo in considerazione l'influenza delle componenti verticali dell'azione sismica, in accordo con quanto riportato in § 7.2.2.

7.7.5. DISPOSIZIONI COSTRUTTIVE

7.7.5.1 GENERALITÀ

Le strutture a comportamento dissipativo devono essere progettate in modo che le zone dissipative siano localizzate principalmente in quei punti della struttura dove eventuali plasticizzazioni, instabilità locali o altri fenomeni dovuti al comportamento isteretico non compromettano la stabilità globale della struttura.

Le disposizioni costruttive date nei successivi § 7.7.5.2 e 7.7.5.3 si applicano alle zone di struttura progettate per sviluppare un comportamento dissipativo.

7.7.5.2 DISPOSIZIONI COSTRUTTIVE PER I COLLEGAMENTI

Le membrature compresse e i loro collegamenti (come per esempio i giunti di carpenteria), per cui possa essere prevedibile il collasso a causa dell'inversione di segno della sollecitazione, devono essere progettati in modo tale che non si verifichino separazioni, dislocazioni, disassamenti.

Perni e bulloni devono essere serrati e correttamente inseriti nei loro alloggiamenti (nel rispetto delle tolleranze previste).

7.7.5.3 DISPOSIZIONI COSTRUTTIVE PER GLI IMPALCATI

Per quanto riguarda gli impalcati, si applica in generale quanto previsto al § 4.4, con le variazioni seguenti:

- a) eventuali fattori di incremento della capacità portante dei mezzi di unione ai bordi dei rivestimenti strutturali non devono essere utilizzati; nel caso di bordi discontinui dei pannelli non si deve incrementare l'interasse dei chiodi lungo i bordi medesimi;
- b) la distribuzione delle forze di taglio negli impalcati deve essere valutata tenendo conto della disposizione effettiva, in pianta, degli elementi di controvento verticali;
- c) i vincoli nel piano orizzontale tra impalcato e pareti portanti verticali devono essere di tipo bilatero.

Tutti i bordi dei rivestimenti strutturali devono essere collegati agli elementi del telaio: i rivestimenti strutturali che non terminano su elementi del telaio devono essere sostenuti e collegati da appositi elementi di bloccaggio taglio-resistenti. Dispositivi con funzione analoga devono essere inoltre disposti nei diaframmi orizzontali posti al di sopra di elementi verticali di controvento (ad esempio le pareti).

La continuità delle travi deve essere assicurata, specialmente in corrispondenza delle zone di impalcato che risultano perturbate dalla presenza di aperture.

Quando gli impalcati sono considerati, ai fini dell'analisi strutturale, come rigidi nel loro piano, in corrispondenza delle zone nelle quali si attua il trasferimento delle forze orizzontali agli elementi verticali (per esempio le pareti di controvento) si deve assicurare il mantenimento della direzione di tessitura delle travi di impalcato.

7.7.6. VERIFICHE DI SICUREZZA

I valori di resistenza degli elementi di legno fanno riferimento a carichi di tipo "istantaneo", nelle condizioni di servizio assunte per la struttura.

Al fine di garantire lo sviluppo del comportamento ciclico dissipativo in corrispondenza delle zone assunte come dissipative, tutti gli altri elementi strutturali e/o connessioni devono essere progettati con adeguati valori di sovraresistenza, come indicato nel § 7.7.3. Tale requisito di sovraresistenza si applica, in particolare, a:

- a) collegamenti di elementi tesi o qualsiasi collegamento alle strutture di fondazione;
- b) collegamenti tra diaframmi orizzontali ed elementi verticali di controvento.

I giunti di carpenteria non presentano rischi di rottura fragile se la verifica per tensioni tangenziali, condotta in accordo con il §4.4, è soddisfatta utilizzando un ulteriore coefficiente parziale di sicurezza pari a 1,3.

Le verifiche di duttilità (DUT) si intendono soddisfatte quando siano rispettate le regole disposizioni costruttive di cui al \S 7.7.5 e le regole di dettaglio di cui al \S 7.7.7.


Per la verifica di strutture progettate in conformità al concetto di comportamento strutturale dissipativo (classe di duttilità CD "A" o CD "B"), può considerarsi valido quanto riportato nelle verifiche di resistenza (RES) del § 7.3.6.1. quando siano soddisfatti i requisiti di cui al § 7.7.3 per le zone dissipative (anche sulla base di apposite prove sperimentali) e la resistenza del materiale sia opportunamente ridotta del 20% per tener conto del degrado per deformazioni cicliche.

7.7.7. REGOLE DI DETTAGLIO

7.7.7.1 DISPOSIZIONI COSTRUTTIVE PER I COLLEGAMENTI

Le regole e disposizioni riportate nel presente paragrafo 7.7.7.1 e nel successivo 7.7.7.2 si applicano alle strutture progettate in CD "A" o CD "B", relativamente alle zone considerate e progettate come dissipative.

Perni e bulloni di diametro *d* superiore a 16 mm non devono essere utilizzati nei collegamenti legno-legno e legno-acciaio, tranne quando essi siano utilizzati come elementi di chiusura dei connettori e tali, quindi, da non influenzare la resistenza a taglio.

Il collegamento realizzato mediante spinotti o chiodi a gambo liscio non deve essere utilizzato senza accorgimenti aggiuntivi volti ad evitare l'apertura del giunto.

Nel caso di tensioni perpendicolari alla fibratura, si devono osservare disposizioni aggiuntive al fine di evitare l'innesco di fratture parallele alla fibratura (splitting).

7.7.7.2 DISPOSIZIONI COSTRUTTIVE PER GLI IMPALCATI

In assenza di elementi di controvento trasversali intermedi lungo la trave, il rapporto altezza/spessore per una trave a sezione rettangolare deve rispettare la condizione $h/b \le 4$.

In siti caratterizzati da un valore $a_gS \ge 0.2$ g, particolare attenzione deve essere posta alla spaziatura degli elementi di fissaggio in zone di discontinuità.

7.8. COSTRUZIONI DI MURATURA

7.8.1. REGOLE GENERALI

7.8.1.1 PREMESSA

Le costruzioni di muratura devono essere realizzate nel rispetto di quanto contenuto nelle presenti Norme Tecniche ai §§ 4.5 e 11.10. Il rispetto di tali requisiti consente di classificare le costruzioni in muratura come moderatamente dissipative e quindi appartenenti alla classe di duttilità CD"B".

In particolare, ai predetti paragrafi deve farsi riferimento per ciò che concerne le caratteristiche fisiche, meccaniche e geometriche degli elementi resistenti naturali e artificiali, nonché per i relativi controlli di produzione e di accettazione in cantiere.

Il presente paragrafo divide le costruzioni di muratura in: ordinaria, armata e confinata. Al riguardo si precisa che, per quanto attiene all'acciaio d'armatura, vale tutto quanto specificato dalle presenti Norme Tecniche relativamente alle costruzioni in calcestruzzo armato.

Ai fini delle verifiche di sicurezza, è in ogni caso obbligatorio l'utilizzo del "metodo semiprobabilistico agli stati limite", salvo quanto previsto al § 7.8.1.9.

I coefficienti parziali di sicurezza per la resistenza del materiale forniti nel Capitolo 4 possono essere ridotti del 20% e comunque fino ad un valore non inferiore a 2.

7.8.1.2 MATERIALI

Gli elementi da utilizzare per costruzioni di muratura portante devono essere tali da evitare rotture fragili. A tal fine gli elementi devono possedere i requisiti indicati nel § 4.5.2 e, fatta eccezione per le costruzioni caratterizzate, allo SLV, da $a_gS \le 0.075g$, rispettare le seguenti ulteriori indicazioni:

- percentuale volumetrica degli eventuali vuoti, non superiore al 45% del volume totale del blocco;
- eventuali setti, disposti parallelamente al piano del muro, continui e rettilinei; le uniche interruzioni ammesse sono quelle in corrispondenza dei fori di presa o per l'alloggiamento delle armature;
- resistenza caratteristica a rottura nella direzione portante (f_{bk}), calcolata sull'area al lordo delle forature, non inferiore a 5 MPa o, in alternativa, resistenza media normalizzata nella direzione portante (f_b) non inferiore a 6 MPa;
- resistenza caratteristica a rottura nella direzione perpendicolare a quella portante ossia nel piano di sviluppo della parete (\bar{f}_{bk}), calcolata nello stesso modo, non inferiore a 1,5 MPa.


La malta di allettamento per la muratura ordinaria deve avere resistenza media non inferiore a 5 MPa.

Nel caso di utilizzo di elementi per muratura che fanno affidamento a tasche per riempimento di malta, i giunti verticali possono essere considerati riempiti se la malta è posta su tutta l'altezza del giunto su di un minimo del 40% della larghezza dell'elemento murario.

L'uso di giunti sottili (spessore compreso tra 0.5 mm e 3 mm) è consentito esclusivamente per edifici caratterizzati allo SLV, da $a_gS \le 0.15$ g, con le seguenti limitazioni:

- altezza massima, misurata in asse allo spessore della muratura: 10,5 m se $a_gS \leq \!\! 0,\!075$ g; 7 m se 0,075 g< $a_gS \leq \!\! 0,\!15$ g ;
- numero dei piani in muratura da quota campagna: \leq 3 per a_gS \leq 0,075g ; \leq 2 per 0,075g < a_gS \leq 0,15g .

L'uso di giunti verticali non riempiti è consentito esclusivamente per edifici caratterizzati, allo SLV, da $a_gS \le 0.075g$, costituiti da un numero di piani in muratura da quota campagna non maggiore di due e altezza massima, misurata in asse allo spessore della muratura di 7 m.

Gli elementi per murature con giunti sottili e/o giunti verticali a secco debbono soddisfare le seguenti limitazioni:

- spessore minimo dei setti interni: 7 mm;
- spessore minimo dei setti esterni: 10 mm;
- percentuale massima di foratura: 55%;

Sono ammesse murature realizzate con elementi artificiali o elementi in pietra squadrata.

È consentito utilizzare la muratura di pietra non squadrata o la muratura listata solo per costruzioni caratterizzate, allo SLV, da $a_gS \le 0.075g$.

7.8.1.3 MODALITÀ COSTRUTTIVE E FATTORI DI COMPORTAMENTO

In funzione del tipo di tecnica costruttiva utilizzata, la costruzione può essere considerata di muratura ordinaria, di muratura armata o di muratura confinata. I valori massimi del valore di base q_0 del fattore di comportamento con cui individuare lo spettro di progetto (vedi § 3.2.3.5) da utilizzare nelle analisi lineari, sono indicati in Tab. 7.3.II.

Nel caso della muratura armata, valori compresi tra 2,0 $\alpha_{\rm u}/\alpha_1$ e 2,5 $\alpha_{\rm u}/\alpha_1$ possono essere applicati in funzione del sistema costruttivo prescelto, senza verificare quale sia il meccanismo di collasso della costruzione. Il valore 3,0 $\alpha_{\rm u}/\alpha_1$ può essere utilizzato solo applicando i principi della progettazione in capacità descritti al § 7.8.1.7.

Si assume sempre $q = q_0 \cdot K_R$, attribuendo a K_R i valori indicati nel § 7.3.1.

I coefficienti α_1 e α_u sono definiti come segue:

- α_1 è il moltiplicatore della forza sismica orizzontale per il quale, mantenendo costanti le altre azioni, il primo pannello murario raggiunge la sua resistenza ultima (a taglio o a pressoflessione);
- α_u è il 90% del moltiplicatore della forza sismica orizzontale per il quale, mantenendo costanti le altre azioni, la costruzione raggiunge la massima forza resistente.

Il valore di α_u/α_1 può essere calcolato per mezzo di un'analisi statica non lineare (§ 7.3.4.2) e non può in ogni caso essere assunto superiore a 2,5.

Qualora non si proceda a un'analisi non lineare, possono essere adottati i seguenti valori di α_{ν}/α_{1} :

- costruzioni di muratura ordinaria	$\alpha_{\rm u}/\alpha_{\rm 1}$ = 1,7
– costruzioni di muratura armata	$\alpha_{\rm u}/\alpha_{\rm 1}$ = 1,5
- costruzioni di muratura armata progettate con la progettazione in capacità	$\alpha_{\rm u}/\alpha_{\rm 1}$ = 1,3
- costruzioni di muratura confinata	$\alpha_{\rm u}/\alpha_{\rm 1}$ = 1,6
– costruzioni di muratura confinata progettate con la progettazione in capacità	$\alpha_{\rm u}/\alpha_{\rm 1}=1.3$.

7.8.1.4 CRITERI DI PROGETTO E REQUISITI GEOMETRICI

Le piante delle costruzioni devono essere quanto più possibile compatte e simmetriche rispetto ai due assi ortogonali. Le pareti strutturali, al lordo delle aperture, devono avere continuità in elevazione fino alla fondazione, evitando pareti in falso. Le strutture costituenti orizzontamenti e coperture non devono essere spingenti. Eventuali spinte orizzontali, valutate tenendo conto l'azione sismica, devono essere assorbite per mezzo di idonei elementi strutturali.

I solai devono assolvere funzione di ripartizione delle azioni orizzontali tra le pareti strutturali e di vincolo nei confronti delle azioni fuori del piano delle pareti, pertanto devono essere ben collegati ai muri e garantire un adeguato funzionamento a diaframma. La distanza massima tra due solai successivi non deve essere superiore a 5 m.

La geometria delle pareti resistenti al sisma, deve rispettare i requisiti indicati nella Tab. 7.8.I, in cui t indica lo spessore della parete al netto dell'intonaco, h_0 l'altezza di libera inflessione della parete come definito al § 4.5.6.2, h' l'altezza massima delle aperture adiacenti alla parete, l la lunghezza della parete.

Tab. 7.8.I – Requisiti geometrici delle pareti resistenti al sisma

Tipologie costruttive	t _{min}	$(\lambda = h_0/t)_{max}$	(l/h') _{min}
Muratura ordinaria, realizzata con elementi in pietra squadrata	300 mm	10	0,5
Muratura ordinaria, realizzata con elementi artificiali	240 mm	12	0,4
Muratura armata, realizzata con elementi artificiali	240 mm	15	Qualsiasi
Muratura confinata	240 mm	15	0,3
Muratura ordinaria, realizzata con elementi in pietra squadrata, in siti caratterizzati, allo SLV , da $a_g \ S \le 0.15g$	240 mm	12	0,3
Muratura realizzata con elementi artificiali semipieni, in siti caratterizzati, allo SLV , da a_g $S \le 0.075$ g	200 mm	20	0,3
Muratura realizzata con elementi artificiali pieni, in siti caratterizzati, allo SLV , da $a_g \ S \le \ 0.075 \ g$	150 mm	20	0,3

7.8.1.5 METODI DI ANALISI

7.8.1.5.1 Generalità

I metodi di analisi di cui al § 7.3 devono essere applicati con le seguenti precisazioni e restrizioni.

7.8.1.5.2 Analisi lineare statica

È applicabile nei casi previsti al § 7.3.3.2, anche per le costruzioni irregolari in altezza, purché si ponga λ = 1,0.

Le rigidezze degli elementi murari devono essere calcolate considerando sia il contributo flessionale sia quello tagliante. L'utilizzo di rigidezze fessurate è da preferirsi; in assenza di valutazioni più accurate le rigidezze fessurate possono essere assunte pari alla metà di quelle non fessurate.

Il modello può essere costituito dai soli elementi murari continui dalle fondazioni alla sommità, collegati ai soli fini traslazionali alle quote dei solai.

In alternativa, gli elementi di accoppiamento fra pareti diverse, quali travi o cordoli in calcestruzzo armato e travi in muratura (qualora efficacemente ammorsate alle pareti), possono essere considerati nel modello, a condizione che le verifiche di sicurezza siano eseguite anche su tali elementi. Per gli elementi di accoppiamento in muratura si seguono i criteri di verifica di cui ai §§ 7.8.1.6, 7.8.2.2 e 7.8.3.2. Possono essere considerate nel modello travi di accoppiamento in muratura ordinaria solo se sorrette da un cordolo di piano o da un architrave resistente a flessione efficacemente ammorsato alle estremità. Per elementi di accoppiamento in calcestruzzo armato si seguono i criteri di cui al § 7.4.4.6, considerando efficaci per l'accoppiamento elementi aventi altezza almeno pari allo spessore del solaio. In presenza di elementi di accoppiamento l'analisi può essere effettuata utilizzando modelli a telaio, in cui le parti di intersezione tra elementi verticali e orizzontali possono essere considerate infinitamente rigide.

Nel caso di solai rigidi, la distribuzione delle forze di taglio nei diversi pannelli ottenuta dall'analisi lineare può essere modificata con una ridistribuzione limitata, facendo sì che l'equilibrio globale di piano sia rispettato (il modulo e la posizione della forza risultante di piano restino invariati) e a condizione che la variazione del taglio in ciascun pannello, ΔV , soddisfi la relazione

$$|\Delta V| \le \max\{0.25 |V|, 0.1 |V_{\text{piano}}|\}$$
 [7.8.0]

dove V è il taglio nel pannello e V_{piano} è il taglio totale al piano nella direzione parallela al pannello. Tale ridistribuzione non è ammessa nel caso in cui il rapporto α_u/α_1 necessario per il calcolo del fattore comportamento q sia stato ottenuto dal progettista direttamente da un'analisi non lineare. Viceversa, se nella determinazione di α_u/α_1 ci si è avvalsi dei valori prudenziali suggeriti al § 7.8.1.3, la ridistribuzione è ammessa.

Nel caso di solai deformabili la ridistribuzione può essere eseguita solamente tra pannelli complanari collegati da cordoli o incatenamenti oppure appartenenti alla stessa parete. In tal caso, nel calcolo dei limiti per la ridistribuzione, V_{piano} è da intendersi come la somma dei tagli nei pannelli complanari oppure appartenenti alla stessa parete.

Le verifiche fuori piano possono essere eseguite separatamente, e possono essere adottate le forze equivalenti indicate al § 7.2.3 per gli elementi non strutturali, assumendo q_a = 3. Più precisamente l'azione sismica ortogonale alla parete può essere rappresentata da una forza orizzontale distribuita, pari a (S_a/q_a) volte il peso della parete nonché da forze orizzontali concentrate pari a (S_a/q_a) volte il peso trasmesso dagli orizzontamenti che si appoggiano sulla parete, qualora queste forze non siano efficacemente trasmesse a muri trasversali disposti parallelamente alla direzione del sisma. Per le pareti resistenti al sisma, che rispettano i limiti di Tab. 7.8.II, si può assumere per S_a la seguente espressione:

$$S_a = \alpha \cdot S \cdot [1.5 \cdot (1 + Z/H) - 0.5] \ge \alpha \cdot S$$

dove:

- α è il rapporto tra accelerazione massima del terreno a_g su sottosuolo tipo A per lo stato limite in esame (vedi § 3.2.1) e l'accelerazione di gravità g;
- S è il coefficiente che tiene conto della categoria di sottosuolo e delle condizioni topografiche secondo quanto riportato nel § 3.2.3.2.1:
- Z è la quota del baricentro dell'elemento non strutturale misurata a partire dal piano di fondazione (vedi § 3.2.2);
- H è l'altezza della costruzione misurata a partire dal piano di fondazione;

Per le strutture con isolamento sismico si assume sempre Z=0.

Per le pareti non resistenti al sisma la verifica fuori piano va comunque condotta facendo ricorso a formulazioni di comprovata validità.

7.8.1.5.3 Analisi dinamica modale

È applicabile in tutti i casi, con le limitazioni di cui al § 7.3.3.1. Quanto specificato per modellazione e possibilità di ridistribuzione nel caso di analisi statica lineare si applica anche in questo caso.

Le verifiche fuori piano possono essere eseguite separatamente, adottando le forze equivalenti specificate al punto precedente per l'analisi statica lineare.

7.8.1.5.4 Analisi statica non lineare

L'analisi statica non lineare è applicabile agli edifici in muratura secondo le modalità descritte al § 7.3.4.2, con la possibilità di estendere quanto ivi indicato per le strutture in cui il modo di vibrare fondamentale nella direzione considerata ha una partecipazione di massa non inferiore al 75%, anche ai casi in cui la partecipazione di massa sia non inferiore al 60%.

Il modello geometrico della struttura può essere conforme a quanto indicato nel caso di analisi statica lineare. In alternativa si possono utilizzare modelli più sofisticati purché idonei e adeguatamente documentati.

I pannelli murari possono essere caratterizzati da un comportamento bilineare elastico perfettamente plastico, con resistenza equivalente al limite elastico e spostamenti al limite elastico e ultimo corrispondenti alla risposta flessionale e a taglio di cui ai §§ 7.8.2.2 e 7.8.3.2. Gli elementi lineari in c.a. (cordoli, travi di accoppiamento) possono essere caratterizzati da un comportamento bilineare elastico perfettamente plastico, con resistenza equivalente al limite elastico e spostamenti al limite elastico e ultimo definiti per mezzo della risposta flessionale o a taglio.

7.8.1.5.5 Analisi dinamica non lineare

Si applica integralmente il § 7.3.4.1 facendo uso di modelli meccanici non lineari di comprovata e documentata efficacia nel riprodurre il comportamento dinamico e ciclico della muratura.

7.8.1.6 VERIFICHE DI SICUREZZA

In caso di analisi lineare, al fine della verifica di sicurezza nei confronti dello stato limite ultimo, la capacità di ogni elemento strutturale resistente al sisma deve essere non inferiore alla domanda agente per ciascuna delle seguenti modalità di collasso: pressoflessione, taglio nel piano della parete, pressoflessione fuori piano. Devono essere comunque soggette a verifica a pressoflessione fuori del piano tutte le pareti aventi funzione strutturale, in particolare quelle portanti carichi verticali, anche quando considerate non resistenti al sisma in base ai requisiti di Tab. 7.8.II.

In caso di applicazione di principi della progettazione in capacità (muratura armata) l'azione da applicare per la verifica a taglio è derivata dalla resistenza a pressoflessione, secondo quanto indicato al § 7.8.1.7.

Le modalità di verifica sono descritte ai § 7.8.2.2, 7.8.3.2.

Non è richiesta alcuna verifica di sicurezza per le costruzioni che rientrano nella definizione di costruzione semplice (§ 7.8.1.9).

Nel caso di analisi statica non lineare, la verifica di sicurezza consiste nel confronto tra la capacità di spostamento ultimo della costruzione e la domanda di spostamento ottenute applicando il procedimento di cui al § 7.3.4.2, salvo quanto specificato di seguito. La rigidezza elastica del sistema bilineare equivalente si individua tracciando la secante alla curva di capacità nel punto corrispondente ad un taglio alla base pari a 0,7 volte il valore massimo (taglio massimo alla base). Il tratto orizzontale della curva bilineare si individua tramite l'uguaglianza delle aree sottese dalle curve tracciate fino allo spostamento ultimo del sistema.

In ogni caso, sia per le costruzioni in muratura ordinaria sia per le costruzioni in muratura armata senza progettazione in capacità, la verifica di sicurezza non è soddisfatta qualora il rapporto tra taglio totale agente alla base del sistema equivalente a un grado di libertà, calcolato con lo spettro di risposta elastico, e taglio alla base resistente del sistema equivalente a un grado di libertà ottenuto dall'analisi non lineare, ecceda il valore 4,0.

Nel caso di analisi dinamica non lineare, la verifica di sicurezza consiste nel confronto tra la capacità di spostamento e la domanda di spostamento.

7.8.1.7 PRINCIPI DI PROGETTAZIONE IN CAPACITÀ

I principi di progettazione in capacità si applicano esclusivamente al caso di muratura armata.

Per ogni pannello murario, il principio fondamentale è finalizzato ad evitare il collasso per taglio, assicurandosi che sia preceduto dal collasso per flessione. Tale principio è rispettato quando ciascun pannello murario è verificato a flessione rispetto alle azioni agenti ed è verificato a taglio rispetto alle azioni risultanti dalla resistenza a collasso per flessione, amplificate del fattore γ_{Rd} di cui alla Tab. 7.2.I.

7.8.1.8 FONDAZIONI

Le strutture di fondazione devono essere realizzate in calcestruzzo armato, secondo quanto indicato al § 7.2.5, continue, senza interruzioni in corrispondenza di aperture nelle pareti soprastanti.

Qualora sia presente un piano cantinato o seminterrato in pareti di calcestruzzo armato, esso può essere considerato quale struttura di fondazione dei sovrastanti piani in muratura portante, nel rispetto dei requisiti di continuità delle fondazioni, e non è computato nel numero dei piani complessivi in muratura.

7.8.1.9 Costruzioni semplici

Si definiscono "costruzioni semplici" quelle che rispettano le condizioni di cui al § 4.5.6.4 integrate con le caratteristiche descritte nel seguito, oltre a quelle di regolarità in pianta e in elevazione definite al § 7.2.1 e quelle definite ai successivi § 7.8.6.1, 7.8.6.2 e 7.8.6.3, rispettivamente per le costruzioni di muratura ordinaria, di muratura armata e di muratura confinata. Per le costruzioni

semplici per cui, allo SLV, $a_gS \le 0.35g$ non è obbligatorio eseguire alcuna analisi e verifica di sicurezza, ma è richiesto il soddisfacimento delle seguenti condizioni integrative:

- in ciascuna delle due direzioni siano previsti almeno due sistemi di pareti di lunghezza complessiva, al netto delle aperture, ciascuno non inferiore al 50% della dimensione della costruzione nella medesima direzione. Nel conteggio della lunghezza complessiva possono essere inclusi solamente setti murari che rispettano i requisiti geometrici della Tab. 7.8.II. La distanza tra questi due sistemi di pareti in direzione ortogonale al loro sviluppo longitudinale in pianta sia non inferiore al 75% della dimensione della costruzione nella medesima direzione (ortogonale alle pareti). Almeno il 75% dei carichi verticali sia portato da pareti che facciano parte del sistema resistente alle azioni orizzontali;
- in ciascuna delle due direzioni siano presenti pareti resistenti alle azioni orizzontali con interasse non superiore a 7 m, elevabili a 9 m per costruzioni in muratura armata;
- per ciascun piano il rapporto tra area della sezione resistente delle pareti e superficie lorda del piano non sia inferiore ai valori indicati nella Tab. 7.8.II, in funzione del numero di piani della costruzione e della sismicità del sito, per ciascuna delle due direzioni ortogonali:

Tabella 7.8.II – Area pareti resistenti in ciascuna direzione ortogonale per costruzioni semplici.

Accelerazione di picco	del terreno a _g S (1)	≤0,07g	≤0,10g	≤0,15g	≤0,20g	≤0,25g	≤0,30g	≤0,35g	≤0,40g	≤0,45g	≤0,50g
Tipo di struttura	Numero piani	_0,07g	_0,10g	_0,13g	_0,20g	_0,23g	_0,50g	_0,558	_0,+0g	_0,43g	_0,50g
	1	3,5%	3,5%	4,0%	4,5%	5,5%	6,0%	6,0%	6,0%	6,0%	6,5%
Muratura ordinaria	2	4,0%	4,0%	4,5%	5,0%	6,0%	6,5%	6,5%	6,5%	6,5%	7,0%
	3	4,5%	4,5%	5,0%	6,0%	6,5%	7,0%	7,0%			
	1	2,5%	3,0%	3,0%	3,0%	3,5%	3,5%	4,0%	4,0%	4,5%	4,5%
Muratura armata	2	3,0%	3,5%	3,5%	3,5%	4,0%	4,0%	4,5%	5,0%	5,0%	5,0%
Muratura armata	3	3,5%	4,0%	4,0%	4,0%	4,5%	5,0%	5,5%	5,5%	6,0%	6,0%
	4	4,0%	4,5%	4,5%	5,0%	5,5%	5,5%	5,5%	6,0%	6,5%	6,5%

⁽¹⁾ S_T si applica solo nel caso di strutture di Classe d'uso III e IV (v. § 2.4.2)

Per le costruzioni semplici il numero di piani non può essere superiore a 3 per le costruzioni in muratura ordinaria ed a 4 per costruzioni in muratura armata.

Deve inoltre risultare, per ogni piano:

$$\sigma = \frac{N}{A} \le 0.25 \frac{f_k}{\gamma_M}$$
 [7.8.1]

in cui N è il carico verticale totale alla base di ciascun piano dell'edificio corrispondente alla somma dei carichi permanenti e variabili (valutati ponendo $\gamma_G = \gamma_Q = 1$), A è l'area totale dei muri portanti allo stesso piano e f_k è la resistenza caratteristica a compressione in direzione verticale della muratura.

Il dimensionamento delle fondazioni può essere effettuato in modo semplificato tenendo conto delle tensioni normali medie e delle sollecitazioni sismiche globali determinate con l'analisi statica lineare.

7.8.2. COSTRUZIONI DI MURATURA ORDINARIA

7.8.2.1 CRITERI DI PROGETTO

Oltre ai criteri definiti al § 4.5.4 e al § 7.8.1.4, le costruzioni di muratura ordinaria è opportuno che abbiano le aperture praticate nei muri verticalmente allineate. Se così non fosse, deve essere prestata particolare attenzione sia alla definizione di un adeguato modello strutturale sia alle verifiche, in quanto il disallineamento delle aperture comporta discontinuità ed irregolarità nella trasmissione delle azioni interne. In assenza di valutazioni più accurate, si prendono in considerazione nel modello strutturale e nelle verifiche esclusivamente le porzioni di muro che presentino continuità verticale dal piano oggetto di verifica fino alle fondazioni.

7.8.2.2 VERIFICHE DI SICUREZZA

7.8.2.2.1 Pressoflessione nel piano

La verifica a pressoflessione di una sezione di un elemento strutturale si esegue confrontando il momento agente di progetto con il momento ultimo resistente calcolato assumendo la muratura non reagente a trazione e un'opportuna distribuzione non lineare delle compressioni. Nel caso di una sezione rettangolare e diagramma delle compressioni rettangolare con valore della resistenza pari a $0.85\,f_{\rm d}$, tale momento ultimo può essere calcolato come:

$$\mathbf{M}_{\mathbf{u}} = \left(1^2 \cdot \mathbf{t} \cdot \frac{\sigma_0}{2}\right) \left(1 - \frac{\sigma_0}{0.85 f_{\mathbf{d}}}\right)$$
 [7.8.2]

dove:

M_u è il momento corrispondente al collasso per pressoflessione;

l è la lunghezza complessiva della parete (comprensiva della zona tesa);

è lo spessore della zona compressa della parete;

 σ_0 è la tensione normale media, riferita all'area totale della sezione, σ_0 = N/(l·t), con N forza assiale agente positiva se di compressione); se N è di trazione, M_u = 0

 $f_d = f_k / \gamma_M$ è la resistenza a compressione di progetto della muratura.

In caso di analisi statica non lineare, la capacità a pressoflessione può essere calcolata ponendo f_d pari al valore medio della capacità a compressione della muratura e lo spostamento ultimo allo SLC, a meno di moti rigidi del pannello, può essere assunto pari all'1,0% dell'altezza del pannello.

7.8.2.2.2 Taglio

La capacità a taglio di ciascun elemento strutturale è valutata per mezzo della relazione seguente:

$$V_{t} = 1 \cdot t \cdot f_{vd}$$
 [7.8.3]

dove:

l' è la lunghezza della parte compressa della parete ottenuta sulla base di un diagramma lineare delle compressioni ed in assenza di resistenza a trazione;

t è lo spessore della parete;

$$\begin{split} f_{yd} = f_{yk} \, / \, \gamma_M \, \grave{e} \, \text{definito al § 4.5.6.1 e al § 11.3.3, calcolando la tensione normale media (indicata con σ_n nel paragrafi citati) sulla parte compressa della sezione (σ_n = N/(l'-t)). \end{split}$$

In caso di analisi statica non lineare, la resistenza a taglio può essere calcolata ponendo $f_{yd} = f_{vm0} + 0.4 \ \sigma_n \le f_{y,lim} \ con \ f_{vm0}$ resistenza media a taglio della muratura (in assenza di determinazione diretta si può porre $f_{vm0} = f_{vk0}/0.7$ e $f_{y,lim} = f_{yk,lim}/0.7$), e lo spostamento ultimo allo *SLC*, a meno di moti rigidi del pannello, può essere assunto pari allo 0,5% dell'altezza del pannello.

7.8.2.2.3 Pressoflessione fuori piano

Il valore del momento di collasso per azioni perpendicolari al piano della parete è calcolato assumendo un diagramma delle compressioni rettangolare, un valore della resistenza pari a $0.85~f_{\rm d}$ e trascurando la resistenza a trazione della muratura. Per la verifica si può fare utile riferimento al 7.8.2.2.1.

7.8.2.2.4 Travi in muratura

La verifica di travi di accoppiamento in muratura ordinaria, in presenza di azione assiale orizzontale nota, viene effettuata in analogia a quanto previsto per i pannelli murari verticali. Qualora l'azione assiale non sia nota dal modello di calcolo (ad es. quando l'analisi è svolta su modelli a telaio con l'ipotesi di solai infinitamente rigidi nel piano), ma siano presenti, in prossimità della trave in muratura, elementi orizzontali dotati di resistenza a trazione (catene, cordoli), i valori delle resistenze possono essere assunti non superiori ai valori di seguito riportati ed associati ai meccanismi di rottura per taglio o per pressoflessione.

La capacità a taglio V_t di travi di accoppiamento in muratura ordinaria in presenza di un cordolo di piano o di un architrave resistente a flessione efficacemente ammorsato alle estremità, può essere calcolata in modo semplificato come

$$V_{t} = h \cdot t \cdot f_{vd0} \tag{7.8.4}$$

dove:

h è l'altezza della sezione della trave

 $f_{vd0} = f_{vk0} / \gamma_M$ è la resistenza di progetto a taglio in assenza di compressione; nel caso di analisi statica non lineare può essere posta pari al valore medio ($f_{vd0} = f_{vm0}$).

La capacità massima a flessione, associata al meccanismo di pressoflessione, sempre in presenza di elementi orizzontali resistenti a trazione in grado di equilibrare una compressione orizzontale nelle travi in muratura, può essere valutata come

$$M_{u} = H_{p} \cdot \frac{h}{2} \cdot \left[1 - \frac{H_{p}}{\left(0.85 \cdot f_{bd} \cdot h \cdot t \right)} \right]$$
 [7.8.5]

dove

 $H_{\rm p}$ è il minimo tra la capacità a trazione dell'elemento teso disposto orizzontalmente ed il valore $0.4~f_{\rm hd}$ ht

 $f_{hd} = f_{hk} / \gamma_M$ è la resistenza di progetto a compressione della muratura in direzione orizzontale (nel piano della parete). Nel caso di analisi statica non lineare essa può essere posta uguale al valore medio ($f_{hd} = f_{hm}$).

La capacità a taglio, associata a tale meccanismo, può essere calcolata come:

$$V_p = 2 M f_u / 1$$
 [7.8.6]

dove l è la luce libera della trave in muratura.

Il valore della capacità a taglio per l'elemento trave in muratura ordinaria è assunto pari al minimo tra V_t e V_p .

7.8.3. COSTRUZIONI DI MURATURA ARMATA

7.8.3.1 CRITERI DI PROGETTO

L'insieme strutturale risultante deve essere in grado di reagire alle azioni esterne orizzontali con un comportamento di tipo globale, al quale contribuisce soltanto la resistenza delle pareti nel loro piano.

7.8.3.2 VERIFICHE DI SICUREZZA

7.8.3.2.1 Pressoflessione nel piano

Per la verifica di sezioni pressoinflesse può essere assunto un diagramma delle compressioni rettangolare, con profondità pari a 0,8 la profondità dell'asse neutro e tensione pari a 0,85 f_d . Le deformazioni massime da considerare sono pari a ϵ_m = 0,0035 per la muratura compressa e ϵ_s = 0,01 per l'acciaio teso.

In caso di analisi statica non lineare si adottano come valori di progetto le resistenze medie dei materiali e lo spostamento ultimo può essere assunto pari all'1,6% dell'altezza del pannello.

7.8.3.2.2 Taglio

La resistenza a taglio (V_t) è calcolata come somma dei contributi della muratura $(V_{t,M})$ e dell'armatura $(V_{t,S})$, secondo le relazioni seguenti:

$$V_{t} = V_{tM} + V_{tS}$$
 [7.8.7]
 $V_{tM} = d \cdot t \cdot f_{vd}$ [7.8.8]

dove:

d è la distanza tra il lembo compresso e il baricentro dell'armatura tesa;

t è lo spessore della parete;

 $f_{yd} = f_{yk} / \gamma_M \, \dot{e} \, definito \, al \, \S \, 4.5.6.1 \, calcolando \, la \, tensione \, normale \, media \, (indicata \, con \, \sigma_n \, nel \, paragrafo \, citato) \, sulla \, sezione \, lorda \, di \, larghezza \, d \, (\sigma_n = P/dt).$

$$V_{t,S} = (0.6 \cdot d \cdot A_{sw} \cdot f_{vd})/s$$
 [7.8.9]

dove:

d è la distanza tra il lembo compresso e il baricentro dell'armatura tesa;

A_{SW} è l'area dell'armatura a taglio disposta in direzione parallela alla forza di taglio, con passo s misurato ortogonalmente alla direzione della forza di taglio;

f_{vd} è la tensione di snervamento di progetto dell'acciaio;

s è la distanza tra i livelli di armatura.

Deve essere altresì verificato che il taglio agente non superi il seguente valore:

$$V_{t,c} = 0.3 \cdot f_d \cdot t \cdot d \qquad [7.8.10]$$

dove:

t è lo spessore della parete

 f_a è la resistenza a compressione di progetto della muratura.

In caso di analisi statica non lineare si adottano come valori di progetto le resistenze medie dei materiali e lo spostamento ultimo può essere assunto pari allo 0,8% dell'altezza del pannello.

7.8.3.2.3 Pressoflessione fuori piano

Nel caso di azioni agenti perpendicolarmente al piano della parete, la verifica si esegue adottando, per muratura e acciaio, il diagramma delle compressioni e i valori di deformazione limite utilizzati per la verifica nel piano.

7.8.4. COSTRUZIONI DI MURATURA CONFINATA

La progettazione e la realizzazione di costruzioni di muratura confinata deve essere eseguita in accordo con i criteri e le regole date nella UNI EN 1998-1, con le precisazioni riportate negli Annessi tecnici nazionali agli Eurocodici ed applicando le regole di dettaglio di cui al § 7.8.6.3.

7.8.5. STRUTTURE MISTE

Nell'ambito delle costruzioni di muratura è consentito utilizzare strutture di diversa tecnologia per sopportare i carichi verticali, purché la resistenza all'azione sismica sia integralmente affidata agli elementi di identica tecnologia. Nel caso in cui si affidi integralmente la resistenza alle pareti in muratura, per esse devono essere rispettate le prescrizioni di cui ai punti precedenti. Nel caso si affidi integralmente la resistenza alle strutture di altra tecnologia (ad esempio pareti in c.a.), devono essere seguite le regole di progettazione riportate nei relativi capitoli della presente norma. In casi in cui si ritenesse necessario considerare la

collaborazione delle pareti in muratura e dei sistemi di diversa tecnologia nella resistenza al sisma, quest'ultima deve essere verificata utilizzando i metodi di analisi non lineare.

I collegamenti fra elementi di tecnologia diversa devono essere espressamente verificati. Particolare attenzione deve essere prestata alla verifica dell'efficace trasmissione dei carichi verticali. Inoltre è necessario verificare la compatibilità delle deformazioni per tutte le parti strutturali.

È consentito altresì realizzare costruzioni costituite da struttura muraria nella parte inferiore e sormontate da un piano con struttura in calcestruzzo armato o acciaio o legno o altra tecnologia, alle seguenti condizioni:

- i limiti all'altezza delle costruzioni previsti per le strutture in muratura si intendono comprensivi delle parti in muratura e di quelle in altra tecnologia;
- la parte superiore di diversa tecnologia sia efficacemente ancorata al cordolo di coronamento della parte muraria;
- nel caso di metodo di analisi lineare, l'uso dell'analisi statica (nei limiti di applicabilità riportati al § 7.8.1.5.2) è consentito a condizione di utilizzare una distribuzione di forze compatibile con la prima forma modale elastica in ciascuna direzione, calcolata con metodi sufficientemente accurati che tengano conto della distribuzione irregolare di rigidezza in elevazione. A tal fine, in assenza di metodi più accurati, la prima forma modale può essere stimata dagli spostamenti ottenuti applicando staticamente alla costruzione la distribuzione di forze definita nel § 7.3.3.2;
- nel caso di analisi statica non lineare, si utilizzino le distribuzioni di forze orizzontali previste al § 7.3.4.2, dove la prima forma modale elastica è stata calcolata con metodi sufficientemente accurati.
- nel caso di analisi lineare, per la verifica della parte in muratura si utilizzi il fattore di comportamento q prescritto al § 7.8.1.3;
 per la verifica della parte superiore di altra tecnologia si utilizzi il fattore di comportamento adatto alla tipologia costruttiva e alla configurazione (regolarità) della parte superiore, comunque non superiore a 2,5;
- tutti i collegamenti fra la parte di diversa tecnologia e la parte in muratura siano localmente verificati in base alle forze trasmesse calcolate nell'analisi, maggiorate del 30%.

7.8.6. REGOLE DI DETTAGLIO

7.8.6.1 COSTRUZIONI DI MURATURA ORDINARIA

Ad ogni piano deve essere realizzato un cordolo continuo all'intersezione tra solai e pareti.

I cordoli devono avere altezza minima pari all'altezza del solaio e larghezza almeno pari a quella del muro; è consentito un arretramento massimo non superiore a 60 mm e a 0,25-t dal filo esterno per murature di spessore t fino a 300 mm. Per murature di spessore t superiore, l'arretramento può essere maggiore di 60 mm, ma non superiore a 0,2-t. L'area dell'armatura corrente non deve essere inferiore a 8 cm², le staffe devono avere diametro non inferiore a 6 mm ed interasse non superiore a 250 mm. Travi metalliche o prefabbricate costituenti i solai devono essere prolungate nel cordolo per almeno la metà della sua larghezza e comunque per non meno di 120 mm ed adeguatamente ancorate ad esso.

A meno di idonei provvedimenti atti a garantire un efficace collegamento fra le pareti ed il comportamento scatolare della struttura, in corrispondenza di incroci d'angolo tra due pareti perimetrali sono prescritte, su entrambe le pareti, zone di parete muraria di lunghezza non inferiore ad un terzo dell'altezza e comunque non inferiore ad a 1 m, compreso lo spessore del muro trasversale.

Al di sopra di ogni apertura deve essere realizzato un architrave resistente a flessione efficacemente ammorsato alla muratura.

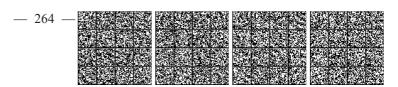
7.8.6.2 COSTRUZIONI DI MURATURA ARMATA

Quanto indicato al \S 7.8.6.1 per la muratura ordinaria si applica anche alla muratura armata, con le seguenti eccezioni e le pertinenti prescrizioni di cui al \S 4.5.7.

Gli architravi soprastanti le aperture possono essere realizzati in muratura armata.

Le barre di armatura devono essere esclusivamente del tipo ad aderenza migliorata e devono essere ancorate in modo adeguato alle estremità mediante piegature attorno alle barre verticali. In alternativa possono essere utilizzate, per le armature orizzontali, armature a traliccio o conformate in modo da garantire adeguata aderenza ed ancoraggio.

La percentuale di armatura orizzontale, calcolata rispetto all'area lorda della sezione verticale della parete, non può essere inferiore allo 0.04%, né superiore allo 0.5%.


Parapetti ed elementi di collegamento tra pareti diverse devono essere ben collegati alle pareti adiacenti, garantendo la continuità dell'armatura orizzontale e, ove possibile, di quella verticale.

Agli incroci delle pareti perimetrali è possibile derogare al requisito di avere su entrambe le pareti zone di parete muraria di lunghezza non inferiore a 1 m.

7.8.6.3 COSTRUZIONI DI MURATURA CONFINATA

Le costruzioni di muratura confinata dovranno essere progettate rispettando i seguenti requisiti:

 gli elementi di confinamento orizzontale e verticali dovranno essere collegati fra loro e ancorati agli elementi del sistema strutturale principale;

- per garantire un collegamento efficace fra gli elementi di confinamento e la muratura, il calcestruzzo degli elementi di confinamento dovrà essere gettato dopo la realizzazione della muratura;
- la minima dimensione trasversale degli elementi di confinamento orizzontali e verticali non dovrà essere inferiore a 150
 mm. Nelle pareti a doppio foglio lo spessore degli elementi di confinamento deve garantire la connessione dei due fogli ed
 il loro confinamento:
- gli elementi di confinamento verticali dovranno essere posizionati:
 - a) lungo i bordi liberi di ogni parete strutturale,
 - b) su entrambi i lati delle aperture aventi area maggiore di 1,5 m²,
 - c) all'interno delle pareti con passo non maggiore di 5 m,
 - d) alle intersezioni delle pareti strutturali, in tutti i casi in cui gli elementi di confinamento più vicini siano ad una distanza superiore a 1,5 m;
- gli elementi di confinamento orizzontali dovranno essere posizionati nel piano della parete ad ogni piano e, in ogni caso, ad un passo non maggiore di 4 m;
- l'armatura longitudinale degli elementi di confinamento deve avere un'area non inferiore a 300 mm² o all'1% della sezione dell'elemento di confinamento;
- le staffe dovranno avere diametro non inferiore a 5 mm e passo non maggiore di 15 cm;
- le lunghezze di sovrapposizione delle barre longitudinali non dovranno essere minori di 60 diametri.

7.9. PONTI

7.9.1. CAMPO DI APPLICAZIONE

Il presente capitolo tratta il progetto di ponti a pile e travate; queste ultime possono essere del tipo continuo su più pile, o semplicemente appoggiate ad ogni campata.

Le pile s'intendono a fusto unico, con sezione trasversale di forma generica, piena o cava, mono o multicellulare. Anche pile in forma di portale sono trattabili con i criteri e le regole contenute in questo capitolo. Pile a geometria più complessa, ad es. a telaio spaziale, richiedono in generale criteri di progetto e metodi di analisi e verifica specifici.

Per ponti di tipologia diversa da quella indicata, le ipotesi e i metodi di calcolo devono essere adeguatamente documentati, fermi restando i fattori di comportamento riportati in tabella 7.3.II.

7.9.2 CRITERI GENERALI DI PROGETTAZIONE

Nel caso di comportamento strutturale non dissipativo, la capacità delle membrature e dei collegamenti deve essere valutata in accordo con le regole di cui al Capitolo 4, senza nessun requisito aggiuntivo, a condizione che: per le strutture di calcestruzzo armato, nessuna sezione superi la curvatura convenzionale di prima plasticizzazione, come definita al § 7.4.4.1.2; per le strutture di calcestruzzo armato precompresso e per le strutture in carpenteria metallica, nessun materiale superi la deformazione di snervamento di progetto.

Nel caso di comportamento strutturale dissipativo, la struttura del ponte deve essere concepita e dimensionata in modo tale che, sotto l'azione sismica relativa allo *SLV*, essa dia luogo alla formazione di un meccanismo dissipativo stabile nel quale la dissipazione sia limitata alle pile.

Ai soli fini del progetto dei pali di fondazione, con riferimento al § 7.2.5, è possibile considerare una limitata capacità dissipativa, dividendo per 1,5 le sollecitazioni sismiche sui pali derivanti dall'analisi strutturale con comportamento non dissipativo. In questo caso, per una lunghezza pari a 10 diametri dalla sommità del palo, devono applicarsi i dettagli costruttivi di cui al § 7.9.6.1 relativi alla CD"B".

La capacità delle membrature e dei collegamenti deve essere valutata in accordo con le regole di cui dal § 7.1 al § 7.3, integrate dalle regole di progettazione e di dettaglio fornite ai paragrafi successivi.

Nel valutare la capacità delle sezioni in calcestruzzo armato, si può tener conto dell'effetto del confinamento (v. § 4.1.2.1.2.1), purché si consideri la perdita dei copriferri al raggiungimento, in essi, della deformazione ultima di compressione del calcestruzzo non confinato (0,35%).

Il proporzionamento della struttura deve essere tale da favorire l'impegno plastico del maggior numero possibile di pile. Il comportamento inelastico dissipativo deve essere di tipo flessionale, con esclusione di possibili meccanismi di rottura per taglio. Per quanto possibile, le zone dissipative devono essere posizionate in punti accessibili, pur con ragionevole difficoltà, per facilitarne l'ispezione e la riparazione.

In genere, il comportamento sismico di ponti con impalcato continuo è migliore di quello di ponti a travata appoggiata, purché si riesca ad assicurare una formazione delle cerniere plastiche pressoché simultanea sotto tutte le pile scelte come elementi dissipativi.

Gli elementi ai quali non è mai richiesta capacità dissipativa devono mantenere un comportamento sostanzialmente elastico; essi sono: gli elementi progettati per avere un comportamento non dissipativo, le porzioni esterne alle zone dissipative delle pile, l'impalcato, gli apparecchi di appoggio, le strutture di fondazione, le spalle, le pile che non scambiano azioni orizzontali con l'impalcato. A tal fine si adotta il criterio della "progettazione in capacità" descritto nel seguito per ogni caso specifico.

7.9.2.1 VALORI DEL FATTORE DI COMPORTAMENTO

Nel caso di comportamento strutturale non dissipativo, per le due componenti orizzontali dell'azione sismica, q₀ è assunto pari a 1,0.

Nel caso di comportamento strutturale dissipativo, per le due componenti orizzontali dell'azione sismica, i valori massimi del valore di base q_0 del fattore di comportamento sono riportati in Tab. 7.3.II; in essa: $\lambda(\alpha)=1$, se $\alpha \geq 3$, $\lambda(\alpha)=(\alpha/3)^{0.5}$, se $3 > \alpha \geq 1$, essendo $\alpha = L/H$, dove L è la distanza della sezione di cerniera plastica dalla sezione di momento nullo ed H è la dimensione della sezione nel piano di inflessione della cerniera plastica.

Per gli elementi duttili di calcestruzzo armato i valori di q_0 della Tab. 7.3.II valgono solo se la sollecitazione di compressione normalizzata ν_k , ottenuta dividendo lo sforzo di progetto N_{Ed} per la resistenza a compressione semplice della sezione ($\nu_k = N_{Ed}/A_c$ f_{rk}), non eccede il valore 0,3.

La sollecitazione di compressione normalizzata non può superare il valore v_k = 0,6.

Per valori di v_k intermedi tra 0,3 e 0,6, il valore di q_0 è dato da:

$$q_0(v_k) = q_0 - \left[\frac{v_k}{0.3} - 1\right] \cdot (q_0 - 1)$$
 [7.9.1]

essendo q_0 il valore applicabile per $v_k \le 0.3$.

Nella tabella 7.3.II sono riportate anche le strutture che si muovono con il terreno. Esse non subiscono amplificazione dell'accelerazione del suolo poiché sono caratterizzate da periodi naturali di vibrazione in direzione orizzontale molto bassi (T ≤0,03 s). Appartengono a questa categoria anche le spalle connesse all'impalcato mediante collegamenti flessibili o appoggi mobili.

Per ciascuna delle due direzioni principali, i valori massimi q₀ del fattore di comportamento sono da applicare, nel caso di ponti isostatici, alle singole pile, nel caso di ponti a travata continua, all'intera opera.

Nel caso di ponti con elementi strutturali duttili di diverso tipo si adotta, per ciascuna delle due direzioni, il fattore di comportamento degli elementi di ugual tipo che contribuiscono in misura maggiore alla resistenza nei confronti delle azioni sismiche.

Il requisito di regolarità, quindi l'applicabilità di un valore $K_R = 1$, può essere verificato a posteriori mediante il seguente procedimento:

- per ciascun elemento duttile si calcoli il rapporto: $r_i = q_0 M_{Ed,i} / M_{Rd,i}$, dove $M_{Ed,i}$ è il momento alla base dell'elemento duttile iesimo prodotto dalla combinazione sismica di progetto, $M_{Rd,i}$ è il corrispondente momento resistente;
- la geometria del ponte si considera "regolare" se il rapporto tra il massimo ed il minimo dei rapporti r_i , calcolati per le pile facenti parte del sistema resistente al sisma nella direzione considerata, risulta inferiore a 2 ($\tilde{r} = r_{i.max} / r_{i.min} < 2$).

Nel caso risulti $\stackrel{\sim}{r} \ge 2$, l'analisi deve essere ripetuta utilizzando il seguente valore ridotto di K_R

$$K_{R} = 2/\widetilde{r}$$
 [7.9.2]

e comunque assumendo sempre $q = q_0 K_R \ge 1$.

Ai fini della determinazione di r_{max} e r_{min} nella direzione orizzontale considerata si possono escludere le pile la cui resistenza a taglio non ecceda il 20% della resistenza sismica totale diviso il numero degli elementi resistenti.

Per ponti a geometria irregolare (ad esempio con angolo di obliquità maggiore di 45°, con raggio di curvatura molto ridotto, ecc.) si adotta un fattore di comportamento q pari a 1,5. Valori maggiori di 1,5, e comunque non superiori a 3,5, possono essere adottati solo qualora le richieste di duttilità siano verificate mediante analisi non lineare.

7.9.3. MODELLO STRUTTURALE

Il modello strutturale deve poter descrivere tutti i gradi di libertà significativi caratterizzanti la risposta dinamica e riprodurre fedelmente le caratteristiche di inerzia e di rigidezza della struttura, e di vincolo degli impalcati.

Quando l'impalcato abbia angolo di obliquità $\phi > 20^{\circ}$ (vedi Fig. 7.9.1) o sia particolarmente largo rispetto alla lunghezza (rapporto tra larghezza B e lunghezza L, B/L > 2,0) particolare attenzione deve essere dedicata ai moti rigidi del ponte intorno all'asse verticale, in particolare per le travi continue avendo cura che il meccanismo resistente non sia affidato alla torsione di una pila unica e per le travi appoggiate prevedendo una opportuna disposizione degli apparecchi di appoggio.

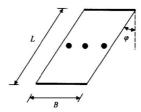


Fig. 7.9.1 – Ponte obliquo

La rigidezza degli elementi in calcestruzzo armato deve essere valutata tenendo conto del loro effettivo stato di fessurazione, che è in generale diverso per l'impalcato (spesso interamente reagente) e per le pile.

In assenza di più accurate determinazioni, l'eccentricità accidentale di cui al § 7.2.6 è riferita all'impalcato e può essere assunta pari a 0,03 volte la dimensione dell'impalcato stesso, misurata perpendicolarmente alla direzione dell'azione sismica.

7.9.3.1 Interazione terreno-struttura e analisi di risposta sismica locale

Fermo restando quanto riportato al §7.2.6 in merito alla modellazione dell'azione sismica, nel caso in cui la deformabilità e la capacità dissipativa del complesso fondazione-terreno siano schematizzate con vincoli viscoelastici, le matrici d'impedenza dinamica utilizzate per la modellazione degli effetti di interazione terreno-struttura devono essere valutate per ogni pila e per ogni spalla in corrispondenza di appropriati intervalli di frequenza.

Nelle analisi modali con spettro elastico di risposta, le matrici d'impedenza dinamica devono contenere solo la parte reale, ossia i termini di rigidezza. La capacità dissipativa del complesso fondazione-terreno può essere portata in conto riducendo le ordinate degli spettri di progetto, sia per le componenti orizzontali, sia per la componente verticale, mediante fattori ottenuti con metodi di comprovata validità.

Nelle analisi nel dominio del tempo, il complesso fondazione-terreno sarà descritto dalle matrici di impedenza dinamica considerando sia i termini di rigidezza sia i termini di smorzamento.

La modellazione del ponte dovrà includere le caratteristiche inerziali dei plinti e del terreno gravante sopra di essi e tener conto della rigidezza degli elementi in calcestruzzo armato nel loro effettivo stato di fessurazione.

7.9.4. ANALISI STRUTTURALE

Per i metodi di analisi si fa riferimento al § 7.3, salvo quanto specificato al successivo § 7.9.4.1. Quando si utilizzano i metodi lineari, l'incremento delle sollecitazioni flettenti nelle zone dissipative per effetto delle non linearità geometriche può essere preso in conto mediante l'espressione semplificata:

$$\Delta M = d_{Ed} \cdot N_{Ed}$$
 [7.9.3]

dove d_{Ed} è lo spostamento valutato nella situazione sismica di progetto in accordo con quanto specificato nel § 7.3.3.3 ed N_{Ed} è la forza assiale di progetto.

7.9.4.1 ANALISI STATICA LINEARE

I requisiti necessari per applicare l'analisi statica lineare possono ritenersi soddisfatti nei casi seguenti:

- a) per entrambe le direzioni longitudinale e trasversale, in ponti a travate semplicemente appoggiate e purché la massa efficace di ciascuna pila non sia superiore ad 1/5 della massa di impalcato da essa portata;
- b) nella direzione longitudinale, per ponti rettilinei a travata continua e purché la massa efficace complessiva delle pile facenti parte del sistema resistente al sisma non sia superiore ad 1/5 della massa dell'impalcato;
- c) nella direzione trasversale, per ponti che soddisfino la condizione b) e siano simmetrici rispetto alla mezzeria longitudinale, o abbiano un'eccentricità non superiore al 5% della lunghezza del ponte. L'eccentricità è la distanza tra baricentro delle masse e centro delle rigidezze delle pile facenti parte del sistema resistente al sisma nella direzione trasversale.

Per pile a sezione costante la massa efficace può essere assunta pari alla massa del terzo superiore della pila più la massa del pulvino.

Nei casi (a) e (b) la massa M, da considerare concentrata in corrispondenza dell'impalcato ed in base alla quale valutare la forza F equivalente all'azione sismica, vale rispettivamente:

- la massa di impalcato afferente alla pila, più la massa della metà del terzo superiore della pila più la massa del pulvino., nel caso a):
- l'intera massa dell'impalcato, più la massa del terzo superiore di tutte le pile più la massa di tutti i pulvini, nel caso b).

Il periodo fondamentale T_1 in corrispondenza del quale valutare la risposta spettrale in accelerazione $S_d(T_1)$ è dato in entrambi i casi dall'espressione:

$$T_1 = 2\pi \sqrt{M/K} \tag{7.9.4}$$

nella quale K è la rigidezza laterale del modello considerato, ossia della singola pila nel caso a), complessiva delle pile nel caso b). Nel caso c) il sistema di forze orizzontali equivalenti all'azione sismica da applicare ai nodi del modello è dato dalla espressione:

$$F_{i} = \frac{4\pi^{2}}{T_{i}^{2}} \frac{S_{d}(T_{i})}{g^{2}} \cdot d_{i} \cdot G_{i}$$
 [7.9.5]

nella quale: T_1 è il periodo proprio fondamentale del ponte nella direzione trasversale; g è l'accelerazione di gravità; d_i è lo spostamento del grado di libertà i quando la struttura è soggetta ad un sistema di forze statiche trasversali f_i = G_i , G_i è il peso della massa concentrata nel grado di libertà i.

Il periodo T_1 del ponte in direzione trasversale può essere valutato con l'espressione approssimata:

$$T_1 = 2\pi \sqrt{\frac{\sum G_i \cdot d_i^2}{g \cdot \sum G_i \cdot d_i}}$$
 [7.9.6]

7.9.5. DIMENSIONAMENTO E VERIFICA DEGLI ELEMENTI STRUTTURALI

Le indicazioni successive si applicano agli elementi strutturali delle strutture in elevazione. Per essi si effettuano verifiche di resistenza e verifiche di duttilità nei modi indicati nel § 7.3.6.1.

I fattori di sovraresistenza γ_{Rd} da utilizzare nelle singole verifiche, secondo le regole della progettazione in capacità, sono calcolati mediante l'espressione:

$$\gamma_{Rd} = 0.7 + 0.2 \text{ q} \ge 1$$
 [7.9.7]

nella quale q è il valore del fattore di comportamento utilizzato nel calcolo. Nel caso di sezioni in calcestruzzo armato, qualora il rapporto v_k tra la forza assiale e la resistenza a compressione della sezione di calcestruzzo eccede 0,1, il fattore di sovraresistenza va moltiplicato per 1+ 2 (v_k – 0,1)².

Le sollecitazioni calcolate a partire dalle capacità flessionali amplificate, incrementate dell'effetto dei carichi permanenti distribuiti sugli elementi, ottenute con il criterio della progettazione in capacità, si indicano con l'indice "prc", ad es. F_{prc}.

Per le strutture di fondazione vale quanto indicato nel § 7.2.5.

Alle azioni sismiche, cui la spalla o la pila devono resistere come strutture a sé stanti, sono da aggiungere le forze parassite trasmesse per attrito dagli appoggi mobili o elastomerici che non assolvono la funzione di isolamento ai sensi del § 7.10, che devono essere maggiorate di un fattore pari a 1,30.

Le forze parassite trasmesse dagli appoggi o le coazioni indotte nella struttura dalle azioni variabili o permanenti potranno essere trascurate per le opere aventi elementi strutturali che raggiungono la capacità flessionale, calcolata sul relativo dominio di resistenza allo *SLU*, in corrispondenza della sollecitazione assiale agente.

7.9.5.1 PILE

Per le pile in acciaio, si rimanda ai criteri del § 7.5.

Per le pile in calcestruzzo armato, si applicano i criteri appresso indicati.

7.9.5.1.1 Verifiche di resistenza (RES)

In ogni sezione la capacità deve risultare superiore o uguale alla corrispondente domanda.

Presso-flessione

Nelle sezioni in cui è prevista la formazione di zone dissipative, la domanda a presso-flessione è quella ottenuta dall'analisi globale della struttura per le combinazioni di carico di cui al § 2.5.3.

Per i ponti in CD"A" ed in CD"B" la domanda a compressione nelle pile non deve eccedere, rispettivamente, il 55% ed il 65% della capacità massima a compressione della sezione di solo calcestruzzo, per tutte le combinazioni considerate.

Nelle sezioni comprese nelle zone dissipative, deve risultare:

$$M_{Ed} \le M_{Rd} \tag{7.9.8}$$

nella quale:

M_{Ed} è la domanda flessionale (accompagnata dalla domanda flessionale in direzione ortogonale assunta come ad essa contemporanea) derivante dall'analisi;

 M_{Rd} è la capacità flessionale, calcolata sul relativo dominio di resistenza allo *SLU* in corrispondenza della sollecitazione assiale agente.

Nelle sezioni poste al di fuori delle zone dissipative, deve risultare:

$$M_{prc} \le M_{vd}$$
 [7.9.9]

nella quale M_{prc} è la domanda flessionale (accompagnata dalla domanda flessionale in direzione ortogonale assunta come ad essa contemporanea) calcolata come descritto al § 7.9.5 e M_{yd} è la capacità flessionale corrispondente alla curvatura convenzionale di prima plasticizzazione di cui al § 7.4.4.1.2, in corrispondenza della sollecitazione assiale agente.

Qualora, al di fuori delle zone dissipative delle pile, la domanda flessionale M_{prc} superi il valore M_{Rd} delle zone dissipative stesse, si adotta quest'ultimo al posto di M_{prc} .

Taglio

Ai fini della progettazione in capacità, per ciascuna direzione di applicazione del sisma, la domanda a taglio V_{Ed} si ottiene imponendo l'equilibrio tra le capacità a flessione delle sezioni di estremità della pila $M_{s,prc}$ e $M_{i,prc}$ e il taglio V_{prc} applicato nelle stesse sezioni, secondo le espressioni:

$$\begin{split} V_{Ed} &= \gamma_{Bd} \cdot V_{prc} \\ V_{prc} &= (M_{s,prc} + M_{i,prc}) / l_{p} \end{split} \tag{7.9.10a}$$

dove l_p è la distanza tra le due sezioni di estremità della pila (nel caso di pila incastrata solamente alla base è la distanza tra la sezione di incastro e la sezione di momento nullo) e γ_{Bd} è calcolato sulla base del rapporto tra il taglio derivante dall'analisi V_E e il taglio V_{prc} mediante la formula seguente:

$$1,00 \le \gamma_{Bd} = 2,25 - q \cdot (V_E/V_{prc}) \le 1,25$$
 [7.9.11]

La capacità a taglio delle sezioni delle pile è calcolata come indicato nel § 4.1.2.3.5, dove il braccio delle forze interne z può essere assunto pari a 0,9d per le sezioni rettangolari piene o cave, 0,75d per le sezioni circolari piene e 0,60d per le sezioni circolari cave.

Nelle zone dissipative delle pile progettate in CD"A", l'angolo di inclinazione delle bielle di calcestruzzo compresso deve essere assunto pari a 45°.

Le dimensioni della sezione sono da riferirsi al solo nucleo confinato di calcestruzzo laddove sia necessaria armatura di confinamento.

Per elementi tozzi, con α < 2,0 (vedi § 7.9.2.1), deve essere eseguita anche la verifica a scorrimento.

7.9.5.1.2 Verifiche di duttilità (DUT)

La verifica di duttilità deve essere eseguita per le zone dissipative delle pile che richiedono armatura di confinamento come indicato al § 7.9.6.1.

Il rispetto dei dettagli costruttivi indicati al \S 7.9.6.1 consente di omettere la verifica esplicita di duttilità. Quest'ultima, laddove necessaria, deve essere eseguita come indicato al \S 7.4.4.1.2.

7.9.5.2 IMPALCATO

Al fine di evitare il martellamento tra diverse parti di impalcato tra loro contigue si dovranno rispettare i criteri enunciati al § 7.2.1, nella sezione "distanza fra costruzioni contigue".

Valori inferiori di tali distanze potranno essere adottati se il martellamento tra le parti produce meccanismi di rottura controllata e, compatibilmente con l'esercizio dell'infrastruttura, facilmente riparabili.

7.9.5.2.1 Verifiche di resistenza (RES)

In ogni sezione la capacità deve risultare superiore o uguale alla corrispondente domanda.

Il criterio di dimensionamento per l'impalcato è che esso non subisca danni per le azioni corrispondenti allo *SLV* ossia per effetto delle massime sollecitazioni indotte dall'azione sismica di progetto.

Le verifiche di resistenza sono in generale superflue nella direzione longitudinale per ponti ad asse rettilineo o con curvatura poco pronunciata, salvo effetti locali nelle zone di collegamento con gli apparecchi d'appoggio.

In direzione trasversale, la domanda in resistenza si ottiene con i criteri della progettazione in capacità.

In particolare, in sommità della generica pila i si ha una sollecitazione di taglio data da:

$$V_{Ed} = V_{E,i} \cdot \frac{\gamma_{Rd} \cdot M_{Rd,i}}{M_{ri}} \le V_{E,i} \cdot q$$
 [7.9.12]

nella quale $V_{E,i}$ è il valore dello sforzo di taglio ottenuto dall'analisi, $M_{E,i}$ il corrispondente momento flettente alla base della pila, ed $M_{Rd,ij}$ l'effettivo momento resistente alla base della pila.

Se la pila trasmette anche momenti all'impalcato, i valori da assumere per la verifica di quest'ultimo sono dati dai valori dei momenti resistenti delle membrature che li trasmettono, moltiplicati per il fattore di sovraresistenza γ_{Rd} .


Per azione sismica diretta trasversalmente al ponte, quando si verifica l'impalcato con il criterio della progettazione in capacità, deve essere considerata la riduzione della sua rigidezza torsionale.

In direzione verticale, la verifica dell'impalcato deve essere eseguita nei casi indicati al \S 7.2.2, assumendo per l'azione sismica il valore q = 1.

7.9.5.3 APPARECCHI DI APPOGGIO E ZONE DI SOVRAPPOSIZIONE

7.9.5.3.1 Apparecchi d'appoggio o di vincolo fissi

Gli apparecchi d'appoggio o di vincolo fissi devono essere dimensionati con i criteri della progettazione in capacità. Essi devono quindi essere in grado di trasmettere, mantenendo la piena funzionalità, forze orizzontali tali da produrre, nella zona o nelle zone

dissipative alla base della pila, un momento flettente pari a: $\gamma_{Rd} \cdot M_{Rd}$, dove M_{Rd} è il momento resistente della zona o delle zone dissipative. Questa verifica può essere eseguita in modo indipendente per le due direzioni dell'azione sismica.

Le forze determinate come sopra possono essere superiori a quelle che si ottengono dall'analisi ponendo q = 1; in tal caso, per il progetto degli apparecchi è consentito adottare queste ultime.

7.9.5.3.2 Apparecchi d'appoggio mobili

Nelle zone di appoggio dove è previsto un movimento relativo tra elementi diversi della struttura (impalcato-pila, impalcato-spalle, seggiole "Gerber", ecc.) gli appoggi mobili devono essere dimensionati come indicato al § 7.2.2.

7.9.5.3.3 Dispositivi di fine corsa

Con il termine di dispositivi di fine corsa si indicano diversi elementi costruttivi aventi lo scopo di limitare il movimento relativo tra impalcato e sommità della pila o spalla. Questi dispositivi possono consistere in elementi ammortizzanti in gomma o altro, collegamenti a fune, ecc.

Il ricorso a tali elementi è necessario quando le condizioni di progetto non permettono di realizzare appoggi, fra travata e testa pila o spalla o nei giunti in travata (seggiole 'Gerber'), di prestazioni pari a quelle richieste al § 7.9.5.3.4.

In tali casi, in mancanza di verifica analitica in campo dinamico dell'interazione impalcato-pila o spalla e delle sollecitazioni indotte nei dispositivi, questi ultimi possono venire dimensionati per resistere ad una forza pari ad $\alpha \cdot Q$, in cui $\alpha = 1,5$ -S-a $_g$ /g è l'accelerazione normalizzata di progetto valutata allo *SLC*, S, a $_g$ e g sono definiti al § 3.2.3.2.1 e Q è il peso della parte di impalcato collegato ad una pila od alle spalle, oppure, nel caso di due parti di impalcato collegate tra loro, il minore dei pesi di ciascuna delle due parti.

7.9.5.3.4 Zone di sovrapposizione

Nelle zone di appoggio dove è previsto un movimento relativo tra elementi diversi della struttura (impalcato-pila, impalcato-spalle, seggiole "Gerber", ecc.) deve essere comunque disponibile una adeguata zona di sovrapposizione.

La lunghezza minima di tale zona è ottenuta aggiungendo allo spostamento relativo tra le parti, valutato come indicato al § 7.2.2, lo spazio necessario, pari almeno a 400 mm, per disporre l'apparecchio di appoggio.

7.9.5.4 SPALLE

Le spalle dei ponti devono essere progettate in modo che tutte le parti componenti non subiscano danni che ne compromettano la completa funzionalità sotto l'azione sismica relativa allo *SLV*.

La verifica sismica delle spalle può essere eseguita, a titolo di accettabile semplificazione, separatamente per la direzione trasversale e per quella longitudinale.

Il modello da adottare per l'analisi delle spalle dipende dal grado di accoppiamento con l'impalcato che esse sostengono (vedi §§ 7.9.5.4.1 e 7.9.5.4.2).

7.9.5.4.1 Collegamento mediante apparecchi d'appoggio mobili

Questo tipo di collegamento viene in generale realizzato solo per i movimenti in senso longitudinale.

In questo caso il comportamento della spalla sotto azione sismica è praticamente disaccoppiato da quello del resto del ponte.

 $Nella\ determinazione\ delle\ sollecitazioni\ sismiche\ di\ progetto\ si\ devono\ considerare\ i\ seguenti\ contributi:$

- le spinte dei terreni comprensive di effetti sismici, come specificato in § 7.11.3, valutando, laddove previsto e debitamente tenuto in conto anche nelle prestazioni cinematiche degli appoggi, eventuali spostamenti relativi rispetto al terreno.
- le forze d'inerzia agenti sulla massa della spalla e del terreno presenti sulla sua fondazione, cui va applicata un'accelerazione pari ad a_e S.

7.9.5.4.2 Collegamento mediante apparecchi d'appoggio fissi

Questo tipo di collegamento è adottato in maniera generalizzata per la direzione trasversale ed in genere su una delle due spalle per la direzione longitudinale.

In entrambi i casi le spalle e il ponte formano un sistema accoppiato ed è quindi necessario utilizzare un modello strutturale che consenta di analizzare gli effetti di interazione tra il terreno, la spalla e la parte di ponte accoppiata.

L'interazione terreno-spalla può in molti casi essere trascurata (a favore di stabilità) quando l'azione sismica agisce in direzione trasversale al ponte, ossia nel piano della spalla. In questi casi l'azione sismica può essere assunta pari all'accelerazione $a_{\rm g}$ -S.

Nel senso longitudinale il modello deve comprendere, in generale, la deformabilità del terreno retrostante e quella del terreno di fondazione.

Qualora non venga effettuata l'analisi d'interazione di cui sopra, le forze d'inerzia agenti sulla massa della spalla, del terreno presente sulla sua fondazione e dell'impalcato saranno calcolate in base all'accelerazione valutata con lo spettro di progetto in corrispondenza del periodo T_B. Nel caso in cui il sistema costituito dalla spalla, dal terreno presente sulla sua fondazione e

dall'impalcato sia considerabile come infinitamente rigido (periodo proprio inferiore a 0.05s) le forze d'inerzia direttamente applicate ad esso possono essere assunte pari al prodotto delle masse per l'accelerazione del terreno a_g . S.

Nel caso in cui la spalla sostenga un terreno rigido naturale per più dell'80% dell'altezza, si può considerare che essa si muova con il suolo. In questo caso le forze d'inerzia di progetto possono essere determinate considerando un'accelerazione pari ad a_g S.

7.9.6. DETTAGLI COSTRUTTIVI PER ELEMENTI DI CALCESTRUZZO ARMATO

7.9.6.1 PILE

Al fine di conferire la necessaria duttilità è necessario disporre idonee armature trasversali all'interno delle zone dissipative delle pile:

- armature atte a confinare adeguatamente il nucleo in calcestruzzo della sezione;
- armature atte a contrastare l'instabilità delle barre verticali compresse.

Le prescrizioni sulle armature trasversali sono volte a conseguire determinati obiettivi prestazionali. Esse non determinano dei quantitativi di acciaio da sommare tra di loro, pertanto nelle zone dissipative di una pila, fermi restando i dettagli costruttivi e il passo minimo delle armature prescritti nei successivi tre paragrafi, il quantitativo di armatura trasversale è il massimo tra quelli necessari a:

- soddisfare le verifiche di resistenza a taglio;
- confinare adeguatamente il nucleo in calcestruzzo della sezione;
- contrastare l'instabilità delle barre verticali compresse.

Salvo studi specifici le armature in parola sono indicate nei §§ 7.9.6.1.1, 7.9.6.1.2 e 7.9.6.1.3.

7.9.6.1.1 Armature per il confinamento del nucleo di calcestruzzo

Le armature per il confinamento del nucleo di calcestruzzo non sono necessarie nei casi seguenti:

- se la sollecitazione di compressione normalizzata risulta v_k ≤ 0,08;
- nel caso di sezioni delle pile in parete sottile a doppio T o cave, mono o multi cellulari, purché risulti $v_k \le 0.2$;
- nel caso di sezioni delle pile progettate in CD"A" o in CD"B" ove è possibile raggiungere una duttilità in curvatura non inferiore, rispettivamente, a μ_{φ} = 13 o a μ_{φ} = 7, senza che la deformazione di compressione massima nel calcestruzzo superi il valore 0,0035.

La percentuale meccanica minima di armatura trasversale per il confinamento costituita da tiranti o staffe di forma rettangolare ω_{wdr} è data da:

$$\omega_{\text{wd,r}} \ge \max \left(\omega_{\text{w,req}}; \ 0.67 \cdot \omega_{\text{w,min}} \right)$$
 [7.9.15]

con:

$$\omega_{w,req} = \frac{A_c}{A_{cc}} \cdot \lambda \cdot \upsilon_k + 0.13 \cdot \frac{f_{yd}}{f_{cd}} (\rho_L - 0.01)$$
 [7.9.16]

dove

- A_cè l'area totale di calcestruzzo della sezione.
- A_{cc} è l'area del nucleo confinato della sezione.
- v_k è stato precedentemente definito.
- λ vale 0,37 per le pile progettate in CD"A" e 0,28 per le pile progettate in CD"B".
- $\omega_{w,min}$ vale 0,18 per le pile progettate in CD"A" e 0,12 per le pile progettate in CD"B".
- $\rho_L\grave{e}$ la percentuale geometrica di armatura longitudinale.

Per staffe di forma circolare, la percentuale meccanica minima di armatura di confinamento è data da:

$$\omega_{\text{wd,c}} \ge \max(1, 4 \cdot \omega_{\text{w,req}}; \ \omega_{\text{w,min}})$$
 [7.9.17]

La percentuale meccanica è definita dalle espressioni seguenti:

sezioni rettangolari

$$\omega_{\text{wd,r}} = \frac{A_{\text{sw}}}{s \cdot b} \cdot \frac{f_{\text{yd}}}{f_{\text{cd}}}$$
 [7.9.18]

in cui:

- A_{sw} = area complessiva dei bracci delle staffe chiuse e dei tiranti in una direzione
- s = interasse verticale delle armature di confinamento = Si

- b = dimensione nel piano orizzontale del nucleo confinato di calcestruzzo misurata in direzione ortogonale a quella dei bracci delle staffe.
- sezioni circolari

$$\omega_{\text{wd,c}} = \frac{4A_{\text{sp}}}{D_{\text{sp}} \cdot s} \cdot \frac{f_{\text{yd}}}{f_{\text{cd}}}$$
 [7.9.19]

in cui

- A_{sp}, D_{sp} = area della sezione delle barre circonferenziali e diametro della circonferenza;
- $s = interasse verticale delle armature di confinamento = <math>S_t$.

Il passo dell'armatura trasversale di confinamento lungo l'asse verticale della pila SL deve rispettare le seguenti condizioni:

$$S_L \le \min(6 \cdot d_{bL}; 1.5 \cdot b^*)$$
 [7.9.20]

in cui d_{bL} è il diametro delle armature longitudinali e b* è la dimensione minore del nucleo confinato di calcestruzzo.

In direzione trasversale la distanza Sr nel piano orizzontale tra due bracci di staffa rettangolare o tra due tiranti deve risultare:

$$S_L \le \min\left(\frac{1}{3} \cdot b^*; 200 \text{ mm}\right)$$
 [7.9.21]

La porzione di calcestruzzo effettivamente confinata si misura dal baricentro delle staffe di confinamento alla fibra in cui la deformazione di compressione nel conglomerato è pari al valore 0,0035/2.

7.9.6.1.2 Armature per contrastare l'instabilità delle barre verticali compresse

Esse non sono necessarie nel caso di sezioni delle pile progettate in CD"B" ove sia possibile omettere l'armatura di confinamento. Il passo dell'armatura trasversale per contrastare l'instabilità delle barre verticali compresse lungo l'asse verticale della pila Su deve rispettare la seguente condizione:

$$S_{L} \le 6 \cdot d_{bL} \tag{7.9.22}$$

con il significato già esposto dei simboli.

Lungo i bordi rettilinei delle sezioni l'obiettivo di trattenere le barre longitudinali può essere raggiunto in due modi alternativi:

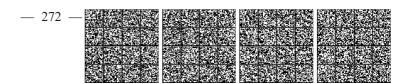
- mediante un braccio di staffa assicurato per mezzo di tiranti intermedi disposti in posizioni alternate lungo l'asse verticale della pila.
- attraverso la sovrapposizione di più staffe chiuse disposte in modo tale che le barre verticali interne risultino alternativamente legate.

In direzione trasversale la distanza S_T nel piano orizzontale tra due bracci di staffa o tiranti deve risultare inferiore o uguale a 200 mm. Il quantitativo minimo di tiranti o bracci trasversali necessari a limitare i fenomeni d'instabilità delle barre longitudinali lungo i bordi rettilinei è fornito dalla relazione seguente:

$$\frac{A_{T}}{S_{T}} = \sum A_{S} \cdot f_{yk,s} \cdot \frac{1}{1.6 \cdot f_{yk,t}}$$
 [7.9.23]

In cui:

- A_T ed S_T sono rispettivamente l'area di un braccio di staffa o tirante (in mm²) e la distanza misurata in direzione trasversale fra i bracci dei tiranti (m).
- $\sum A_s$ è la somma delle aree delle barre verticali (in mm²) di competenza di un braccio di staffa o tirante.
- $\quad f_{yk,s} \ e \ f_{yk,t} \ sono \ rispettivamente \ le tensioni \ di \ snervamento \ dell'acciaio \ dell'armatura \ verticale \ e \ delle \ staffe \ o \ tiranti.$


7.9.6.1.3 Dettagli costruttivi per le zone dissipative

La lunghezza, misurata lungo l'asse verticale, della zona dissipativa di una pila progettata in CD"A" ove risulti $v_k \le 0.3$ è pari alla maggiore delle due:

- la profondità della sezione in direzione ortogonale all'asse di rotazione del momento flettente;
- la distanza tra la sezione di momento massimo e la sezione in cui il momento si riduce del 20%. Il diagramma dei momenti flettenti su cui computare il decremento del 20% è quello in cui il valore massimo del momento vale M_{prc}.

Per $0.3 \le v_k \le 0.6$ tale valore deve essere incrementano del 50%.

Per un'ulteriore estensione di lunghezza pari alla precedente si dispone solo l'armatura di confinamento gradualmente decrescente, in misura non inferiore in totale a metà di quella necessaria nel primo tratto.

La lunghezza, misurata lungo l'asse verticale, della zona dissipativa di una pila progettata in CD"B" è pari alla distanza tra la sezione di momento massimo e la sezione ove risulti $M_{R,d} \le 1,3$ $M_{E,d}$. Tale distanza può essere nulla.

Tutte le armature di confinamento, staffe o tiranti, devono terminare con piegature a 135° che si ancorano verso l'interno per una lunghezza minima di 10 diametri.

I tiranti devono essere sempre ancorati alle staffe in prossimità delle barre verticali.

Nel caso di sezioni ove risulti $v_k \le 0.30$ è possibile impiegare tiranti con piegature a 135° su una estremità e a 90° sull'altra estremità, purché siano alternati i versi di posa.

Tiranti con entrambe le piegature di estremità a 135° possono essere costituiti da due elementi distinti con tratti rettilinei convenientemente sovrapposti all'interno della zona centrale del nucleo di calcestruzzo.

Nel caso di sezioni delle pile in parete sottile a doppio T o cave, mono o multi cellulari, il rapporto tra la lunghezza netta di ogni parete interna e il proprio spessore dovrà essere inferiore o uguale a 8. Per le pareti esterne tale limite vale 4. Per le pile circolari cave tale limitazione si intende riferita al diametro interno.

7.9.6.2 IMPALCATO, FONDAZIONI E SPALLE

Ferme restando le prescrizioni inerenti le armature di cui al § 7.2.5, in conseguenza dei criteri di progetto adottati, non sono da prevedere per gli elementi costruttivi in titolo accorgimenti specifici per conferire duttilità.

7.10. COSTRUZIONI CON ISOLAMENTO E/O DISSIPAZIONE

7.10.1. SCOPO

Il presente capitolo fornisce criteri e regole per il progetto di costruzioni nuove e per l'adeguamento di quelle esistenti, nelle quali un sistema d'isolamento sismico sia posto al di sotto della costruzione medesima, o sotto una sua porzione rilevante, allo scopo di migliorarne la risposta nei confronti delle azioni sismiche orizzontali.

La riduzione della risposta sismica orizzontale, qualunque siano la tipologia e i materiali strutturali della costruzione, può essere ottenuta mediante una delle seguenti strategie d'isolamento, o mediante una loro appropriata combinazione:

- a) incrementando il periodo fondamentale della costruzione per portarlo nel campo delle minori accelerazioni di risposta;
- b) limitando la massima forza orizzontale trasmessa.

In entrambe le strategie le prestazioni dell'isolamento possono essere migliorate attraverso la dissipazione nel sistema di isolamento di una consistente aliquota dell'energia meccanica trasmessa dal terreno alla costruzione.

Le prescrizioni del presente capitolo non si applicano ai sistemi di protezione sismica basati sull'impiego di elementi dissipativi distribuiti, a vari livelli, all'interno della costruzione.

7.10.2. REQUISITI GENERALI E CRITERI PER IL LORO SODDISFACIMENTO

Il sistema d'isolamento è composto dai dispositivi d'isolamento e, eventualmente, di dissipazione, ciascuno dei quali espleta una o più delle seguenti funzioni:

- sostegno dei carichi verticali con elevata rigidezza in direzione verticale e bassa rigidezza o resistenza in direzione orizzontale, permettendo notevoli spostamenti orizzontali;
- dissipazione di energia con meccanismi isteretici e/o viscosi;
- ricentraggio del sistema;
- vincolo laterale, con adeguata rigidezza sotto carichi orizzontali di servizio (non sismici).

Fanno parte integrante del sistema d'isolamento gli elementi di connessione, nonché eventuali vincoli supplementari disposti per limitare gli spostamenti orizzontali dovuti ad azioni non sismiche (ad es. vento).

Detta "interfaccia d'isolamento" la superficie di separazione sulla quale è attivo il sistema d'isolamento, si definiscono:

- "sottostruttura", la parte della struttura posta al di sotto dell'interfaccia del sistema d'isolamento e che include le fondazioni, avente in genere deformabilità orizzontale trascurabile e soggetta direttamente agli spostamenti imposti dal movimento sismico del terreno;
- "sovrastruttura", la parte della struttura posta al di sopra dell'interfaccia d'isolamento e, perciò, isolata.

La sovrastruttura e la sottostruttura si devono mantenere in campo sostanzialmente elastico. Per questo la struttura può essere progettata con riferimento ai particolari costruttivi richiesti per le costruzioni caratterizzate, allo SLV, da $a_gS \le 0.075g$, con deroga, per le strutture in c.a., a quanto previsto al § 7.4.6 e al § 7.9.6.

Un'affidabilità superiore è richiesta al sistema d'isolamento per il ruolo critico che esso svolge. Tale affidabilità si ritiene conseguita se il sistema d'isolamento è progettato e verificato sperimentalmente secondo quanto stabilito nel § 11.9.

7.10.3. CARATTERISTICHE E CRITERI DI ACCETTAZIONE DEI DISPOSITIVI

I dispositivi si possono utilizzare solo qualora posseggano le caratteristiche e soddisfino integralmente le prescrizioni riportate nel § 11.9 delle presenti norme.

7.10.4. INDICAZIONI PROGETTUALI

7.10.4.1 INDICAZIONI RIGUARDANTI I DISPOSITIVI

L'alloggiamento dei dispositivi d'isolamento e di dissipazione ed il loro collegamento alla struttura devono essere concepiti in modo da assicurarne l'accesso e rendere i dispositivi stessi ispezionabili e sostituibili. È necessario anche prevedere adeguati sistemi di contrasto, idonei a consentire l'eventuale ricentraggio dei dispositivi qualora, a seguito di un sisma, si possano avere spostamenti residui incompatibili con la funzionalità della costruzione e/o con il corretto comportamento del sistema d'isolamento.

Ove necessario, i dispositivi devono essere protetti da possibili effetti derivanti da attacchi del fuoco, chimici o biologici. In alternativa, occorre prevedere dispositivi che, in caso di distruzione degli isolatori, siano idonei a trasferire il carico verticale alla sottostruttura.

7.10.4.2 CONTROLLO DI MOVIMENTI INDESIDERATI

Per minimizzare gli effetti torsionali, la proiezione del centro di massa della sovrastruttura sul piano degli isolatori ed il centro di rigidezza dei dispositivi o, nel caso di sottostruttura flessibile, il centro di rigidezza del sistema sottostruttura-isolamento devono essere, per quanto possibile, coincidenti. Inoltre, nei casi in cui il sistema di isolamento affidi a pochi dispositivi le sue capacità dissipative e ricentranti rispetto alle azioni orizzontali, occorre che tali dispositivi siano, per quanto possibile, disposti in maniera da minimizzare gli effetti torsionali (ad esempio perimetralmente) e siano in numero staticamente ridondante. Nel caso dei ponti, si potranno trascurare gli effetti dell'eccentricità accidentale delle masse.

Per minimizzare le differenze di comportamento dei dispositivi, le tensioni di compressione a cui lavorano devono essere per quanto possibile uniformi. Nel caso di sistemi d'isolamento che utilizzino dispositivi di diverso tipo, particolare attenzione deve essere posta sui possibili effetti della differente deformabilità verticale sotto le azioni sia statiche che sismiche.

Per evitare o limitare azioni di trazione nei dispositivi, gli interassi della maglia strutturale devono essere scelti in modo tale che il carico verticale "V" di progetto agente sul singolo isolatore sotto le azioni sismiche e quelle concomitanti risulti essere di compressione o, al più, nullo ($V \ge 0$). Nel caso in cui dall'analisi risultasse V < 0, occorre che la tensione di trazione sia in modulo inferiore al minore tra 2G (G modulo di taglio del materiale elastomerico) e 1 MPa, negli isolatori elastomerici, oppure, per i dispositivi di altro tipo, dimostrare, attraverso adeguate prove sperimentali, che il dispositivo è in grado di sostenere tale condizione, oppure predisporre opportuni vincoli in grado di assorbire integralmente la trazione.

7.10.4.3 CONTROLLO DEGLI SPOSTAMENTI SISMICI DIFFERENZIALI DEL TERRENO

Negli edifici, sia le strutture del piano di posa dei dispositivi sia le strutture del piano da cui spicca la sovrastruttura devono essere dimensionate in modo da assicurare un comportamento rigido nel piano suddetto, così da limitare gli effetti di spostamenti sismici differenziali. Altrimenti la variabilità spaziale del moto del terreno deve essere messa in conto secondo quanto specificato nel § 3.2.4.

La condizione precedente si considera soddisfatta se un diaframma rigido costituito da un solaio in c.a., oppure da una griglia di travi progettata tenendo conto di possibili fenomeni di instabilità, è presente sia al di sopra sia al di sotto del sistema di isolamento e se i dispositivi del sistema di isolamento sono fissati ad entrambi i diaframmi o direttamente o attraverso elementi verticali il cui spostamento orizzontale in condizioni sismiche sia minore di 1/20 dello spostamento relativo del sistema di isolamento. Tali elementi devono essere progettati per rispondere in campo rigorosamente elastico, tenendo anche conto della maggiore affidabilità richiesta ai dispositivi di isolamento e dissipazione.

7.10.4.4 CONTROLLO DEGLI SPOSTAMENTI RELATIVI AL TERRENO E ALLE COSTRUZIONI CIRCOSTANTI

Adeguato spazio deve essere previsto tra la sovrastruttura isolata e il terreno o le costruzioni circostanti, per consentire liberamente gli spostamenti sismici in tutte le direzioni. Per i ponti, i giunti di separazione tra le diverse porzioni di impalcato e tra l'impalcato e la sottostruttura devono essere dimensionati in modo da permettere il corretto funzionamento del sistema d'isolamento, senza impedimenti al libero spostamento delle parti isolate.

Occorre anche attuare adeguati accorgimenti affinché l'eventuale malfunzionamento delle connessioni a cavallo dei giunti non possa compromettere l'efficienza dell'isolamento.

7.10.5. MODELLAZIONE E ANALISI STRUTTURALE

7.10.5.1 PROPRIETÀ DEL SISTEMA DI ISOLAMENTO

Le proprietà meccaniche del sistema di isolamento da adottare nelle analisi di progetto, derivanti dalla combinazione delle proprietà meccaniche dei singoli dispositivi che lo costituiscono, sono le più sfavorevoli che si possono verificare durante il periodo di riferimento V_R considerato. Esse devono tener conto, ove pertinente, di:

- entità delle deformazioni subite in relazione allo stato limite per la verifica del quale si svolge l'analisi;
- variabilità delle caratteristiche meccaniche dei dispositivi, nell'ambito della fornitura;
- velocità massima di deformazione (frequenza) in un intervallo di variabilità di ±30% del valore di progetto;
- entità dei carichi verticali agenti simultaneamente al sisma;

- entità dei carichi e delle deformazioni in direzione trasversale a quella considerata;
- temperatura, per i valori massimo e minimo di progetto.

Inoltre, si deve tener conto dell'eventuale variazione nel tempo delle caratteristiche meccaniche durante la vita utile del dispositivo.

Si devono, pertanto, eseguire più analisi per ciascuno stato limite da verificare, attribuendo ai parametri del modello i valori estremi più sfavorevoli ai fini della valutazione delle grandezze da verificare e coerenti con l'entità delle deformazioni subite dai dispositivi.

Nel caso in cui i valori estremi (massimo oppure minimo) differiscano di non più del 20% dal valor medio, si potranno adottare i valori medi delle proprietà meccaniche del sistema di isolamento.

7.10.5.2 MODELLAZIONE

La sovrastruttura e la sottostruttura devono essere modellate come sistemi a comportamento elastico lineare aventi rigidezza corrispondente al comportamento strutturale non dissipativo. Il sistema di isolamento può essere modellato, in relazione alle sue caratteristiche meccaniche, come avente comportamento visco-elastico lineare oppure con legame costitutivo non lineare. La deformabilità verticale degli isolatori dovrà essere messa in conto quando il rapporto tra la rigidezza verticale del sistema di isolamento K_v e la rigidezza equivalente orizzontale $K_{\rm esi}$ è inferiore a 800.

Se è utilizzato un modello lineare, si deve adottare una rigidezza equivalente riferita allo spostamento totale di progetto per lo stato limite in esame di ciascun dispositivo facente parte del sistema di isolamento. La rigidezza totale equivalente del sistema di isolamento, $K_{\rm esir}$ è pari alla somma delle rigidezze equivalenti dei singoli dispositivi. L'energia dissipata dal sistema d'isolamento deve essere espressa in termini di coefficiente di smorzamento viscoso equivalente del sistema d'isolamento $\xi_{\rm esir}$ valutato con riferimento all'energia dissipata dal sistema di isolamento in cicli con frequenza nell'intervallo delle frequenze naturali dei modi considerati. Per i modi superiori della struttura, al di fuori di tale intervallo, il rapporto di smorzamento del modello completo deve essere quello della sovrastruttura nella condizione di base fissa.

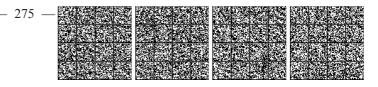
Quando la rigidezza e/o lo smorzamento equivalenti del sistema di isolamento dipendono significativamente dallo spostamento di progetto, deve applicarsi una procedura iterativa fino a che la differenza tra il valore assunto e quello calcolato non sia inferiore al 5%

Il comportamento del sistema di isolamento può essere modellato come lineare equivalente se sono soddisfatte tutte le seguenti condizioni:

- a) la rigidezza equivalente del sistema d'isolamento è almeno pari al 50% della rigidezza secante per cicli con spostamento pari al 20% dello spostamento di riferimento;
- b) lo smorzamento lineare equivalente del sistema di isolamento, come definito in precedenza, è inferiore al 30%;
- c) le caratteristiche forza-spostamento del sistema d'isolamento non variano di più del 10% per effetto di variazioni della velocità di deformazione in un campo del ±30% intorno al valore di progetto, e dell'azione verticale sui dispositivi, nel campo di variabilità di progetto;
- *d*) l'incremento della forza nel sistema d'isolamento per spostamenti tra 0,5 d_c e d_{dc'} essendo d_{dc} lo spostamento del centro di rigidezza dovuto all'azione sismica, è almeno pari al 2,5% del peso totale della sovrastruttura.

Nel caso in cui si adotti un modello non lineare, il legame costitutivo dei singoli dispositivi del sistema d'isolamento deve riprodurre adeguatamente il loro comportamento nel campo di deformazioni e velocità che si verificano durante l'azione sismica, anche in relazione alla corretta rappresentazione dell'energia dissipata nei cicli di isteresi.

Se ritenuta rilevante ai fini della risposta sismica della struttura isolata, è opportuno tenere in conto l'eventuale interazione terreno-struttura come indicato al § 7.9.3.1.


7.10.5.3 ANALISI

Per le costruzioni isolate alla base si applicano le prescrizioni di cui ai §§ 7.3.3 e 7.3.4 integrate o, se del caso, sostituite da quelle contenute nei successivi punti. Per esse non può essere usata l'analisi statica non lineare.

7.10.5.3.1 Analisi lineare statica

Per le costruzioni dotate di isolamento alla base, il metodo dell'analisi statica lineare può essere applicato se la struttura isolata soddisfa i requisiti seguenti:

- a) il sistema d'isolamento può essere modellato come lineare, in accordo con il precedente § 7.10.5.2;
- b) il periodo equivalente T_{is} della costruzione isolata ha un valore compreso fra $3 \cdot T_{bf}$ e 3,0 s, in cui T_{bf} è il periodo della sovrastruttura assunta a base fissa, stimato con un'espressione approssimata;
- c) la rigidezza verticale del sistema di isolamento K_v è almeno 800 volte più grande della rigidezza equivalente orizzontale del sistema di isolamento K_{esi} ;
- d) il periodo in direzione verticale $T_{\rm V}$, calcolato come $T_{\rm V}=2\pi\sqrt{M/K_{\rm V}}$, è inferiore a 0,1 s;
- e) nessun isolatore risulta in trazione per l'effetto combinato dell'azione sismica e dei carichi verticali;

f) il sistema resistente all'azione sismica possiede una configurazione strutturale regolare in pianta, come è definita al § 7.2.1.

Ai requisiti da *a*) ad *f*) si aggiungono, per gli edifici civili ed industriali, i seguenti:

- la sovrastruttura ha altezza non maggiore di 20 m e non più di 5 piani
- la sottostruttura può essere considerata infinitamente rigida, per cui il suo periodo proprio è non maggiore di 0,05s.
- la dimensione maggiore in pianta della sovrastruttura è inferiore a 50 m;
- in ciascuna delle direzioni principali orizzontali, l'eccentricità totale tra il centro di rigidezza del sistema di isolamento e la proiezione verticale del centro di massa non è superiore al 3% della dimensione della sovrastruttura trasversale alla direzione orizzontale considerata.

Ai requisiti da a) ad f) si aggiungono, per i ponti, i seguenti:

- lo schema statico è ad impalcati semplicemente appoggiati, oppure lo schema statico è a impalcati continui con geometria regolare, caratterizzata da: sostanziale rettilineità dell'impalcato, luci uguali, rapporto massimo tra le rigidezze delle pile inferiore a 2, lunghezza totale dell'impalcato continuo inferiore a 150 m;
- la massa della metà superiore delle pile è inferiore a 1/5 della massa dell'impalcato;
- le pile hanno altezza inferiore a 20 m;
- in direzione trasversale la distanza tra il centro di rigidezza del sistema di isolamento e il centro di massa dell'impalcato non è superiore al 5% della dimensione trasversale della sovrastruttura.

Se le condizioni dette sono rispettate, il calcolo può essere svolto su due modelli separati, per ciascuno dei quali si assume il valore corrispondente dello smorzamento, uno per la sovrastruttura più sistema d'isolamento ed uno per la sottostruttura. Su quest'ultimo agiscono le forze ricavate dal primo modello e le forze d'inerzia prodotte direttamente dal moto del terreno.

La forza orizzontale complessiva applicata al sistema d'isolamento, da ripartire tra gli elementi strutturali costituenti la sottostruttura in proporzione alle rigidezze dei corrispondenti dispositivi d'isolamento, è pari a:

$$F = M \cdot S_e(T_{is}, \xi_{esi})$$
 [7.10.1]

dove $S_e(T_{is}, \xi_{esi})$ è l'accelerazione spettrale definita nel § 3.2.3 per la categoria di suolo di fondazione appropriata e $K_{esi,min}$, min è la rigidezza equivalente minima in relazione alla variabilità delle proprietà meccaniche del sistema di isolamento, per effetto dei fattori definiti nel § 7.10.5.1.

Lo spostamento del centro di rigidezza dovuto all'azione sismica d_{dc} deve essere calcolato, in ciascuna direzione orizzontale, mediante la seguente espressione:

$$d_{de} = \frac{M \cdot S_e(T_{is}, \xi_{esi})}{K_{esi,min}}$$
[7.10.2]

Le forze orizzontali da applicare a ciascun livello della sovrastruttura devono essere calcolate, in ciascuna direzione orizzontale, mediante la seguente espressione:

$$f_{i} = m_{i} \cdot S_{e}(T_{is}, \xi_{esi})$$
 [7.10.3]

in cui m_i è la massa del livello j-esimo.

Gli effetti della torsione d'insieme della sovrastruttura sui singoli dispositivi di isolamento possono essere messi in conto amplificando in ciascuna direzione gli spostamenti e le forze precedentemente definiti mediante i fattori δ_{xi} e δ_{yi} da applicare, rispettivamente, alle azioni in direzione x e y:

$$\delta_{xi} = 1 + \frac{e_{\text{tot},y}}{r_y^2} y_i$$
 $\delta_{yi} = 1 + \frac{e_{\text{tot},x}}{r_x^2} x_i$ [7.10.4]

in cui:

(x_i, x_i) sono le coordinate del dispositivo rispetto al centro di rigidezza;

 $e_{tot,x} e_{tot,y}$ è l'eccentricità totale nella direzione x, y;

 $r_x r_y$ sono le componenti, in direzione x e y del raggio torsionale del sistema di isolamento, date dalle seguenti espressioni:

$$r_{x}^{2} = \sum (x_{i}^{2} \cdot K_{yi} + y_{i}^{2} \cdot K_{xi}) / \sum K_{yi}$$

$$r_{y}^{2} = \sum (x_{i}^{2} \cdot K_{yi} + y_{i}^{2} \cdot K_{xi}) / \sum K_{xi}$$
[7.10.5]

 K_{xi} , K_{xi} sono le rigidezze equivalenti del dispositivo i-esimo rispettivamente nelle direzioni x e y.

Ai fini della verifica degli elementi strutturali, gli effetti torsionali sulla sovrastruttura sono valutati come specificato in § 7.3.3.

7.10.5.3.2 Analisi lineare dinamica

Per le costruzioni con isolamento alla base l'analisi dinamica lineare è ammessa quando risulta possibile modellare elasticamente il comportamento del sistema di isolamento, nel rispetto delle condizioni di cui al § 7.10.5.2. Per il sistema complessivo, formato

dalla sottostruttura, dal sistema d'isolamento e dalla sovrastruttura, si assume un comportamento elastico lineare. Qualora il sistema di isolamento non sia immediatamente al di sopra delle fondazioni, il modello deve comprendere sia la sovrastruttura sia la sottostruttura, a meno che la sottostruttura non sia assimilabile ad una struttura scatolare rigida come definita al § 7.2.1. L'analisi può essere svolta mediante analisi modale con spettro di risposta o mediante integrazione al passo delle equazioni del moto, eventualmente previo disaccoppiamento modale, considerando un numero di modi tale da portare in conto anche un'aliquota significativa della massa della sottostruttura, se inclusa nel modello.

Nel caso si adotti l'analisi modale con spettro di risposta, questa deve essere svolta secondo quanto specificato in § 7.3.3.1, salvo diverse indicazioni fornite nel presente paragrafo. Le due componenti orizzontali dell'azione sismica si considerano in generale agenti simultaneamente, adottando, ai fini della combinazione degli effetti, le regole riportate in § 7.3.3.1. La componente verticale deve essere messa in conto nei casi previsti in § 7.2.2 e, in ogni caso, quando il rapporto tra la rigidezza verticale del sistema di isolamento K_{v} e la rigidezza equivalente orizzontale K_{esi} risulti inferiore a 800. In tali casi si avrà cura che la massa eccitata dai modi in direzione verticale considerati nell'analisi sia significativa.

Lo spettro elastico definito in § 3.2.3.2 va ridotto per tutto il campo di periodi $T \ge 0.8 T_{is}$, assumendo per il coefficiente riduttivo η il valore corrispondente al coefficiente di smorzamento viscoso equivalente ξ_{esi} del sistema di isolamento.

Nel caso di analisi lineare con integrazione al passo, la messa in conto del corretto valore del coefficiente di smorzamento viscoso equivalente ξ si ottiene, quando si opera sulle singole equazioni modali disaccoppiate, assegnando a ciascuna equazione il corrispondente valore modale di ξ o, quando si opera sul sistema completo, definendo in maniera appropriata la matrice di smorzamento del sistema.

7.10.6. VERIFICHE

7.10.6.1 VERIFICHE DEGLI STATI LIMITE DI ESERCIZIO

Il livello di protezione richiesto per la sottostruttura e le fondazioni nei confronti dello *SLD* è da ritenere conseguito se sono soddisfatte le relative verifiche nei confronti dello *SLV*, di cui al § 7.10.6.2.

La verifica dello SLD della sovrastruttura deve essere effettuata controllando che gli spostamenti d'interpiano ottenuti dall'analisi siano inferiori ai 2/3 dei limiti indicati per lo SLD nel \S 7.3.6.1.

I dispositivi del sistema d'isolamento non devono subire danni che possano comprometterne il funzionamento nelle condizioni di servizio. Tale requisito si ritiene normalmente soddisfatto se sono soddisfatte le verifiche dello *SLV* dei dispositivi. In caso di sistemi a comportamento non lineare, eventuali spostamenti residui al termine dell'azione sismica allo *SLD* devono essere compatibili con la funzionalità della costruzione.

Le eventuali connessioni, strutturali e non, particolarmente quelle degli impianti, fra la struttura isolata e il terreno o le parti di strutture non isolate, devono assorbire gli spostamenti relativi corrispondenti allo *SLD* senza subire alcun danno o limitazione d'uso.

7.10.6.2 VERIFICHE DEGLI STATI LIMITE ULTIMI

Per le costruzioni particolarmente esposte all'azione del vento e per i ponti in generale sarà condotta la verifica dello *SLU* dei dispositivi di isolamento e/o dissipazione di energia sottoposti alle combinazioni inerenti le azioni variabili orizzontali.

7.10.6.2.1 Verifiche dello SLV

La capacità della sottostruttura e della sovrastruttura deve essere valutata adottando i valori di γ_M utilizzati per le costruzioni pon isolate

Gli elementi della sottostruttura devono essere verificati rispetto alle sollecitazioni ottenute direttamente dall'analisi quando il modello include anche la sottostruttura. In caso contrario, essi devono essere verificati rispetto alle sollecitazioni prodotte dalle forze trasmesse dal sistema d'isolamento combinate con le sollecitazioni prodotte dalle accelerazioni di risposta direttamente applicate alla sottostruttura. Nel caso in cui la sottostruttura possa essere assunta infinitamente rigida (periodo proprio inferiore a 0,05s) le forze d'inerzia direttamente applicate ad essa possono essere assunte pari al prodotto delle masse della sottostruttura per l'accelerazione del terreno agS. La combinazione delle sollecitazioni deve essere eseguita adottando le regole riportate in § 7.3.5, tenendo in conto gli effetti pseudo-statici indotti dagli spostamenti relativi prodotti dalla variabilità spaziale del moto unicamente nei casi previsti ai §§ 3.2.4.1 e 3.2.4.2.

La domanda sugli elementi strutturali della sovrastruttura e della sottostruttura e sul terreno deve essere valutata, nel caso di analisi lineare, considerando un fattore di comportamento $q \le 1,50$ nel caso degli edifici e q = 1 nel caso dei ponti ed adottando le regole di combinazione di cui al § 2.5.3.

Nelle condizioni di massima sollecitazione, le parti dei dispositivi non impegnate nella funzione dissipativa devono rimanere in campo elastico, nel rispetto delle norme relative ai materiali di cui sono costituite, e comunque con un coefficiente di sicurezza almeno pari a 1,5.

Nelle costruzioni di classe d'uso IV, le eventuali connessioni, strutturali e non strutturali, particolarmente quelle degli impianti, fra la struttura isolata e il terreno o le parti di strutture non isolate devono assorbire gli spostamenti relativi previsti dal calcolo senza danni.

Al fine di evitare il martellamento tra diverse parti tra loro contigue si dovranno rispettare i criteri enunciati al § 7.2.1, nella sezione "Distanza tra costruzioni contigue", e, per i ponti, al § 7.9.5.2.

7.10.6.2.2 Verifiche dello SLC

I dispositivi del sistema d'isolamento devono essere in grado di sostenere, senza rotture, gli spostamenti d_2 , valutati per una azione sismica riferita allo SLC. Nel caso di sistemi a comportamento non lineare, allo spostamento ottenuto con l'azione sismica detta occorre aggiungere il maggiore tra lo spostamento residuo allo SLD e il 50% dello spostamento corrispondente all'annullamento della forza, seguendo il ramo di scarico a partire dal punto di massimo spostamento raggiunto allo SLD.

In tutte le costruzioni, le connessioni del gas e di altri impianti pericolosi che attraversano i giunti di separazione devono essere progettate per consentire gli spostamenti relativi della sovrastruttura isolata, con lo stesso livello di sicurezza adottato per il progetto del sistema d'isolamento.

Per i ponti e le costruzioni dotate anche di appoggi mobili devono essere rispettati i requisiti enunciati rispettivamente nei §§ 7.9.5.3.2 e 7.2.1.

I dispositivi di fine corsa, se previsti, devono permettere liberamente gli spostamenti massimi dei dispositivi di isolamento e/o dissipazione di energia e devono essere dimensionati secondo i criteri indicati nel § 7.9.5.3.3. Gli spostamenti massimi sono definiti al primo capoverso del presente paragrafo.

7.10.7. ASPETTI COSTRUTTIVI, MANUTENZIONE, SOSTITUIBILITÀ

Il progetto deve contenere la descrizione delle modalità di messa in opera dei dispositivi ed il relativo piano di manutenzione. I documenti di progetto devono indicare i dettagli, le dimensioni e le prescrizioni sulla qualità, come pure eventuali dispositivi di tipo speciale e le tolleranze concernenti la messa in opera. Elementi di elevata importanza, che richiedano particolari controlli durante le fasi di costruzione e messa in opera, devono essere indicati negli elaborati grafici di progetto, insieme alle procedure di controllo da adottare.

Il piano di qualità deve prevedere, inoltre, la descrizione delle modalità di installazione dei dispositivi durante la fase di costruzione dell'opera da isolare, nonché il programma dei controlli periodici, degli interventi di manutenzione e di sostituzione, durante la vita nominale della struttura, la cui durata deve essere specificata nei documenti di progetto.

Ai fini della qualità della posa in opera, gli isolatori devono essere installati da personale specializzato, sulla base di un disegno planimetrico recante le coordinate e la quota di ciascun dispositivo, l'entità e la preregolazione degli eventuali dispositivi mobili a rotolamento, le dimensioni delle eventuali nicchie predisposte nei getti di calcestruzzo per accogliere staffe o perni di ancoraggio, le caratteristiche delle malte di spianamento e di sigillatura.

Ai fini della sostituzione degli isolatori, il progetto delle strutture deve prevedere la possibilità di trasferire temporaneamente i carichi verticali dalla sovrastruttura alla sottostruttura per il tramite di martinetti oleodinamici, adiacenti all'isolatore da sostituire. A tale scopo il progetto delle strutture può prevedere nicchie per l'inserimento dei martinetti tra la sottostruttura e la sovrastruttura oppure altre disposizioni costruttive equivalenti.

Anche i percorsi, che consentono al personale addetto di raggiungere e di ispezionare gli isolatori, devono essere previsti e riportati sul progetto esecutivo delle strutture portanti e su quello delle eventuali murature di tamponamento, in modo da garantire l'accessibilità al dispositivo da tutti i lati.

Le risultanze delle visite periodiche di controllo devono essere annotate su un apposito documento che deve essere conservato con il progetto della struttura isolata durante l'intera vita di utilizzazione della costruzione.

7.10.8. ACCORGIMENTI SPECIFICI IN FASE DI COLLAUDO

Ai fini del collaudo statico, di fondamentale importanza è il controllo della posa in opera dei dispositivi, nel rispetto delle tolleranze e delle modalità di posa prescritte dal progetto, nonché la verifica della completa separazione tra sottostruttura e sovrastruttura e tra quest'ultima ed altre strutture adiacenti, con il rigoroso rispetto delle distanze di separazione previste in progetto.

Il collaudatore può disporre l'esecuzione di speciali prove per la caratterizzazione dinamica del sistema di isolamento atte a verificare, nei riguardi di azioni di tipo sismico, che le caratteristiche della costruzione corrispondano a quelle attese.

7.11. OPERE E SISTEMI GEOTECNICI

Le presenti norme disciplinano la progettazione e la verifica delle opere e dei sistemi geotecnici di cui al § 6.1.1 soggetti ad azioni sismiche, nonché i requisiti che devono essere soddisfatti dai siti di costruzione e dai terreni interagenti con le opere in presenza di tali azioni.

In aggiunta alle prescrizioni contenute nel presente paragrafo, le opere e i sistemi geotecnici devono soddisfare le prescrizioni contenute nel Capitolo 6, relative alle combinazioni di carico non sismico.

7.11.1. REQUISITI NEI CONFRONTI DEGLI STATI LIMITE

Sotto l'effetto dell'azione sismica di progetto, definita al Capitolo 3, le opere e i sistemi geotecnici devono rispettare gli stati limite ultimi e di esercizio definiti al § 3.2.1, con i requisiti di sicurezza indicati nel § 7.1.

Le verifiche agli stati limite ultimi di opere e sistemi geotecnici si riferiscono al solo stato limite di salvaguardia della vita (*SLV*) di cui al § 3.2.1; quelle agli stati limite di esercizio si riferiscono al solo stato limite di danno (*SLD*) di cui allo stesso § 3.2.1.

Le verifiche degli stati limite ultimi in presenza di azioni sismiche devono essere eseguite ponendo pari a 1 i coefficienti parziali sulle azioni e sui parametri geotecnici e impiegando le resistenze di progetto, con i coefficienti parziali γ_R indicati nel presente Capitolo 7, oppure con i γ_R indicati nel Capitolo 6 laddove non espressamente specificato.

7.11.2. CARATTERIZZAZIONE GEOTECNICA AI FINI SISMICI

Le indagini geotecniche devono essere predisposte dal progettista in presenza di un quadro geologico adeguatamente definito, che comprenda i principali caratteri tettonici e litologici, nonché l'eventuale preesistenza di fenomeni di instabilità del territorio. Le indagini devono comprendere l'accertamento degli elementi che, unitamente agli effetti topografici, influenzano la propagazione delle onde sismiche, quali le condizioni stratigrafiche e la presenza di un substrato rigido o di una formazione ad esso assimilabile.

La caratterizzazione fisico-meccanica dei terreni e la scelta dei più appropriati mezzi e procedure d'indagine devono essere effettuate tenendo conto della tipologia del sistema geotecnico e del metodo di analisi adottato nelle verifiche.

Nel caso di opere per le quali si preveda l'impiego di metodi d'analisi avanzata, è opportuna anche l'esecuzione di prove cicliche e dinamiche di laboratorio, quando sia tecnicamente possibile il prelievo di campioni indisturbati. In ogni caso, la caratterizzazione geotecnica dei terreni deve consentire almeno la classificazione del sottosuolo secondo i criteri esposti nel § 3.2.2.

Nella caratterizzazione geotecnica è necessario valutare la dipendenza della rigidezza e dello smorzamento dal livello deformativo.

Nelle analisi di stabilità in condizioni post-sismiche si deve tener conto della riduzione di resistenza al taglio indotta dal decadimento delle caratteristiche di resistenza per degradazione dei terreni e dall'eventuale accumulo di pressioni interstiziali che può verificarsi nei terreni saturi.

Nei terreni saturi si assumono generalmente condizioni di drenaggio impedito. In tal caso, nelle analisi condotte in termini di tensioni efficaci, la resistenza al taglio è esprimibile mediante la relazione

$$\tau_{f} = c' + (\sigma'_{n} - \Delta u) \tan(\varphi')$$
 [7.11.1]

Dove σ'_n è la tensione efficace iniziale normale alla giacitura di rottura, Δu è l'eventuale sovrappressione interstiziale generata dal sisma e i parametri c' e ϕ' tengono conto della degradazione dei terreni per effetto della storia ciclica di sollecitazione.

Nei terreni a grana fina, le analisi possono essere condotte in termini di tensioni totali esprimendo la resistenza al taglio mediante la resistenza non drenata, valutata in condizioni di sollecitazione ciclica

$$\tau_{\rm f} = c_{\rm u,c} \tag{7.11.2}$$

dove $c_{u,c}$ include gli effetti di degradazione dei terreni.

7.11.3. RISPOSTA SISMICA E STABILITÀ DEL SITO

7.11.3.1 RISPOSTA SISMICA LOCALE

Il moto generato da un terremoto in un sito dipende dalle particolari condizioni locali, cioè dalle caratteristiche topografiche e stratigrafiche del sottosuolo e dalle proprietà fisiche e meccaniche dei terreni e degli ammassi rocciosi di cui è costituito. Alla scala della singola opera o del singolo sistema geotecnico, l'analisi della risposta sismica locale consente quindi di definire le modifiche che il segnale sismico di ingresso subisce, a causa dei suddetti fattori locali.

Le analisi di risposta sismica locale richiedono un'adeguata conoscenza delle proprietà geotecniche dei terreni, da determinare mediante specifiche indagini e prove.

Nelle analisi di risposta sismica locale, l'azione sismica di ingresso è descritta in termini di storia temporale dell'accelerazione (accelerogrammi) su di un sito di riferimento rigido ed affiorante con superficie topografica orizzontale (sottosuolo tipo A del § 3.2.2). Per la scelta degli accelerogrammi di ingresso, si deve fare riferimento a quanto già specificato al § 3.2.3.6.

7.11.3.2 FATTORI DI AMPLIFICAZIONE STRATIGRAFICA

In condizioni stratigrafiche e morfologiche schematizzabili con un modello mono-dimensionale e per profili stratigrafici riconducibili alle categorie di cui alla Tab. 3.2.II, il moto sismico alla superficie di un sito è definibile mediante l'accelerazione massima (a_{max}) attesa in superficie ed una forma spettrale ancorata ad essa. Il valore di a_{max} può essere ricavato dalla relazione $a_{max} = S_S \cdot a_g$ dove a_g è l'accelerazione massima su sito di riferimento rigido ed S_S è il coefficiente di amplificazione stratigrafica.

7.11.3.3 FATTORI DI AMPLIFICAZIONE TOPOGRAFICA

Per condizioni topografiche riconducibili alle categorie di cui alla Tab. 3.2.III, la valutazione dell'amplificazione topografica può essere effettuata utilizzando il coefficiente di amplificazione topografica S_T . Il parametro S_T deve essere applicato nel caso di configurazioni geometriche prevalentemente bidimensionali, creste o dorsali allungate, di altezza superiore a 30 m. Gli effetti topografici possono essere trascurati per pendii con inclinazione media inferiore a 15°, altrimenti si applicano i criteri indicati nel § 3.2.2.

7.11.3.4 STABILITÀ NEI CONFRONTI DELLA LIQUEFAZIONE

7.11.3.4.1 Generalità

Il sito presso il quale è ubicato il manufatto deve essere stabile nei confronti della liquefazione, intendendo con tale termine quei fenomeni associati alla perdita di resistenza al taglio o ad accumulo di deformazioni plastiche in terreni saturi, prevalentemente sabbiosi, sollecitati da azioni cicliche e dinamiche che agiscono in condizioni non drenate.

Se il terreno risulta suscettibile di liquefazione e gli effetti conseguenti appaiono tali da influire sulle condizioni di stabilità di pendii o manufatti, occorre procedere ad interventi di consolidamento del terreno e/o trasferire il carico a strati di terreno non suscettibili di liquefazione.

In assenza di interventi di miglioramento del terreno, l'impiego di fondazioni profonde richiede comunque la valutazione della riduzione della capacità portante e degli incrementi delle sollecitazioni indotti nei pali.

7.11.3.4.2 Esclusione della verifica a liquefazione

La verifica a liquefazione può essere omessa quando si manifesti almeno una delle seguenti circostanze:

- 1. accelerazioni massime attese al piano campagna in assenza di manufatti (condizioni di campo libero) minori di 0,1g;
- profondità media stagionale della falda superiore a 15 m dal piano campagna, per piano campagna sub-orizzontale e strutture con fondazioni superficiali;
- 3. depositi costituiti da sabbie pulite con resistenza penetrometrica normalizzata $(N_1)_{60} > 30$ oppure $q_{c1N} > 180$ dove $(N_1)_{60}$ è il valore della resistenza determinata in prove penetrometriche dinamiche (Standard Penetration Test) normalizzata ad una tensione efficace verticale di 100 kPa e q_{c1N} è il valore della resistenza determinata in prove penetrometriche statiche (Cone Penetration Test) normalizzata ad una tensione efficace verticale di 100 kPa;
- 4. distribuzione granulometrica esterna alle zone indicate nella Fig. 7.11.1(a) nel caso di terreni con coefficiente di uniformità U_C < 3,5 e in Fig. 7.11.1(b) nel caso di terreni con coefficiente di uniformità U_C > 3,5.

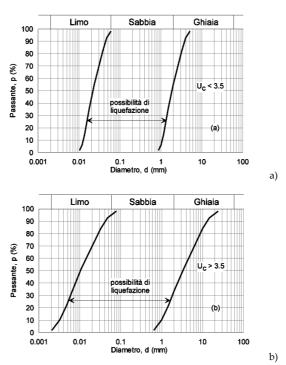


Fig. 7.11.1 – Fusi granulometrici di terreni suscettibili di liquefazione

Quando la condizione 1 non risulti soddisfatta, le indagini geotecniche devono essere finalizzate almeno alla determinazione dei parametri necessari per la verifica delle condizioni 2, 3 e 4.

7.11.3.4.3 Metodi di analisi

Quando nessuna delle condizioni del § 7.11.3.4.2 risulti soddisfatta e il terreno di fondazione comprenda strati estesi o lenti spesse di sabbie sciolte sotto falda, occorre valutare il coefficiente di sicurezza alla liquefazione alle profondità in cui sono presenti i terreni potenzialmente liquefacibili.

Salvo utilizzare procedure di analisi avanzate, la verifica può essere effettuata con metodologie di tipo storico-empirico in cui il coefficiente di sicurezza viene definito dal rapporto tra la resistenza disponibile alla liquefazione e la sollecitazione indotta dal terremoto di progetto. La resistenza alla liquefazione può essere valutata sulla base dei risultati di prove in sito o di prove cicliche di laboratorio. La sollecitazione indotta dall'azione sismica è stimata attraverso la conoscenza dell'accelerazione massima attesa alla profondità di interesse.

L'adeguatezza del margine di sicurezza nei confronti della liquefazione deve essere valutata e motivata dal progettista.

7.11.3.5 STABILITÀ DEI PENDII

La realizzazione di strutture o infrastrutture su versanti o in prossimità del piede o della sommità di pendii naturali richiede la preventiva verifica delle condizioni di stabilità, affinché prima, durante e dopo il sisma, la resistenza del sistema sia superiore alle azioni (condizione [6.2.1] di cui al § 6.2.4.1) oppure gli spostamenti permanenti indotti dal sisma siano di entità tale da non pregiudicare le condizioni di sicurezza o di funzionalità delle strutture o infrastrutture medesime.

7.11.3.5.1 Azione sismica

L'azione sismica di progetto da assumere nelle analisi di stabilità deve essere determinata in accordo con i criteri esposti nel § 3.2.3.

Nel caso di pendii con inclinazione maggiore di 15° e altezza maggiore di 30 m, l'azione sismica di progetto deve essere opportunamente incrementata o attraverso un coefficiente di amplificazione topografica (vedi §§ 3.2.2 e 3.2.3) o in base ai risultati di una specifica analisi bidimensionale della risposta sismica locale, con la quale si valutano anche gli effetti di amplificazione stratigrafica.

In generale l'amplificazione tende a decrescere sotto la superficie del pendio. Pertanto, gli effetti topografici tendono a essere massimi lungo le creste di dorsali e rilievi, ma si riducono sensibilmente in frane con superfici di scorrimento profonde. In tali situazioni, nelle analisi pseudostatiche gli effetti di amplificazione topografica possono essere trascurati ($S_T = 1$).

7.11.3.5.2 Metodi di analisi

L'analisi delle condizioni di stabilità dei pendii in condizioni sismiche può essere eseguita mediante metodi pseudostatici, metodi degli spostamenti e metodi di analisi dinamica.

Nelle analisi, si deve tenere conto dei comportamenti di tipo fragile, che si manifestano nei terreni a grana fina sovraconsolidati e nei terreni a grana grossa addensati con una riduzione della resistenza al taglio al crescere delle deformazioni. Inoltre, si deve tener conto dei possibili incrementi di pressione interstiziale indotti in condizioni sismiche nei terreni saturi. Nei metodi pseudostatici l'azione sismica è rappresentata da un'azione statica equivalente, costante nello spazio e nel tempo, proporzionale al peso W del volume di terreno potenzialmente instabile. Tale forza dipende dalle caratteristiche del moto sismico atteso nel volume di terreno potenzialmente instabile e dalla capacità di tale volume di subire spostamenti senza significative riduzioni di resistenza. Nelle verifiche allo stato limite ultimo, in mancanza di studi specifici, le componenti orizzontale e verticale di tale forza possono esprimersi come $F_h = k_h \cdot W$ ed $F_v = k_v \cdot W$, con k_h e k_v rispettivamente pari ai coefficienti sismici orizzontale e verticale:

$$k_h = \beta_S \cdot \frac{a_{\text{max}}}{g}$$
 [7.11.3]

$$k_v = \pm 0.5 \cdot k_b$$
 [7.11.4]

dove

 β_s = coefficiente di riduzione dell'accelerazione massima attesa al sito;

 a_{max} = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima attesa al sito può essere valutata con la relazione

$$a_{\text{max}} = S \cdot a_{g} = (S_{S} \cdot S_{T}) \cdot a_{g}$$
 [7.11.5]

dove

S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_S), di cui al § 3.2.3.2:

a_g = accelerazione orizzontale massima attesa su sito di riferimento rigido.

I valori di β_s sono riportati nella Tab. 7.11.I al variare della categoria di sottosuolo e dell'accelerazione orizzontale massima attesa su sito di riferimento rigido.

La condizione di stato limite deve essere valutata con riferimento ai valori caratteristici dei parametri geotecnici e riferita alla superficie di scorrimento critica, caratterizzata dal minore margine di sicurezza. L'adeguatezza del margine di sicurezza nei confronti della stabilità del pendio deve essere valutata e motivata dal progettista.

In terreni saturi e in siti con accelerazione orizzontale massima attesa $a_{max} > 0.15 \, g$, nell'analisi statica delle condizioni successive al sisma si deve tenere conto della possibile riduzione della resistenza al taglio per incremento delle pressioni interstiziali o per decadimento delle caratteristiche di resistenza indotti dalle azioni sismiche.

Nell'analisi di stabilità di frane quiescenti, che possono essere riattivate dall'azione del sisma, si deve fare riferimento ai valori dei parametri di resistenza attinti a grandi deformazioni. L'eventuale incremento di pressione interstiziale indotto dal sisma, da considerare in dipendenza della natura dei terreni, deve considerarsi uniformemente distribuito lungo la superficie di scorrimento critica.

Tab. 7.11.I – Coefficienti di riduzione dell'accelerazione massima attesa al sito

	Categoria di sottosuolo					
	A B, C, D, E					
	$\beta_{\mathbf{S}}$	$\beta_{\mathbf{S}}$				
$0.2 < a_g(g) \le 0.4$	0,30	0,28				
$0.1 < a_g(g) \le 0.2$	0,27	0,24				
$a_g(g) \le 0.1$	0,20	0,20				

Le analisi del comportamento dei pendii in condizioni sismiche possono essere svolte anche mediante il metodo degli spostamenti, in cui la massa di terreno potenzialmente in frana viene assimilata ad un corpo rigido che può muoversi rispetto al terreno stabile lungo una superficie di scorrimento. Il metodo permette la valutazione dello spostamento permanente indotto dal sisma nella massa di terreno potenzialmente instabile.

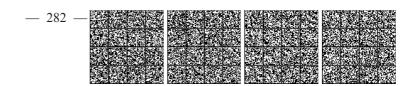
L'applicazione del metodo richiede la valutazione dell'accelerazione critica, che deve essere valutata con i valori caratteristici dei parametri di resistenza, e dell'azione sismica di progetto, che deve essere rappresentata mediante storie temporali delle accelerazioni. Gli accelerogrammi impiegati nelle analisi, in numero non inferiore a 7, devono essere rappresentativi della sismicità del sito e la loro scelta deve essere adeguatamente giustificata (vedi § 3.2.3.6). Non è ammesso l'impiego di accelerogrammi artificiali.

Nel metodo degli spostamenti, la valutazione delle condizioni di stabilità del pendio è effettuata mediante il confronto tra lo spostamento calcolato per il cinematismo di collasso critico e i valori limite o di soglia dello spostamento. Le condizioni del pendio e dei manufatti eventualmente interagenti con esso possono essere riferite al raggiungimento di uno stato limite ultimo (SLV) o di esercizio (SLD) in dipendenza del valore di soglia dello spostamento. I criteri di scelta dei valori limite di spostamento devono essere illustrati e giustificati dal progettista.

Lo studio del comportamento in condizioni sismiche dei pendii può essere effettuato anche impiegando metodi avanzati di analisi dinamica, purché si tenga conto della natura polifase dei terreni e si descriva realisticamente il loro comportamento meccanico in condizioni cicliche. Per questi motivi, il ricorso alle analisi avanzate comporta indagini geotecniche adeguatamente approfondite. Per queste analisi, l'azione sismica di progetto deve essere rappresentata mediante accelerogrammi scelti utilizzando gli stessi criteri già indicati per il metodo degli spostamenti.

7.11.4. FRONTI DI SCAVO E RILEVATI

Il comportamento in condizioni sismiche dei fronti di scavo e dei rilevati può essere analizzato con gli stessi metodi impiegati per i pendii naturali; specificamente mediante metodi pseudostatici, metodi degli spostamenti e metodi avanzati di analisi dinamica.


Nei metodi pseudostatici l'azione sismica è rappresentata da un'azione statica equivalente, costante nello spazio e nel tempo, proporzionale al peso W del volume di terreno potenzialmente instabile. Le componenti orizzontale e verticale di tale forza devono essere ricavate in funzione delle proprietà del moto atteso nel volume di terreno potenzialmente instabile e della capacità di tale volume di subire spostamenti senza significative riduzioni di resistenza.

In mancanza di studi specifici, le componenti orizzontale e verticale della forza statica equivalente possono esprimersi come $F_h = k_h \cdot W$ ed $F_v = k_v \cdot W$, con k_h e k_v rispettivamente pari ai coefficienti sismici orizzontale e verticale definiti nel § 7.11.3.5.2 e adottando i seguenti valori del coefficiente di riduzione dell'accelerazione massima attesa al sito:

 β_s = 0.38 nelle verifiche dello stato limite ultimo (*SLV*)

 β_s = 0.47 nelle verifiche dello stato limite di esercizio (*SLD*).

Nelle verifiche di sicurezza si deve controllare che la resistenza del sistema sia maggiore delle azioni (condizione [6.2.1]) impiegando lo stesso approccio di cui al § 6.8.2 per le opere di materiali sciolti e fronti di scavo, ponendo pari all'unità i coefficienti parziali sulle azioni e sui parametri geotecnici (§ 7.11.1) e impiegando le resistenze di progetto calcolate con un coefficiente parziale pari a γ_R = 1.2. Si deve inoltre tener conto della presenza di manufatti interagenti con l'opera.

In alternativa, le verifiche degli stati limite ultimi (*SLV*) o di esercizio (*SLD*) possono essere eseguite con il metodo degli spostamenti, controllando che gli spostamenti permanenti indotti dal sisma siano di entità tale da non pregiudicare le condizioni di sicurezza o di funzionalità dei fronti di scavo o dei rilevati e dei manufatti eventualmente interagenti con essi. Nel metodo degli spostamenti, l'accelerazione critica deve essere valutata utilizzando i valori caratteristici dei parametri di resistenza. Le condizioni dell'opera possono essere riferite al raggiungimento di uno stato limite ultimo o di esercizio in dipendenza del valore di soglia dello spostamento. La valutazione delle condizioni di sicurezza è effettuata mediante il confronto tra lo spostamento calcolato e il corrispondente valore limite o di soglia. I criteri di scelta dei valori limite di spostamento devono essere illustrati e giustificati dal progettista.

7.11.5. FONDAZIONI

7.11.5.1 REGOLE GENERALI DI PROGETTAZIONE

La progettazione delle fondazioni è condotta unitamente alla progettazione dell'opera alla quale appartengono e richiede preliminarmente:

- 1. la valutazione della risposta sismica locale del sito, secondo quanto indicato al § 7.11.3.1;
- 2. la valutazione della sicurezza del sito nei confronti della liquefazione e della stabilità globale, secondo quanto indicato rispettivamente ai §§ 7.11.3.4. e 7.11.3.5;

le analisi al punto (1) devono consentire di motivare la scelta dell'azione sismica adottata nella progettazione dell'intera opera; le analisi al punto (2) devono indicare esplicitamente gli interventi eventualmente necessari a garantire la stabilità globale del sito.

Per le azioni trasmesse in fondazione, nonché per i requisiti e i criteri di modellazione della stessa, si rinvia ai precedenti §§ 7.2.5 e 7.2.6.

7.11.5.2 INDAGINI E MODELLO GEOTECNICO

Il modello geotecnico del sottosuolo da utilizzare nelle verifiche deve essere definito mediante l'interpretazione dei risultati di indagini e prove definite dal progettista ed eseguite con specifico riferimento alle scelte tipologiche del sistema di fondazione adottato per l'opera in progetto, tenendo conto di quanto riportato al precedente § 7.11.2 e al Capitolo 3 della presente norma.

7.11.5.3 VERIFICHE ALLO STATO LIMITE ULTIMO (SLV) E ALLO STATO LIMITE DI ESERCIZIO (SLD)

Gli stati limite ultimi delle fondazioni superficiali e su pali si riferiscono allo sviluppo di meccanismi di collasso determinati dalla mobilitazione della resistenza del terreno e al raggiungimento di quella degli elementi strutturali che compongono la fondazione stessa. Devono essere considerati almeno gli stessi stati limite ultimi di cui ai § 6.4.2.1 e 6.4.3.1. Nelle verifiche si deve tener conto delle pressioni interstiziali preesistenti e di quelle eventualmente indotte dal moto sismico.

Le verifiche allo stato limite ultimo di fondazioni superficiali e su pali sono condotte con le metodologie indicate nel Capitolo 6 e con le prescrizioni riportate al § 7.11.1.

7.11.5.3.1 Fondazioni superficiali

La capacità del complesso fondazione-terreno deve essere verificata con riferimento allo stato limite ultimo (*SLV*) nei confronti del raggiungimento della resistenza per carico limite e per scorrimento, nel rispetto della condizione [6.2.1] e adottando i coefficienti parziali della Tabella 7.11.II. In tutte le verifiche, la procedura adottata per il calcolo della resistenza deve essere congruente con quella adottata per il calcolo delle azioni. Più precisamente, la resistenza può essere valutata con approcci di tipo pseudo-statico se la determinazione delle azioni discende da un'analisi pseudo-statica o di dinamica modale.

Stato Limite Ultimo (SLV) per carico limite

Le azioni derivano dall'analisi della struttura in elevazione come specificato al § 7.2.5. Le resistenze sono i corrispondenti valori limite che producono il collasso del complesso fondazione-terreno; esse sono valutabili mediante l'estensione di procedure classiche al caso di azione sismica, tenendo conto dell'effetto dell'inclinazione e dell'eccentricità delle azioni in fondazione. Il corrispondente valore di progetto si ottiene applicando il coefficiente γ_R di Tabella 7.11.II. Se, nel calcolo del carico limite, si considera esplicitamente l'effetto delle azioni inerziali sul volume di terreno significativo, il coefficiente γ_R può essere ridotto a 1.8.

Stato Limite Ultimo (SLV) per scorrimento sul piano di posa

Per azione si intende il valore della forza agente parallelamente al piano di scorrimento, per resistenza si intende la risultante delle tensioni tangenziali limite sullo stesso piano, sommata, in casi particolari, alla risultante delle tensioni limite agenti sulle superfici laterali della fondazione. Specificamente, si può tener conto della resistenza lungo le superfici laterali nel caso di contatto diretto fondazione-terreno in scavi a sezione obbligata o di contatto diretto fondazione-calcestruzzo o fondazione-acciaio in scavi sostenuti da paratie o palancole. In tali casi, il progettista deve indicare l'aliquota della resistenza lungo le superfici laterali che intende portare in conto, da giustificare con considerazioni relative alle caratteristiche meccaniche dei terreni e ai criteri costruttivi dell'opera. Ai fini della verifica allo scorrimento, si può considerare la resistenza passiva solo nel caso di effettiva permanenza di tale contributo, portando in conto un'aliquota non superiore al 50%.

Tab. 7.11.II - Coefficienti parziali γ_R per le verifiche degli stati limite (SLV) delle fondazioni superficiali con azioni sismiche

Verifica	Coefficiente parziale γ_R
Carico limite	2.3
Scorrimento	1.1
Resistenza sulle superfici laterali	1.3

Stato Limite di Esercizio (SLD)

A meno dell'impiego di specifiche analisi dinamiche, in grado di fornire la risposta deformativa del sistema fondazione-terreno, la verifica nei confronti dello stato limite di danno può essere ritenuta soddisfatta impiegando le azioni corrispondenti allo *SLD* e determinando il carico limite di progetto con il coefficiente % riportato nella Tabella 7.11.II.

7.11.5.3.2 Fondazioni su pali

Stati limite ultimi (SLV)

Le fondazioni su pali devono essere verificate per gli stati limite ultimi (SLV) sotto l'azione del moto sismico di riferimento.

Nelle verifiche, si devono prendere in considerazione tutti gli stati limite rilevanti e almeno i seguenti:

- raggiungimento della resistenza a carico limite verticale del complesso pali-terreno;
- raggiungimento della resistenza a carico limite orizzontale del complesso pali-terreno;
- liquefazione del terreno di fondazione;
- spostamenti o rotazioni eccessive che possano indurre il raggiungimento di uno stato limite ultimo nella struttura in elevazione;
- rottura di uno degli elementi strutturali della palificata (pali o struttura di collegamento).

Le verifiche a carico limite consistono nel confronto tra le azioni (forza assiale e forza trasversale sul palo) e le corrispondenti resistenze, nel rispetto della condizione [6.2.1] e con le prescrizioni di cui al § 7.11.1.

In presenza di moto sismico, nei pali si sviluppano sollecitazioni dovute sia alle forze inerziali trasmesse dalla sovrastruttura (interazione inerziale) sia all'interazione tra palo e terreno dovuta allo scuotimento (interazione cinematica).

Nei casi in cui gli effetti di interazione cinematica siano considerati importanti, devono essere motivate le assunzioni di calcolo adottate e i criteri di sovrapposizione o meno di tali effetti con quelli inerziali. E' opportuno che la valutazione degli effetti dovuti all'interazione cinematica sia effettuata per le costruzioni di Classe d'uso III e IV, per sottosuoli tipo D o peggiori, per valori di ag > 0,25g e in presenza di elevati contrasti di rigidezza al contatto tra strati contigui di terreno.

La valutazione delle resistenze del complesso pali-terreno soggetto all'azione assiale e trasversale deve essere effettuata nel rispetto delle indicazioni di cui ai §§ 7.11.2 e 7.11.5.2, ponendo particolare attenzione alla caratterizzazione geotecnica per tener conto di eventuali riduzioni di resistenza dei terreni per effetto dell'azione sismica.

Nelle verifiche condotte in termini di tensioni efficaci in terreni saturi si deve tenere conto degli eventuali incrementi di pressione interstiziale indotti dal moto sismico e, in particolare, si deve trascurare il contributo alla resistenza di eventuali strati di terreno suscettibili di liquefazione.

Per le fondazioni miste, di cui al § 6.4.3, l'interazione fra il terreno, i pali e la struttura di collegamento deve essere studiata con appropriate modellazioni, allo scopo di pervenire alla determinazione dell'aliquota dell'azione di progetto trasferita al terreno direttamente dalla struttura di collegamento e dell'aliquota trasmessa ai pali. Nei casi in cui l'interazione sia considerata non significativa o, comunque, si ometta la relativa analisi, le verifiche SLV e SLD devono essere condotte con riferimento al solo gruppo di pali. Nei casi in cui si consideri significativa tale interazione e si svolga la relativa analisi, le verifiche SLV e SLD devono soddisfare quanto riportato ai §§ 6.4.3.3 e 6.4.3.4, ove le azioni e le resistenze di progetto ivi menzionate sono da intendersi determinate secondo quanto specificato nel presente Capitolo 7.

Stato Limite di Esercizio (SLD)

A meno dell'impiego di specifiche analisi dinamiche, in grado di fornire la risposta deformativa del sistema fondazione-terreno, la verifica nei confronti dello stato limite di danno può essere ritenuta soddisfatta impiegando le azioni corrispondenti allo *SLD* e determinando il carico limite di progetto con il coefficiente 1/2 riportato nella Tabella 6.4.II.

7.11.6. OPERE DI SOSTEGNO

7.11.6.1 REQUISITI GENERALI

La sicurezza delle opere di sostegno deve essere garantita prima, durante e dopo il terremoto di progetto.

Sono ammissibili spostamenti permanenti indotti dal sisma che non alterino significativamente la resistenza dell'opera e che siano compatibili con la sua funzione e con quella di eventuali strutture o infrastrutture interagenti con essa.

Le indagini geotecniche devono avere estensione tale da consentire la caratterizzazione dei terreni che interagiscono direttamente con l'opera e di quelli che determinano la risposta sismica locale.

 $L'analisi\ sismica\ delle\ opere\ di\ sostegno\ deve\ considerare\ quei\ fattori\ che\ ne\ influenzino\ significativamente\ il\ comportamento.$

È comunque necessario tenere conto dei seguenti aspetti:

- effetti inerziali nel terreno, nelle strutture di sostegno e negli eventuali carichi aggiuntivi presenti;
- comportamento anelastico e non lineare del terreno;
- effetto della distribuzione delle pressioni interstiziali, se presenti, sulle azioni scambiate fra il terreno e l'opera di sostegno;
- condizioni di drenaggio;
- influenza degli spostamenti dell'opera sulla mobilitazione delle condizioni di equilibrio limite.

Per opere particolari con terrapieno in falda, quali le opere marittime, occorre tener conto degli effetti, diversi in ragione della permeabilità, indotti dall'azione sismica sullo scheletro solido e sull'acqua interstiziale.

In presenza di acqua libera contro la parete esterna dell'opera, si deve tenere conto dell'effetto idrodinamico indotto dal sisma, valutando le escursioni (positiva e negativa) della pressione dell'acqua rispetto a quella idrostatica.

È ammesso l'uso dei metodi pseudo-statici, come specificato nei successivi §§ 7.11.6.2.1 e 7.11.6.3.1.

Gli stati limite ultimi delle opere di sostegno si riferiscono allo sviluppo di meccanismi plastici determinati dalla mobilitazione della resistenza del terreno e al raggiungimento della resistenza degli elementi strutturali che compongono le opere stesse. Devono essere considerati almeno gli stessi stati limite ultimi di cui ai §§ 6.5.3.1.1, 6.5.3.1.2 e 6.6.2.

È necessario verificare che, per effetto del terremoto di progetto, il sito non sia suscettibile di liquefazione. In caso contrario, occorre predisporre le misure necessarie affinché non si verifichi tale fenomeno.

7.11.6.2 Muri di sostegno

I sistemi di drenaggio a tergo della struttura devono essere in grado di tollerare gli spostamenti transitori e permanenti indotti dal sisma, senza che sia pregiudicata la loro funzionalità.

7.11.6.2.1 Metodi di analisi

A meno di specifiche analisi dinamiche, l'analisi della sicurezza dei muri di sostegno in condizioni sismiche può essere eseguita mediante i metodi pseudo-statici e i metodi degli spostamenti.

Se la struttura può spostarsi, l'analisi pseudo-statica si esegue mediante i metodi dell'equilibrio limite. Il modello di calcolo deve comprendere l'opera di sostegno, il volume di terreno a tergo dell'opera, che si suppone in stato di equilibrio limite attivo, e gli eventuali sovraccarichi agenti sul volume suddetto.

Nell'analisi pseudo-statica, l'azione sismica è rappresentata da una forza statica equivalente pari al prodotto delle forze di gravità per un opportuno coefficiente sismico.

Nelle verifiche, i valori dei coefficienti sismici orizzontale k_h e verticale k_v possono essere valutati mediante le espressioni

$$k_h = \beta_m \cdot \frac{a_{max}}{g}$$
 [7.11.6]

$$k_v = \pm 0.5 \cdot k_h$$
 [7.11.7]

dove

 β_m = coefficiente di riduzione dell'accelerazione massima attesa al sito;

a_{max} = accelerazione orizzontale massima attesa al sito;

g = accelerazione di gravità.

In assenza di analisi specifiche della risposta sismica locale, l'accelerazione massima può essere valutata con la relazione

$$a_{\text{max}} = S \cdot a_{\text{g}} = (S_{\text{S}} \cdot S_{\text{T}}) \cdot a_{\text{g}}$$
 [7.11.8]

dove

 $S = coefficiente che comprende l'effetto dell'amplificazione stratigrafica (<math>S_S$) e dell'amplificazione topografica (S_S), di cui al § 3.2.3.2:

a_g = accelerazione orizzontale massima attesa su sito di riferimento rigido.

Nella precedente espressione, il coefficiente di riduzione dell'accelerazione massima attesa al sito è pari a:

 $\beta_m = 0.38$ nelle verifiche allo stato limite ultimo (SLV)

 β_m = 0.47 nelle verifiche allo stato limite di esercizio (*SLD*).

Per muri non liberi di subire spostamenti relativi rispetto al terreno, il coefficiente β_m assume valore unitario. I valori del coefficiente β_m possono essere incrementati in ragione di particolari caratteristiche prestazionali del muro, prendendo a riferimento il diagramma di Figura 7.11.3 di cui al successivo § 7.11.6.3.2.

Nel caso di muri di sostegno liberi di traslare o di ruotare intorno al piede, si può assumere che l'incremento di spinta dovuta al sisma agisca nello stesso punto di quella statica. Negli altri casi, in assenza di specifici studi, si deve assumere che tale incremento sia applicato a metà altezza del muro.

Lo stato limite di ribaltamento deve essere trattato impiegando coefficienti parziali unitari sulle azioni e sui parametri geotecnici (§ 7.11.1) e utilizzando valori di β m incrementati del 50% rispetto a quelli innanzi indicati e comunque non superiori all'unità.

7.11.6.2.2 Verifiche di sicurezza

Per muri di sostegno ubicati in corrispondenza di versanti o in prossimità di pendii naturali devono essere soddisfatte le condizioni di stabilità del pendio, in presenza della nuova opera, con i metodi di analisi di cui al § 7.11.3.5. Deve inoltre essere soddisfatta la verifica di stabilità del complesso muro-terreno con i criteri indicati al § 7.11.4 nonché le verifiche di sicurezza delle fondazioni riportate al § 7.11.5.

Nelle verifiche di sicurezza si deve controllare che la resistenza del sistema sia maggiore delle azioni nel rispetto della condizione [6.2.1], ponendo pari all'unità i coefficienti parziali sulle azioni e sui parametri geotecnici (§ 7.11.1) e impiegando le resistenze di progetto con i coefficienti parziali γ R indicati nella tabella 7.11.III.

Tab. 7.11.III - Coefficienti parziali y per le verifiche degli stati limite (SLV) dei muri di sostegno.

Verifica	Coefficiente parziale γR
Carico limite	1.2
Scorrimento	1.0
Ribaltamento	1.0
Resistenza del terreno a valle	1.2

Le azioni da considerare nelle analisi di sicurezza delle fondazioni sono fornite dalla spinta esercitata dal terrapieno, dalle azioni gravitazionali permanenti e dalle azioni inerziali agenti nel muro, nel terreno e negli eventuali sovraccarichi.

La verifica nei confronti dello stato limite di scorrimento può essere eseguita anche con il metodo degli spostamenti (§ 7.11.3.5.2). L'accelerazione critica deve essere valutata utilizzando i valori caratteristici dei parametri di resistenza. Le condizioni dell'opera possono essere riferite al raggiungimento di uno stato limite ultimo (*SLV*) o di esercizio (*SLD*) in dipendenza del valore di soglia dello spostamento. La valutazione delle condizioni di sicurezza è effettuata mediante il confronto tra lo spostamento calcolato e il corrispondente valore di soglia. I criteri di scelta dei valori limite di spostamento devono essere illustrati e giustificati dal progettista.

In aggiunta alle verifiche di sicurezza nei confronti degli stati limite ultimi *SLV*, devono essere condotte verifiche nei confronti degli stati limite di esercizio *SLD*. In particolare, gli spostamenti permanenti indotti dal sisma devono essere compatibili con la funzionalità dell'opera e con quella di eventuali strutture o infrastrutture interagenti con essa.

7.11.6.3 PARATIE

L'analisi delle paratie in condizioni sismiche può essere eseguita con specifici metodi di analisi dinamica o mediante metodi pseudo-statici.

7.11.6.3.1 Metodi pseudo-statici

Nei metodi pseudo-statici l'azione sismica è definita mediante un'accelerazione equivalente, costante nello spazio e nel tempo.

Le componenti orizzontale e verticale a_h e a_v dell'accelerazione equivalente devono essere ricavate in funzione delle proprietà del moto sismico atteso nel volume di terreno significativo per l'opera e della capacità dell'opera di subire spostamenti senza significative riduzioni di resistenza.

In mancanza di studi specifici, a_h può essere legata all'accelerazione di picco a_{max} attesa nel volume di terreno significativo per l'opera mediante la relazione:

$$a_h = k_h \cdot g = \alpha \cdot \beta \cdot a_{max}$$
 [7.11.9]

dove g è l'accelerazione di gravità, k_h è il coefficiente sismico in direzione orizzontale, $\alpha \le 1$ è un coefficiente che tiene conto della deformabilità dei terreni interagenti con l'opera e $\beta \le 1$ è un coefficiente funzione della capacità dell'opera di subire spostamenti senza cadute di resistenza.

Per le paratie si può porre $a_v = 0$.

 $L'accelerazione \ di \ picco \ a_{max} \ \grave{e} \ valutata \ mediante \ un'analisi \ di \ risposta \ sismica \ locale, oppure \ come$

$$a_{\text{max}} = S \cdot a_{g} = (S_{S} \cdot S_{T}) \cdot a_{g}$$
 [7.11.10]

dove S è il coefficiente che comprende l'effetto dell'amplificazione stratigrafica (S_S) e dell'amplificazione topografica (S_S), di cui al § 3.2.3.2, ed a_g è l'accelerazione orizzontale massima attesa su sito di riferimento rigido.

Il valore del coefficiente α può essere ricavato a partire dall'altezza complessiva H della paratia e dalla categoria di sottosuolo mediante il diagramma di Fig. 7.11.2.

Per il sottosuolo di categoria E si utilizzano le curve dei sottosuoli C o D in dipendenza dei valori assunti dalla velocità equivalente V_s .

Per la valutazione della spinta nelle condizioni di equilibrio limite passivo deve porsi α = 1.

Il valore del coefficiente β può essere ricavato dal diagramma di Fig. 7.11.3, in funzione del massimo spostamento permanente $u_{\rm S}$ che l'opera può tollerare, verificando l'effettivo sviluppo di meccanismi duttili nel sistema. In assenza di tale verifica, il coefficiente β vale 1.

Per $u_S = 0$ è $\beta = 1$. Deve comunque risultare:

$$u_s \le 0.005 \cdot H$$
 [7.11.11]

Se $\alpha \cdot \beta \le 0.2$ deve assumersi $k_h = 0.2 \cdot a_{max}/g$.

Possono inoltre essere trascurati gli effetti inerziali sulle masse che costituiscono la paratia.

Per valori dell'angolo di resistenza al taglio tra terreno e parete $\delta > \phi'/2$, ai fini della valutazione della resistenza passiva è necessario tener conto della non planarità delle superfici di scorrimento.

7.11.6.3.2 Verifiche di sicurezza

Per paratie realizzate in corrispondenza di versanti o in prossimità di pendii naturali devono essere soddisfatte le condizioni di stabilità del pendio, in presenza della nuova opera, con i metodi di analisi di cui al § 7.11.3.5. Deve inoltre essere soddisfatta la verifica di stabilità del complesso paratia-terreno con i criteri indicati al § 7.11.4.

Per le paratie devono essere soddisfatte le condizioni di sicurezza nei confronti dei possibili stati limite ultimi (*SLV*) verificando il rispetto della condizione [6.2.1] con i coefficienti di sicurezza parziali prescritti al § 7.11.1.

Nelle verifiche, per azioni s'intendono le risultanti delle spinte a tergo della paratia e per resistenze s'intendono le risultanti delle spinte a valle della paratia e le reazioni dei sistemi di vincolo.

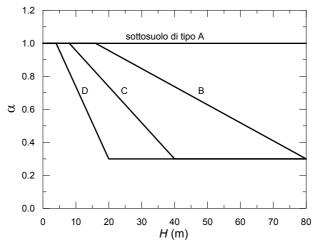


Fig. 7.11.2 – Diagramma per la valutazione del coefficiente di deformabilità α

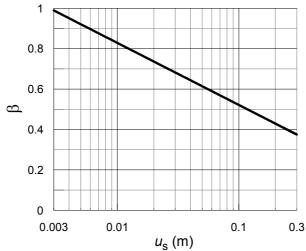


Fig. 7.11.3 – Diagramma per la valutazione del coefficiente di spostamento β .

7.11.6.4 SISTEMI DI VINCOLO

Gli elementi di contrasto sollecitati a compressione (puntoni) devono essere dimensionati in maniera che l'instabilità geometrica si produca per forze assiali maggiori di quelle che provocano il raggiungimento della resistenza a compressione del materiale di cui sono composti. In caso contrario si deve porre β = 1.

Nel caso di strutture ancorate, ai fini del posizionamento della fondazione dell'ancoraggio si deve tenere presente che, per effetto del sisma, la potenziale superficie di scorrimento dei cunei di spinta presenta un'inclinazione sull'orizzontale minore di quella relativa al caso statico. Detta $L_{\rm s}$ la lunghezza libera dell'ancoraggio in condizioni statiche, la corrispondente lunghezza libera in condizioni sismiche $L_{\rm e}$ può essere ottenuta mediante la relazione:

$$L_{e} = L_{S} \left(1 + 1.5 \cdot \frac{a_{max}}{g} \right)$$
 [7.11.12]

dove a_{max} è l'accelerazione orizzontale massima attesa al sito.

Gli elementi di ancoraggio devono avere resistenza e lunghezza tali da assicurare l'equilibrio dell'opera prima, durante e dopo l'evento sismico.

Si deve inoltre accertare che il terreno sia in grado di fornire la resistenza necessaria per il funzionamento dell'ancoraggio durante il terremoto di riferimento e che sia mantenuto un margine di sicurezza adeguato nei confronti della liquefazione.

7.11.6.4.1 Verifiche di sicurezza

Nei tiranti il cui tratto libero è realizzato con trefoli o barre di acciaio armonico, nel rispetto del criterio della progettazione in capacità, si deve verificare che la resistenza di progetto allo snervamento sia sempre maggiore del valore massimo della resistenza di progetto della fondazione dell'ancoraggio.

CAPITOLO 8.

COSTRUZIONI ESISTENTI

8.1. OGGETTO

Il presente capitolo stabilisce i criteri generali per la valutazione della sicurezza e per la progettazione, l'esecuzione ed il collaudo degli interventi sulle costruzioni esistenti

Si definisce costruzione esistente quella che abbia, alla data della redazione della valutazione di sicurezza e/o del progetto d'intervento, la struttura completamente realizzata.

8.2. CRITERI GENERALI

Le disposizioni di carattere generale contenute negli altri capitoli della presente norma costituiscono, ove applicabili, riferimento anche per le costruzioni esistenti, ad esclusione di quanto indicato nella presente norma in merito a limitazioni di altezza, regole generali, prescrizioni sulla geometria e sui particolari costruttivi e fatto salvo quanto specificato nel seguito.

Nel caso di interventi che non prevedano modifiche strutturali (impiantistici, di distribuzione degli spazi, etc.) il progettista deve valutare la loro possibile interazione con gli SLU ed SLE della struttura o di parte di essa.

La valutazione della sicurezza e la progettazione degli interventi devono tenere conto dei seguenti aspetti della costruzione:

- essa riflette lo stato delle conoscenze al tempo della sua realizzazione;
- in essa possono essere insiti, ma non palesi, difetti di impostazione e di realizzazione;
- essa può essere stata soggetta ad azioni, anche eccezionali, i cui effetti non siano completamente manifesti;
- le sue strutture possono presentare degrado e/o modifiche significative, rispetto alla situazione originaria.

Nella definizione dei modelli strutturali si dovrà considerare che sono conoscibili, con un livello di approfondimento che dipende dalla documentazione disponibile e dalla qualità ed estensione delle indagini che vengono svolte, le seguenti caratteristiche:

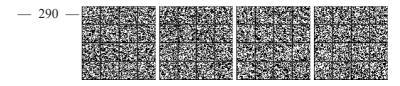
- la geometria e i particolari costruttivi;
- le proprietà meccaniche dei materiali e dei terreni;
- i carichi permanenti.

Si dovrà prevedere l'impiego di metodi di analisi e di verifica dipendenti dalla completezza e dall'affidabilità dell'informazione disponibile e l'uso di coefficienti legati ai "fattori di confidenza" che, nelle verifiche di sicurezza, modifichino i parametri di capacità in funzione del livello di conoscenza (v. §8.5.4) delle caratteristiche sopra elencate.

8.3. VALUTAZIONE DELLA SICUREZZA

La valutazione della sicurezza di una struttura esistente è un procedimento quantitativo, volto a determinare l'entità delle azioni che la struttura è in grado di sostenere con il livello di sicurezza minimo richiesto dalla presente normativa. L'incremento del livello di sicurezza si persegue, essenzialmente, operando sulla concezione strutturale globale con interventi, anche locali.

La valutazione della sicurezza, argomentata con apposita relazione, deve permettere di stabilire se:


- l'uso della costruzione possa continuare senza interventi;
- l'uso debba essere modificato (declassamento, cambio di destinazione e/o imposizione di limitazioni e/o cautele nell'uso);
- sia necessario aumentare la sicurezza strutturale, mediante interventi.

La valutazione della sicurezza deve effettuarsi quando ricorra anche una sola delle seguenti situazioni:

- riduzione evidente della capacità resistente e/o deformativa della struttura o di alcune sue parti dovuta a: significativo degrado e
 decadimento delle caratteristiche meccaniche dei materiali, deformazioni significative conseguenti anche a problemi in fondazione; danneggiamenti prodotti da azioni ambientali (sisma, vento, neve e temperatura), da azioni eccezionali (urti, incendi, esplosioni) o da situazioni di funzionamento ed uso anomali;
- provati gravi errori di progetto o di costruzione;
- cambio della destinazione d'uso della costruzione o di parti di essa, con variazione significativa dei carichi variabili e/o passaggio ad una classe d'uso superiore;
- esecuzione di interventi non dichiaratamente strutturali, qualora essi interagiscano, anche solo in parte, con elementi aventi funzione strutturale e, in modo consistente, ne riducano la capacità e/o ne modifichino la rigidezza;
- ogni qualvolta si eseguano gli interventi strutturali di cui al § 8.4;
- opere realizzate in assenza o difformità dal titolo abitativo, ove necessario al momento della costruzione, o in difformità alle norme tecniche per le costruzioni vigenti al momento della costruzione.

Qualora le circostanze di cui ai punti precedenti riguardino porzioni limitate della costruzione, la valutazione della sicurezza potrà essere effettuata anche solo sugli elementi interessati e su quelli con essi interagenti, tenendo presente la loro funzione nel complesso strutturale, posto che le mutate condizioni locali non incidano sostanzialmente sul comportamento globale della struttura.

Nella valutazione della sicurezza, da effettuarsi ogni qual volta si eseguano interventi strutturali di miglioramento o adeguamento di cui al § 8.4, il progettista dovrà esplicitare in un'apposita relazione, esprimendoli in termini di rapporto fra capacità e domanda, i livelli di sicurezza precedenti all'intervento e quelli raggiunti con esso.

Qualora sia necessario effettuare la valutazione della sicurezza della costruzione, la verifica del sistema di fondazione è obbligatoria solo se sussistono condizioni che possano dare luogo a fenomeni di instabilità globale o se si verifica una delle seguenti condizioni:

- nella costruzione siano presenti importanti dissesti attribuibili a cedimenti delle fondazioni o dissesti della stessa natura si siano prodotti nel passato;
- siano possibili fenomeni di ribaltamento e/o scorrimento della costruzione per effetto: di condizioni morfologiche sfavorevoli, di modificazioni apportate al profilo del terreno in prossimità delle fondazioni, delle azioni sismiche di progetto;
- siano possibili fenomeni di liquefazione del terreno di fondazione dovuti alle azioni sismiche di progetto.

Allo scopo di verificare la sussistenza delle predette condizioni, si farà riferimento alla documentazione disponibile e si potrà omettere di svolgere indagini specifiche solo qualora, a giudizio esplicitamente motivato del professionista incaricato, sul volume di terreno significativo e sulle fondazioni sussistano elementi di conoscenza sufficienti per effettuare le valutazioni precedenti.

La valutazione della sicurezza e la progettazione degli interventi sulle costruzioni esistenti potranno essere eseguite con riferimento ai soli SLU, salvo che per le costruzioni in classe d'uso IV, per le quali sono richieste anche le verifiche agli SLE specificate al § 7.3.6; in quest'ultimo caso potranno essere adottati livelli prestazionali ridotti.

Per la combinazione sismica le verifiche agli SLU possono essere eseguite rispetto alla condizione di salvaguardia della vita umana (SLV) o, in alternativa, alla condizione di collasso (SLC), secondo quanto specificato al \S 7.3.6

Nelle verifiche rispetto alle azioni sismiche il livello di sicurezza della costruzione è quantificato attraverso il rapporto $\zeta\epsilon$ tra l'azione sismica massima sopportabile dalla struttura e l'azione sismica massima che si utilizzerebbe nel progetto di una nuova costruzione; l'entità delle altre azioni contemporaneamente presenti è la stessa assunta per le nuove costruzioni, salvo quanto emerso riguardo ai carichi verticali permanenti a seguito delle indagini condotte (di cui al § 8.5.5) e salvo l'eventuale adozione di appositi provvedimenti restrittivi dell'uso della costruzione e, conseguentemente, sui carichi verticali variabili.

La restrizione dell'uso può mutare da porzione a porzione della costruzione e, per l'i-esima porzione, è quantificata attraverso il rapporto $\zeta_{v,i}$ tra il valore massimo del sovraccarico variabile verticale sopportabile da quella parte della costruzione e il valore del sovraccarico verticale variabile che si utilizzerebbe nel progetto di una nuova costruzione.

È necessario adottare provvedimenti restrittivi dell'uso della costruzione e/o procedere ad interventi di miglioramento o adeguamento nel caso in cui non siano soddisfatte le verifiche relative alle azioni controllate dall'uomo, ossia prevalentemente ai carichi permanenti e alle altre azioni di servizio.

8.4. CLASSIFICAZIONE DEGLI INTERVENTI

Si individuano le seguenti categorie di intervento:

- interventi di riparazione o locali: interventi che interessino singoli elementi strutturali e che, comunque, non riducano le condizioni di sicurezza preesistenti;
- interventi di miglioramento: interventi atti ad aumentare la sicurezza strutturale preesistente, senza necessariamente raggiungere i livelli di sicurezza fissati al § 8.4.3;
- interventi di adeguamento: interventi atti ad aumentare la sicurezza strutturale preesistente, conseguendo i livelli di sicurezza fissati al § 8.4.3.

Solo gli interventi di miglioramento ed adeguamento sono sottoposti a collaudo statico.

Per gli interventi di miglioramento e di adeguamento l'esclusione di provvedimenti in fondazione dovrà essere in tutti i casi motivata esplicitamente dal progettista, attraverso una verifica di idoneità del sistema di fondazione in base ai criteri indicati nel §8.3.

Qualora l'intervento preveda l'inserimento di nuovi elementi che richiedano apposite fondazioni, queste ultime dovranno essere verificate con i criteri generali di cui ai precedenti Capitoli 6 e 7, così come richiesto per le nuove costruzioni.

Per i beni di interesse culturale ricadenti in zone dichiarate a rischio sismico, ai sensi del comma 4 dell'art. 29 del DLgs 22 gennaio 2004, n. 42 "Codice dei beni culturali e del paesaggio", è in ogni caso possibile limitarsi ad interventi di miglioramento effettuando la relativa valutazione della sicurezza.

8.4.1. RIPARAZIONE O INTERVENTO LOCALE

Gli interventi di questo tipo riguarderanno singole parti e/o elementi della struttura. Essi non debbono cambiare significativamente il comportamento globale della costruzione e sono volti a conseguire una o più delle seguenti finalità:

- ripristinare, rispetto alla configurazione precedente al danno, le caratteristiche iniziali di elementi o parti danneggiate;
- migliorare le caratteristiche di resistenza e/o di duttilità di elementi o parti, anche non danneggiati;
- impedire meccanismi di collasso locale;
- modificare un elemento o una porzione limitata della struttura.

Il progetto e la valutazione della sicurezza potranno essere riferiti alle sole parti e/o elementi interessati, documentando le carenze strutturali riscontrate e dimostrando che, rispetto alla configurazione precedente al danno, al degrado o alla variante, non vengano prodotte sostanziali modifiche al comportamento delle altre parti e della struttura nel suo insieme e che gli interventi non comportino una riduzione dei livelli di sicurezza preesistenti.

La relazione di cui al § 8.3 che, in questi casi, potrà essere limitata alle sole parti interessate dall'intervento e a quelle con esse interagenti, dovrà documentare le carenze strutturali riscontrate, risolte e/o persistenti, ed indicare le eventuali conseguenti limitazioni all'uso della costruzione.

Nel caso di interventi di rafforzamento locale, volti a migliorare le caratteristiche meccaniche di elementi strutturali o a limitare la possibilità di meccanismi di collasso locale, è necessario valutare l'incremento del livello di sicurezza locale.

8.4.2. INTERVENTO DI MIGLIORAMENTO

La valutazione della sicurezza e il progetto di intervento dovranno essere estesi a tutte le parti della struttura potenzialmente interessate da modifiche di comportamento, nonché alla struttura nel suo insieme.

Per la combinazione sismica delle azioni, il valore di ζ_E può essere minore dell'unità. A meno di specifiche situazioni relative ai beni culturali, per le costruzioni di classe III ad uso scolastico e di classe IV il valore di ζ_E , a seguito degli interventi di miglioramento, deve essere comunque non minore di 0,6, mentre per le rimanenti costruzioni di classe III e per quelle di classe II il valore di ζ_E , sempre a seguito degli interventi di miglioramento, deve essere incrementato di un valore comunque non minore di 0,1.

Nel caso di interventi che prevedano l'impiego di sistemi di isolamento, per la verifica del sistema di isolamento, si deve avere almeno $\zeta_E = 1,0$.

8.4.3. INTERVENTO DI ADEGUAMENTO

L'intervento di adeguamento della costruzione è obbligatorio quando si intenda:

- a) sopraelevare la costruzione;
- ampliare la costruzione mediante opere ad essa strutturalmente connesse e tali da alterarne significativamente la risposta:
- c) apportare variazioni di destinazione d'uso che comportino incrementi dei carichi globali verticali in fondazione superiori al 10%, valutati secondo la combinazione caratteristica di cui alla equazione 2.5.2 del § 2.5.3, includendo i soli carichi gravitazionali. Resta comunque fermo l'obbligo di procedere alla verifica locale delle singole parti e/o elementi della struttura, anche se interessano porzioni limitate della costruzione;
- d) effettuare interventi strutturali volti a trasformare la costruzione mediante un insieme sistematico di opere che portino ad un sistema strutturale diverso dal precedente; nel caso degli edifici, effettuare interventi strutturali che trasformano il sistema strutturale mediante l'impiego di nuovi elementi verticali portanti su cui grava almeno il 50% dei carichi gravitazionali complessivi riferiti ai singoli piani.
- e) apportare modifiche di classe d'uso che conducano a costruzioni di classe III ad uso scolastico o di classe IV.

In ogni caso, il progetto dovrà essere riferito all'intera costruzione e dovrà riportare le verifiche dell'intera struttura post-intervento, secondo le indicazioni del presente capitolo.

Nei casi a), b) e d), per la verifica della struttura, si deve avere $\zeta_E \ge 1,0$. Nei casi c) ed e) si può assumere $\zeta_E \ge 0,80$.

Resta comunque fermo l'obbligo di procedere alla verifica locale delle singole parti e/o elementi della struttura, anche se interessano porzioni limitate della costruzione.

Una variazione dell'altezza dell'edificio dovuta alla realizzazione di cordoli sommitali o a variazioni della copertura che non comportino incrementi di superficie abitabile, non è considerato ampliamento, ai sensi della condizione a). In tal caso non è necessario procedere all'adeguamento, salvo che non ricorrano una o più delle condizioni di cui agli altri precedenti punti.

8.5. DEFINIZIONE DEL MODELLO DI RIFERIMENTO PER LE ANALISI

Nelle costruzioni esistenti le situazioni concretamente riscontrabili sono le più diverse ed è quindi impossibile prevedere regole specifiche per tutti i casi. Di conseguenza, il modello per la valutazione della sicurezza dovrà essere definito e giustificato dal progettista, caso per caso, in relazione al comportamento strutturale atteso, tenendo conto delle indicazioni generali di seguito esposte.

8.5.1. ANALISI STORICO-CRITICA

Ai fini di una corretta individuazione del sistema strutturale e del suo stato di sollecitazione è importante ricostruire il processo di realizzazione e le successive modificazioni subite nel tempo dalla costruzione, nonché gli eventi che l'hanno interessata.

8.5.2. RILIEVO

Il rilievo geometrico-strutturale dovrà essere riferito alla geometria complessiva, sia della costruzione, sia degli elementi costruttivi, comprendendo i rapporti con le eventuali strutture in aderenza. Nel rilievo dovranno essere rappresentate le modificazioni intervenute nel tempo, come desunte dall'analisi storico-critica.

Il rilievo deve individuare l'organismo resistente della costruzione, tenendo anche presenti la qualità e lo stato di conservazione dei materiali e degli elementi costitutivi.

Dovranno altresì essere rilevati i dissesti, in atto o stabilizzati, ponendo particolare attenzione all'individuazione dei quadri fessurativi e dei meccanismi di danno

8.5.3. CARATTERIZZAZIONE MECCANICA DEI MATERIALI

Per conseguire un'adeguata conoscenza delle caratteristiche dei materiali e del loro degrado, ci si baserà sulla documentazione già disponibile, su verifiche visive in *situ* e su indagini sperimentali. Le indagini dovranno essere motivate, per tipo e quantità, dal loro effettivo uso nelle verifiche; nel caso di costruzioni sottoposte a tutela, ai sensi del D.Lgs. 42/2004, di beni di interesse storico-artistico o storico-documentale o inseriti in aggregati storici e nel recupero di centri storici o di insediamenti storici , dovrà esserne considerato l'impatto in termini di conservazione. I valori di progetto delle resistenze meccaniche dei materiali verranno valutati sulla base delle indagini e delle prove effettuate sulla struttura, tenendo motivatamente conto dell'entità delle dispersioni, prescindendo dalle classi discretizzate previste nelle norme per le nuove costruzioni. Per le prove di cui alla Circolare 08 settembre 2010, n. 7617/STC o eventuali successive modifiche o interazioni, il prelievo dei campioni dalla struttura e l'esecuzione delle prove stesse devono essere effettuate a cura di un laboratorio di cui all'articolo 59 del DPR 380/2001.

8.5.4. LIVELLI DI CONOSCENZA E FATTORI DI CONFIDENZA

Sulla base degli approfondimenti effettuati nelle fasi conoscitive sopra riportate, saranno individuati i "livelli di conoscenza" dei diversi parametri coinvolti nel modello e definiti i correlati fattori di confidenza, da utilizzare nelle verifiche di sicurezza. Ai fini della scelta del tipo di analisi e dei valori dei fattori di confidenza si distinguono i tre livelli di conoscenza seguenti, ordinati per informazione crescente:

- LC1:
- LC2;
- LC3.

Gli aspetti che definiscono i livelli di conoscenza sono: geometria della struttura, dettagli costruttivi, proprietà dei materiali, connessioni tra i diversi elementi e loro presumibili modalità di collasso.

Specifica attenzione dovrà essere posta alla completa individuazione dei potenziali meccanismi di collasso locali e globali, duttili e fragili.

8.5.5. AZIONI

I valori delle azioni e le loro combinazioni da considerare nel calcolo, sia per la valutazione della sicurezza sia per il progetto degli interventi, sono quelle definite dalla presente norma per le nuove costruzioni, salvo quanto precisato nel presente capitolo. Per i carichi permanenti, un accurato rilievo geometrico-strutturale e dei materiali potrà consentire di adottare coefficienti parziali modificati, assegnando a γσ valori esplicitamente motivati. I valori di progetto delle altre azioni saranno quelli previsti dalla presente norma.

8.6. MATERIALI

Gli interventi sulle strutture esistenti devono essere effettuati con i materiali previsti dalle presenti norme; possono altresì essere utilizzati materiali non tradizionali, purché nel rispetto di normative e documenti di comprovata validità di cui al Capitolo 12.

Nel caso di edifici in muratura è possibile effettuare riparazioni locali o integrazioni con materiale analogo a quello impiegato originariamente nella costruzione, purché durevole e di idonee caratteristiche meccaniche.

8.7. PROGETTAZIONE DEGLI INTERVENTI IN PRESENZA DI AZIONI SISMICHE

Nella progettazione di interventi sulle costruzioni esistenti, specie se soggette ad azioni sismiche, particolare attenzione sarà posta agli aspetti che riguardano la duttilità. Si dovranno quindi assumere le informazioni necessarie a valutare se i dettagli costruttivi, i materiali utilizzati e i meccanismi resistenti siano in grado di sostenere cicli di sollecitazione o deformazione anche in campo anelastico.

8.7.1. COSTRUZIONI IN MURATURA

Nelle costruzioni esistenti in muratura, in particolare negli edifici, si possono manifestare meccanismi, sia locali, sia globali. I meccanismi locali interessano singoli pannelli murari o più ampie porzioni della costruzione e impegnano i pannelli murari prevalentemente fuori del loro piano medio; essi sono favoriti dall'assenza o scarsa efficacia dei collegamenti, sia tra pareti e orizzontamenti, sia negli incroci tra pareti. I meccanismi globali sono quelli che interessano l'intera costruzione e impegnano i pannelli murari prevalentemente nel loro piano medio.

La sicurezza della costruzione deve essere valutata nei confronti di entrambi i tipi di meccanismo.

Per l'analisi sismica dei meccanismi locali si può far ricorso ai metodi dell'analisi limite, tenendo conto, anche se in forma approssimata, della resistenza a compressione della muratura, della tessitura muraria, della qualità della connessione tra pareti murarie e tra pareti e orizzontamenti, della presenza di catene e tiranti. Con tali metodi è possibile valutare la capacità sismica in termini sia di resistenza (applicando un opportuno fattore di comportamento), sia di spostamento (determinando l'andamento dell'azione orizzontale che la struttura è progressivamente in grado di sopportare all'evolversi del meccanismo).

L'analisi sismica globale deve considerare, per quanto possibile, il sistema strutturale reale, con particolare attenzione alla rigidezza e resistenza degli orizzontamenti, e all'efficacia dei collegamenti degli elementi strutturali con gli orizzontamenti e tra loro.

- 293

Nel caso di muratura irregolare, la resistenza a taglio di progetto di un pannello in muratura, per azioni nel suo piano medio, potrà essere calcolata facendo ricorso a formulazioni, alternative rispetto a quelle adottate per opere nuove, purché di comprovata validità.

In presenza di edifici in aggregato, contigui, a contatto od interconnessi con edifici adiacenti, i metodi di verifica di uso generale per gli edifici di nuova costruzione possono risultare inadeguati. Nell'analisi di un edificio facente parte di un aggregato edilizio, infatti, occorre tenere conto delle possibili interazioni derivanti dalla contiguità strutturale con gli edifici adiacenti. A tal fine dovrà essere individuata l'unità strutturale (US) oggetto di studio, evidenziando le azioni che su di essa possono derivare dalle unità strutturali contigue.

L'US dovrà avere continuità da cielo a terra, per quanto riguarda il flusso dei carichi verticali e, di norma, sarà delimitata o da spazi aperti, o da giunti strutturali, o da edifici contigui strutturalmente ma, almeno tipologicamente, diversi. Oltre a quanto normalmente previsto per gli edifici non disposti in aggregato, per gli edifici in aggregato dovranno essere valutati gli effetti di: spinte non contrastate sulle pareti in comune con le US adiacenti, causate da orizzontamenti sfalsati di quota, meccanismi locali derivanti da prospetti non allineati, sia verticalmente sia orizzontalmente, US adiacenti di differente altezza.

L'analisi globale di una singola unità strutturale assume spesso un significato convenzionale e perciò può utilizzare metodologie semplificate. La verifica di una US dotata di orizzontamenti sufficientemente rigidi nel proprio piano può essere svolta, anche per edifici con più di due orizzontamenti, mediante l'analisi statica non lineare, con verifica in termini sia di forze sia di spostamenti, analizzando e verificando separatamente ciascun interpiano dell'edificio, e trascurando la variazione della forza assiale nei maschi murari dovuta all'effetto dell'azione sismica. Con l'esclusione di US d'angolo o di testata, così come di parti di edificio non vincolate o non aderenti su alcun lato ad altre unità strutturali, l'analisi potrà anche essere svolta trascurando gli effetti torsionali, nell'ipotesi che gli orizzontamenti possano unicamente traslare nella direzione dell'azione sismica considerata. Nel caso invece di US d'angolo o di testata è comunque ammesso il ricorso ad analisi semplificate, purché si tenga conto di possibili effetti torsionali e dell'azione aggiuntiva trasferita dalle US adiacenti applicando opportuni coefficienti maggiorativi delle azioni orizzontali.

Qualora gli orizzontamenti dell'edificio non siano sufficientemente rigidi nel proprio piano si potrà procedere all'analisi delle singole pareti o dei sistemi di pareti complanari, essendo ciascuna parete soggetta ai carichi verticali di competenza ed alle corrispondenti azioni del sisma nella direzione parallela alla parete.

8.7.2. COSTRUZIONI IN CALCESTRUZZO ARMATO O IN ACCIAIO

Nelle costruzioni esistenti in calcestruzzo armato o in acciaio soggette ad azioni sismiche viene attivata la capacità di elementi e meccanismi resistenti, che possono essere "duttili" o "fragili".

L'analisi sismica globale deve utilizzare, per quanto possibile, metodi di analisi che consentano di valutare in maniera appropriata sia la resistenza sia la duttilità disponibili. L'impiego di metodi di calcolo lineari richiede al progettista un'opportuna definizione del fattore di comportamento in relazione alle caratteristiche meccaniche, globali e locali, della struttura in esame.

I meccanismi "duttili" si verificano controllando che la domanda non superi la corrispondente capacità in termini di deformazione o di resistenza in relazione al metodo utilizzato; i meccanismi "fragili" si verificano controllando che la domanda non superi la corrispondente capacità in termini di resistenza.

Per il calcolo della capacità di elementi/meccanismi duttili si impiegano le proprietà dei materiali esistenti, determinate secondo le modalità indicate al § 8.5.3, divise per i fattori di confidenza corrispondenti al livello di conoscenza raggiunto.

Per il calcolo della capacità di elementi/meccanismi fragili, le resistenze dei materiali si dividono per i corrispondenti coefficienti parziali e per i fattori di confidenza corrispondenti al livello di conoscenza raggiunto.

Per i materiali nuovi o aggiunti si impiegano le proprietà di calcolo come per le nuove costruzioni.

Nel caso di demolizioni o interventi su organismi in c.a. facenti parte di aggregati edilizi è fatto obbligo al progettista di operare indagini e/o verifiche atte ad accertare, preliminarmente, l'assenza di interazioni con i corpi adiacenti, al fine di poter escludere il prodursi, su di essi, di modifiche in senso negativo del comportamento strutturale a seguito delle demolizioni o degli interventi.

8.7.3. COSTRUZIONI MISTE

Alcune tipologie di costruzioni esistenti possono essere classificate come miste. Situazioni ricorrenti sono:

- costruzioni le cui pareti perimetrali siano in muratura portante e la cui struttura verticale interna sia rappresentata da pilastri (per esempio in c.a. o acciaio);
- costruzioni in muratura su cui gravino sopraelevazioni aventi sistema strutturale, per esempio, in c.a. o acciaio, o edifici in c.a. o acciaio su cui gravino sopraelevazioni in muratura;
- costruzioni in muratura che abbiano subito ampliamenti planimetrici, il cui sistema strutturale (per esempio, in c.a. o acciaio) sia interconnesso con quello preesistente in muratura.

Per queste situazioni è necessario prevedere modellazioni che tengano in considerazione le particolarità strutturali identificate e l'interazione tra elementi strutturali diversi per materiale e rigidezza, ricorrendo, ove necessario, a metodi di analisi non lineare di comprovata validità.

8.7.4. CRITERI E TIPI D'INTERVENTO

Per tutte le tipologie di costruzioni esistenti gli interventi vanno progettati ed eseguiti, per quanto possibile, in modo regolare ed uniforme. L'esecuzione di interventi su porzioni limitate dell'edificio va opportunamente valutata e giustificata, considerando la variazione nella distribuzione delle rigidezze e delle resistenze e la conseguente eventuale interazione con le parti restanti della struttura. Particolare attenzione deve essere posta alla fase esecutiva degli interventi, in quanto una cattiva esecuzione può peggiorare il comportamento globale della costruzione.

La scelta del tipo, della tecnica, dell'entità e dell'urgenza dell'intervento dipende dai risultati della precedente fase di valutazione, dovendo mirare prioritariamente a contrastare lo sviluppo di meccanismi locali e/o di meccanismi fragili e, quindi, a migliorare il comportamento globale della costruzione.

In generale dovranno essere valutati e curati gli aspetti seguenti:

- riparazione di eventuali danni presenti;
- riduzione delle carenze dovute ad errori grossolani;
- miglioramento della capacità deformativa ("duttilità") di singoli elementi;
- riduzione delle condizioni, anche legate alla presenza di elementi non strutturali, che determinano situazioni di forte irregolarità, sia planimetrica sia altimetrica, degli edifici, in termini di massa, resistenza e/o rigidezza;
- riduzione delle masse, anche mediante demolizione parziale o variazione di destinazione d'uso;
- riduzione dell'impegno degli elementi strutturali originari mediante l'introduzione di sistemi d'isolamento o di dissipazione di energia;
- riduzione dell'eccessiva deformabilità degli orizzontamenti, sia nel loro piano che ortogonalmente ad esso;
- miglioramento dei collegamenti degli elementi non strutturali, alla struttura e tra loro;
- incremento della resistenza degli elementi verticali resistenti, tenendo eventualmente conto di una possibile riduzione della duttilità globale per effetto di rinforzi locali;
- realizzazione, ampliamento, eliminazione di giunti sismici o interposizione di materiali atti ad attenuare gli eventuali urti;
- miglioramento del sistema di fondazione, ove necessario.

Interventi su parti non strutturali ed impianti sono necessari quando, in aggiunta a motivi di funzionalità, la loro risposta sismica possa mettere a rischio la vita degli occupanti o produrre danni ai beni contenuti nella costruzione. Per il progetto di interventi atti ad assicurare l'integrità di tali parti valgono le prescrizioni fornite nei §§ 7.2.3 e 7.2.4.

Per le strutture in muratura, inoltre, dovranno essere valutati e curati gli aspetti seguenti:

- miglioramento dei collegamenti tra orizzontamenti e pareti, tra copertura e pareti, tra pareti confluenti in martelli murari o angolate;
- riduzione ed eliminazione delle spinte non contrastate di coperture, archi e volte;
- rafforzamento delle pareti intorno alle aperture.

Per le strutture in c.a. ed in acciaio si prenderanno in considerazione, valutandone l'eventuale necessità e l'efficacia, anche le tipologie di intervento di seguito esposte o loro combinazioni:

- rinforzo di tutti o parte degli elementi;
- aggiunta di nuovi elementi resistenti, quali pareti in c.a., controventi in acciaio, etc.;
- eliminazione di eventuali meccanismi "di piano";
- introduzione di un sistema strutturale aggiuntivo in grado di resistere per intero all'azione sismica di progetto;
- eventuale trasformazione di elementi non strutturali in elementi strutturali, come nel caso di incamiciatura in c.a. di pareti in

Infine, per le strutture in acciaio, potranno essere valutati e curati gli aspetti seguenti:

- miglioramento della stabilità degli elementi e della struttura;
- incremento della resistenza e/o della rigidezza dei collegamenti;
- miglioramento dei dettagli costruttivi nelle zone dissipative;
- introduzione di indebolimenti locali controllati, finalizzati ad un miglioramento del meccanismo di collasso.

8.7.5. ELABORATI DEL PROGETTO DELL'INTERVENTO

Per tutte le tipologie costruttive, il progetto dell'intervento di miglioramento o adeguamento sismico deve almeno comprendere:

- a) l'analisi e la verifica della struttura prima dell'intervento, con identificazione delle carenze e del livello di azione sismica per la quale viene raggiunto lo SLU (e SLE se richiesto);
- b) la scelta, esplicitamente motivata, del tipo di intervento;
- c) la scelta, esplicitamente motivata, delle tecniche e/o dei materiali;
- d) il dimensionamento preliminare dei rinforzi e degli eventuali elementi strutturali aggiuntivi;
- e) l'analisi strutturale della struttura post-intervento;
- f) la verifica della struttura post-intervento, con determinazione del livello di azione sismica per la quale viene raggiunto lo SLU (e SLE se richiesto).

Analogamente si procederà per gli interventi (di riparazione o rafforzamento) locali. In tal caso non si eseguiranno le analisi della struttura e le verifiche ante e post-operam di cui ai punti a), e), f), che saranno sostituite da analoghe verifiche sul singolo elemento o sul meccanismo locale sul quale si interviene, al fine di determinarne gli incrementi di resistenza e/o di duttilità conseguenti all'intervento.

CAPITOLO 9.

COLLAUDO STATICO

9.1. PRESCRIZIONI GENERALI

Il collaudo statico, inteso come procedura disciplinata dalle vigenti leggi di settore, è finalizzato alla valutazione e giudizio sulle prestazioni, come definite dalle presenti norme, delle opere e delle componenti strutturali comprese nel progetto ed eventuali varianti depositati presso gli organi di controllo competenti. In caso di esito positivo, la procedura si conclude con l'emissione del certificato di collaudo.

Il collaudo statico, tranne casi particolari, va eseguito in corso d'opera.

Le opere non possono essere poste in esercizio prima dell'effettuazione del collaudo statico.

Il collaudo statico di tutte le opere di ingegneria civile regolamentate dalle presenti norme tecniche, deve comprendere i seguenti adempimenti:

- a) controllo di quanto prescritto per le opere eseguite sia con materiali regolamentati dal DPR 6 giugno 2001 n. 380, leggi n. 1086/71 e n. 64/74 sia con materiali diversi;
- b) ispezione dell'opera nelle varie fasi costruttive degli elementi strutturali ove il collaudatore sia nominato in corso d'opera, e dell'opera nel suo complesso, con particolare riguardo alle parti strutturali più importanti.

L'ispezione dell'opera verrà eseguita alla presenza del Direttore dei lavori e del Costruttore, confrontando in contraddittorio il progetto depositato in cantiere con il costruito.

Il Collaudatore controllerà altresì che siano state messe in atto le prescrizioni progettuali e siano stati eseguiti i controlli sperimentali. Quando la costruzione è eseguita in procedura di garanzia di qualità, il Collaudatore deve prendere conoscenza dei contenuti dei documenti di controllo qualità e del registro delle non-conformità.

- c) esame dei certificati delle prove sui materiali, articolato:
 - nell'accertamento del numero dei prelievi effettuati e della sua conformità alle prescrizioni contenute al Capitolo 11 delle presenti norme tecniche;
 - nel controllo che i risultati ottenuti delle prove siano compatibili con i criteri di accettazione fissati nel citato Capitolo 11;
- d) esame dei certificati di cui ai controlli in stabilimento e nel ciclo produttivo, previsti al Capitolo 11;
- e) controllo dei verbali e dei risultati delle eventuali prove di carico fatte eseguire dal Direttore dei lavori.
- Il Collaudatore, nell'ambito delle sue responsabilità, dovrà inoltre:
- f) esaminare il progetto dell'opera, l'impostazione generale, della progettazione nei suoi aspetti strutturale e geotecnico, gli schemi di calcolo e le azioni considerate;
- g) esaminare le indagini eseguite nelle fasi di progettazione e costruzione come prescritte nelle presenti norme;
- h) esaminare la relazione a strutture ultimate del Direttore dei lavori.

Infine, nell'ambito della propria discrezionalità, il Collaudatore potrà richiedere:

- i) di effettuare tutti quegli accertamenti, studi, indagini, sperimentazioni e ricerche utili per formarsi il convincimento della sicurezza, della durabilità e della collaudabilità dell'opera, quali in particolare:
 - prove di carico;
 - prove sui materiali messi in opera, anche mediante metodi non distruttivi;
 - monitoraggio programmato di grandezze significative del comportamento dell'opera da proseguire, eventualmente, anche dopo il collaudo della stessa.

9.2 PROVE DI CARICO

Le prove di carico, ove ritenute necessarie dal Collaudatore, dovranno identificare la corrispondenza del comportamento teorico con quello sperimentale. I materiali degli elementi sottoposti a collaudo devono aver raggiunto le resistenze previste per il loro funzionamento finale in esercizio.

Il programma delle prove, stabilito dal Collaudatore, con l'indicazione delle procedure di carico e delle prestazioni attese deve essere sottoposto al Direttore dei lavori per l'attuazione e reso noto al Progettista e al Costruttore.

Le prove di carico si devono svolgere con le modalità indicate dal Collaudatore che se ne assume la piena responsabilità, mentre, per quanto riguarda la loro materiale attuazione, è responsabile il Direttore dei lavori.

Le prove di carico sono prove di comportamento delle opere sotto le azioni di esercizio. Queste devono essere, in generale, tali da indurre le sollecitazioni massime di esercizio per combinazioni caratteristiche (rare). In relazione al tipo della struttura ed alla natura dei carichi le prove possono essere convenientemente protratte nel tempo, ovvero ripetute su più cicli.

Il giudizio sull'esito della prova è responsabilità del Collaudatore.

L'esito della prova va valutato sulla base dei seguenti elementi:

- le deformazioni si accrescano all'incirca proporzionalmente ai carichi;
- nel corso della prova non si siano prodotte fratture, fessurazioni, deformazioni o dissesti che compromettono la sicurezza o la conservazione dell'opera;
- la deformazione residua dopo la prima applicazione del carico massimo non superi una quota parte di quella totale commisurata ai prevedibili assestamenti iniziali di tipo anelastico della struttura oggetto della prova. Nel caso invece che tale limite venga superato, prove di carico successive devono indicare che la struttura tenda ad un comportamento elastico.
- la deformazione elastica risulti non maggiore di quella calcolata.

Le prove statiche, a giudizio del Collaudatore e in relazione all'importanza dell'opera, possono essere integrate da prove dinamiche e prove a rottura su elementi strutturali.

Nel caso di costruzioni dotate di dispositivi antisismici, ai fini del collaudo statico, di fondamentale importanza è il controllo della posa in opera dei dispositivi, nel rispetto delle tolleranze e delle modalità di posa prescritte dal progetto, nonché la verifica della completa separazione tra sottostruttura e sovrastruttura e tra quest'ultima ed altre strutture adiacenti, con il rigoroso rispetto delle distanze di separazione previste in progetto.

Il collaudatore può altresì disporre specifiche prove dinamiche atte a verificare il comportamento dinamico della costruzione.

9.2.1 STRUTTURE PREFABBRICATE

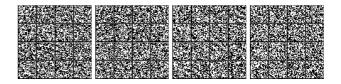
In presenza di strutture prefabbricate poste in opera, fermo restando quanto sopra specificato, si devono eseguire controlli atti a verificare la rispondenza dell'opera ai requisiti di progetto; è inoltre fondamentale il controllo della posa degli elementi prefabbricati e del rispetto del progetto nelle tolleranze e nelle disposizioni delle armature e dei giunti, nonché nella verifica dei dispositivi di vincolo.

9.2.2 PONTI STRADALI

Fermo restando quanto sopra specificato, in particolare si dovrà controllare che le deformazioni sotto i carichi di prova, in termini di abbassamenti, rotazioni ecc, siano comparabili con quelle previste in progetto e che le eventuali deformazioni residue dopo il primo ciclo di carico, determinate come indicato più sopra, non risultino superiori al 15% di quelle massime misurate, ovvero successive prove di carico dimostrino che le deformazioni residue tendano ad esaurirsi.

Per i ponti a campata multipla, la prova di carico deve essere eseguita su almeno un quinto delle campate, secondo le modalità sopra precisate.

Per le opere di significativa rilevanza, le prove statiche andranno completate da prove dinamiche, che misurino la rispondenza del ponte all'eccitazione dinamica, controllando che il periodo fondamentale sperimentale sia confrontabile con quello previsto in progetto.


9.2.3 PONTI FERROVIARI

Oltre a quanto specificato al precedente § 9.2, le prove di carico dovranno essere effettuate adottando carichi che inducano, di norma, le sollecitazioni di progetto dovute ai carichi mobili verticali nello stato limite di esercizio, in considerazione della disponibilità di mezzi ferroviari ordinari e/o speciali. Le deformazioni residue dopo il primo ciclo di carico, determinate come indicato più sopra, non devono risultare superiori al 15% di quelle massime misurate, ovvero successive prove di carico devono dimostrare che le deformazioni residue tendano ad esaurirsi.

Per i ponti a campata multipla, la prova di carico deve essere eseguita su almeno un quinto delle campate, secondo le modalità precisate nel capoverso precedente.

Per le opere di significativa rilevanza, le prove statiche andranno integrate da prove dinamiche, che misurino la rispondenza del ponte all'eccitazione dinamica, controllando che il periodo fondamentale sperimentale sia confrontabile con quello previsto in progetto.

CAPITOLO 10.

REDAZIONE DEI PROGETTI STRUTTURALI ESECUTIVI E DELLE RELAZIONI DI CALCOLO

10.1. CARATTERISTICHE GENERALI

I progetti esecutivi riguardanti le strutture devono essere informati a caratteri di chiarezza espositiva e di completezza nei contenuti e devono inoltre definire compiutamente l'intervento da realizzare.

Restano esclusi i piani operativi di cantiere ed i piani di approvvigionamento.

Il progetto deve comprendere i seguenti elaborati:

- Relazione di calcolo strutturale, comprensiva di una descrizione generale dell'opera e dei criteri generali di analisi e verifica;
- Relazione sui materiali;
- Elaborati grafici, particolari costruttivi;
- Piano di manutenzione della parte strutturale dell'opera;
- Relazione sui risultati sperimentali corrispondenti alle indagini specialistiche ritenute necessarie alla realizzazione dell'opera.

Particolare cura andrà posta nello sviluppare le relazioni di calcolo, con riferimento alle analisi svolte con l'ausilio del calcolo automatico, sia ai fini di facilitare l'interpretazione e la verifica dei calcoli, sia ai fini di consentire elaborazioni indipendenti da parte di soggetti diversi dal redattore del documento.

II progettista resta comunque responsabile dell'intera progettazione strutturale.

Nel caso di analisi e verifica svolte con l'ausilio di codici di calcolo, oltre a quanto sopra specificato, e in particolare oltre alla Relazione generale strutturale, si dovranno seguire le indicazioni fornite in § 10.2.

10.2. ANALISI E VERIFICHE SVOLTE CON L'AUSILIO DI CODICI DI CALCOLO

Qualora l'analisi strutturale e le relative verifiche siano condotte con l'ausilio di codici di calcolo automatico, il progettista, dovrà controllare l'affidabilità dei codici utilizzati e verificare l'attendibilità dei risultati ottenuti.

Il progettista dovrà quindi esaminare preliminarmente la documentazione a corredo del software per valutarne l'affidabilità e soprattutto l'idoneità al caso specifico. In tal senso la documentazione, che sarà fornita dal produttore o dal distributore del software, dovrà contenere una esauriente descrizione delle basi teoriche e degli algoritmi impiegati, l'individuazione dei campi d'impiego, nonché casi prova interamente risolti e commentati, per i quali dovranno essere forniti i file di input necessari a riprodurre l'elaborazione.

10.2.1. RELAZIONE DI CALCOLO

Il progettista dovrà avere cura che nella Relazione di calcolo la presentazione dei risultati stessi sia tale da garantirne la leggibilità, la corretta interpretazione e la riproducibilità. In particolare nella Relazione di calcolo si devono fornire le seguenti indicazioni:

Tipo di analisi svolta

Occorre preliminarmente:

- dichiarare il tipo di analisi strutturale condotta (di tipo statico o dinamico, lineare o non lineare) e le sue motivazioni;
- indicare il metodo adottato per la risoluzione del problema strutturale e le metodologie seguite per la verifica o per il progetto-verifica delle sezioni.
- indicare chiaramente le combinazioni di carico adottate e, nel caso di calcoli non lineari, i percorsi di carico seguiti. In ogni
 caso va motivato l'impiego delle combinazioni o dei percorsi di carico adottati, in specie con riguardo alla effettiva esaustività
 delle configurazioni studiate per la struttura in esame.

Origine e Caratteristiche dei Codici di Calcolo

Occorre indicare con precisione l'origine e le caratteristiche dei codici di calcolo utilizzati riportando titolo, autore, produttore, versione, estremi della licenza d'uso o di altra forma di autorizzazione all'uso.

Modalità di presentazione dei risultati.

La quantità di informazioni che usualmente accompagna l'utilizzo di procedure di calcolo automatico richiede un'attenzione particolare alle modalità di presentazione dei risultati, in modo che questi riassumano, in una sintesi completa ed efficace, il comportamento della struttura per quel particolare tipo di analisi sviluppata. In particolare, è necessario che la Relazione di calcolo riporti almeno le seguenti indicazioni:

- descrizione dell'opera e della tipologia strutturale;
- inquadramento normativo dell'intervento;
- definizione dei parametri di progetto;

- descrizione dei materiali adottati e loro caratteristiche meccaniche;
- criteri di progettazione e modellazione;
- combinazione delle azioni;
- codice di calcolo impiegato;
- rispetto delle verifiche per gli stati limite considerati.

L'esito di ogni elaborazione deve essere sintetizzato in disegni e schemi grafici contenenti, almeno per le parti più sollecitate della struttura, le configurazioni deformate, la rappresentazione grafica delle principali caratteristiche di sollecitazione o delle componenti degli sforzi, i diagrammi di inviluppo associati alle combinazioni dei carichi considerate, gli schemi grafici con la rappresentazione dei carichi applicati e delle corrispondenti reazioni vincolari.

Di tali grandezze, unitamente ai diagrammi ed agli schemi grafici, vanno chiaramente evidenziati le convenzioni sui segni, i valori numerici e le unità di misura di questi nei punti o nelle sezioni significative ai fini della valutazione del comportamento complessivo della struttura, i valori numerici necessari ai fini delle verifiche di misura della sicurezza.

E' opportuno che i tabulati generalmente forniti dai programmi automatici, cui la Relazione di calcolo deve fare riferimento, non facciano parte integrante della Relazione stessa, ma ne costituiscano un allegato.

Informazioni generali sull'elaborazione.

A valle dell'esposizione dei risultati vanno riportate anche informazioni generali guardanti l'esame ed i controlli svolti sui risultati ed una valutazione complessiva dell'elaborazione dal punto di vista del corretto comportamento del modello.

Giudizio motivato di accettabilità dei risultati.

Spetta al progettista il compito di sottoporre i risultati delle elaborazioni a controlli che ne comprovino l'attendibilità. Tale valutazione consisterà nel confronto con i risultati di semplici calcoli, anche di larga massima, eseguiti con riferimento a schemi o soluzioni noti e adottati, ad esempio, in fase di primo proporzionamento della struttura. Inoltre, sulla base di considerazioni riguardanti gli stati tensionali e deformativi determinati, valuterà la consistenza delle scelte operate in sede di schematizzazione e di modellazione della struttura e delle azioni.

Nella relazione devono essere elencati e sinteticamente illustrati i controlli svolti, quali verifiche di equilibrio tra reazioni vincolari e carichi applicati, comparazioni tra i risultati delle analisi e quelli di valutazioni semplificate, etc.

10.2.2. VALUTAZIONE INDIPENDENTE DEL CALCOLO

Nel caso in cui si renda necessaria una valutazione indipendente del calcolo strutturale o comunque nel caso di opere di particolare importanza, i calcoli più importanti devono essere eseguiti nuovamente da soggetto diverso da quello originario mediante programmi di calcolo diversi da quelli usati originariamente e ciò al fine di eseguire un effettivo controllo incrociato sui risultati delle elaborazioni.

CAPITOLO 11.

MATERIALI E PRODOTTI PER USO STRUTTURALE

11.1. GENERALITÀ

Si definiscono materiali e prodotti per uso strutturale, utilizzati nelle opere soggette alle presenti norme, quelli che consentono ad un'opera ove questi sono incorporati permanentemente di soddisfare in maniera prioritaria il requisito base delle opere n.1 "Resistenza meccanica e stabilità" di cui all'Allegato I del Regolamento UE 305/2011.

I materiali ed i prodotti per uso strutturale devono rispondere ai requisiti indicati nel seguito.

I materiali e prodotti per uso strutturale devono essere:

- identificati univocamente a cura del fabbricante, secondo le procedure di seguito richiamate;
- qualificati sotto la responsabilità del fabbricante, secondo le procedure di seguito richiamate;
- accettati dal Direttore dei lavori mediante acquisizione e verifica della documentazione di identificazione e qualificazione, nonché mediante eventuali prove di accettazione.

In particolare, per quanto attiene l'identificazione e la qualificazione, possono configurarsi i seguenti casi:

- A) materiali e prodotti per i quali sia disponibile, per l'uso strutturale previsto, una norma europea armonizzata il cui riferimento sia pubblicato su GUUE. Al termine del periodo di coesistenza il loro impiego nelle opere è possibile soltanto se corredati della "Dichiarazione di Prestazione" e della Marcatura CE, prevista al Capo II del Regolamento UE 305/2011;
- B) materiali e prodotti per uso strutturale per i quali non sia disponibile una norma europea armonizzata oppure la stessa ricada nel periodo di coesistenza, per i quali sia invece prevista la qualificazione con le modalità e le procedure indicate nelle presenti norme. E' fatto salvo il caso in cui, nel periodo di coesistenza della specifica norma armonizzata, il fabbricante abbia volontariamente optato per la Marcatura CE;
- C) materiali e prodotti per uso strutturale non ricadenti in una delle tipologie A) o B. In tali casi il fabbricante dovrà pervenire alla Marcatura CE sulla base della pertinente "Valutazione Tecnica Europea" (ETA), oppure dovrà ottenere un "Certificato di Valutazione Tecnica" rilasciato dal Presidente del Consiglio Superiore dei Lavori Pubblici, previa istruttoria del Servizio Tecnico Centrale, anche sulla base di Linee Guida approvate dal Consiglio Superiore dei Lavori Pubblici, ove disponibili; con decreto del Presidente del Consiglio Superiore dei Lavori Pubblici, su conforme parere della competente Sezione, sono approvate Linee Guida relative alle specifiche procedure per il rilascio del "Certificato di Valutazione Tecnica".

Nel caso C), qualora il fabbricante preveda l'impiego dei prodotti strutturali anche con funzioni di compartimentazione antincendio, dichiarando anche la prestazione in relazione alla caratteristica essenziale resistenza al fuoco, le Linee Guida sono elaborate dal Servizio Tecnico Centrale di concerto, per la valutazione di tale specifico aspetto, con il Dipartimento dei Vigili del Fuoco, del Soccorso Pubblico e della difesa Civile del Ministero dell'Interno.

Il Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici pubblica periodicamente l'elenco delle Linee Guida per il rilascio della Certificazione di Valutazione Tecnica di specifici prodotti.

Ad eccezione di quelli in possesso di Marcatura CE, possono essere impiegati materiali o prodotti conformi ad altre specifiche tecniche qualora dette specifiche garantiscano un livello di sicurezza equivalente a quello previsto nelle presenti norme. Tale equivalenza sarà accertata attraverso procedure all'uopo stabilite dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici, sentito lo stesso Consiglio Superiore.

Al fine di dimostrare l'identificazione, la qualificazione e la tracciabilità dei materiali e prodotti per uso strutturale, il fabbricante, o altro eventuale operatore economico (importatore, distributore o mandatario come definiti ai sensi dell'articolo 2 del Regolamento UE 305/2011), secondo le disposizioni e le competenze di cui al Capo III del Regolamento UE n.305/2011, è tenuto a fornire copia della sopra richiamata documentazione di identificazione e qualificazione (casi A, B o C), i cui estremi devono essere riportati anche sui documenti di trasporto, dal fabbricante fino al cantiere, comprese le eventuali fasi di commercializzazione intermedia, riferiti alla specifica fornitura.

Nel redigere la "Dichiarazione di Prestazione" e la documentazione di qualificazione, il fabbricante si assume la responsabilità della conformità del prodotto da costruzione alle prestazioni dichiarate. Inoltre, il fabbricante dichiara di assumersi la responsabilità della conformità del prodotto da costruzione alla "Dichiarazione dei Prestazione" o alla documentazione di qualificazione ed a tutti i requisiti applicabili.

Per ogni materiale o prodotto identificato e qualificato mediante Marcatura CE è onere del Direttore dei Lavori, in fase di accettazione, accertarsi del possesso della marcatura stessa e richiedere copia della documentazione di marcatura CE e della Dichiarazione di Prestazione di cui al Capo II del Regolamento UE 305/2011, nonché – qualora ritenuto necessario, ai fini della verifica di quanto sopra - copia del certificato di costanza della prestazione del prodotto o di conformità del controllo della produzione in fabbrica, di cui al Capo IV ed Allegato V del Regolamento UE 305/2011, rilasciato da idoneo organismo notificato ai sensi del Capo VII dello stesso Regolamento (UE) 305/2011.

Per i prodotti non qualificati mediante la Marcatura CE, il Direttore dei Lavori dovrà accertarsi del possesso e del regime di validità della documentazione di qualificazione (caso B) o del Certificato di Valutazione Tecnica (caso C). I fabbricanti possono usare come Certificati di Valutazione Tecnica i Certificati di Idoneità tecnica all'impiego, già rilasciati dal Servizio Tecnico Centrale prima dell'entrata in vigore delle presenti norme tecniche, fino al termine della loro validità.

Sarà inoltre onere del Direttore dei Lavori, nell'ambito dell'accettazione dei materiali prima della loro installazione, verificare che tali prodotti corrispondano a quanto indicato nella documentazione di identificazione e qualificazione, nonché accertare l'idoneità all'uso specifico del prodotto mediante verifica delle prestazioni dichiarate per il prodotto stesso nel rispetto dei requisiti stabiliti dalla normativa tecnica applicabile per l'uso specifico e dai documenti progettuali, con particolare riferimento alla *Relazione sui materiali*, di cui al § 10.1.

La mancata rispondenza alle prescrizioni sopra riportate comporta il divieto di impiego del materiale o prodotto.

Al termine dei lavori che interessano gli elementi strutturali, il Direttore dei Lavori predispone, nell'ambito della *Relazione a struttura ultimata* di cui all'articolo 65 del DPR.380/01, una sezione specifica relativa ai controlli e prove di accettazione sui materiali e prodotti strutturali, nella quale sia data evidenza documentale riguardo all'identificazione e qualificazione dei materiali e prodotti, alle prove di accettazione ed alle eventuali ulteriori valutazioni sulle prestazioni.

Il Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici potrà effettuare attività di vigilanza presso i cantieri e i luoghi di lavorazione per verificare la corretta applicazione delle presenti disposizioni, ai sensi del Capo V del D.Lgs. 106/2017 e del Capo VIII del Regolamento UE 305/2011.

Le prove su materiali e prodotti, a seconda delle specifiche procedure applicabili, come specificato di volta in volta nel seguito, devono generalmente essere effettuate da:

- a) laboratori di prova notificati ai sensi del Capo VII del Regolamento UE 305/2011;
- b) laboratori di cui all'art. 59 del DPR 380/2001;
- c) altri laboratori, dotati di adeguata competenza ed idonee attrezzature, previo nulla osta del Servizio Tecnico Centrale;

Qualora si applichino specifiche tecniche europee armonizzate, ai fini della marcatura CE, le attività di certificazione di prodotto o del controllo di produzione in fabbrica e di prova dovranno essere eseguite dai soggetti previsti dal relativo sistema di valutazione e verifica della costanza delle prestazioni, di cui al Capo IV ed Allegato V del Regolamento UE 305/2011, applicabile al prodotto

I fabbricanti di materiali, prodotti o componenti disciplinati nella presente norma devono dotarsi di adeguate procedure di controllo di produzione in fabbrica. Per controllo di produzione nella fabbrica si intende il controllo permanente della produzione, effettuato dal fabbricante. Tutte le procedure e le disposizioni adottate dal fabbricante devono essere documentate sistematicamente ed essere a disposizione di qualsiasi soggetto od ente di controllo che ne abbia titolo.

Qualora il fabbricante non sia stabilito sul territorio dell'Unione Europea, questi dovrà nominare un *mandatario* stabilito sul territorio dell'Unione autorizzato ad agire per conto del Fabbricante in relazione ai compiti indicati nel mandato, nel rispetto dell'articolo 12 del Regolamento (UE) n. 305/2011.

Il richiamo alle specifiche tecniche armonizzate, di cui al Regolamento UE 305/2011, contenuto nella presente norma deve intendersi riferito all'ultima versione aggiornata, salvo diversamente specificato. Il richiamo alle specifiche tecniche volontarie UNI, EN e ISO contenute nella presente norma deve intendersi riferito alla data di pubblicazione se indicata, oppure, laddove non indicata, all'ultima versione aggiornata. Con successivo provvedimento si aggiornano periodicamente gli elenchi delle specifiche tecniche volontarie UNI, EN ed ISO richiamate nella presente norma.

11.2. CALCESTRUZZO

Le Norme contenute nel presente paragrafo si applicano al calcestruzzo per usi strutturali, armato e non, normale e precompresso di cui al § 4.1.

11.2.1. SPECIFICHE PER IL CALCESTRUZZO

La prescrizione del calcestruzzo all'atto del progetto deve essere caratterizzata almeno mediante la classe di resistenza, la classe di consistenza al getto ed il diametro massimo dell'aggregato, nonché la classe di esposizione ambientale, di cui alla norma UNI EN 206:2016. Nel caso di impiego di armature di pre- o post-tensione permanentemente incorporate nei getti è obbligatoria anche l'individuazione della classe di contenuto in cloruri. La classe di resistenza è contraddistinta dai valori caratteristici delle resistenze cubica $R_{\rm ck}$ e cilindrica $f_{\rm ck}$ a compressione uniassiale, misurate rispettivamente su cubi di spigolo 150 mm e su cilindri di diametro 150 mm e di altezza 300 mm .

Inoltre, si dovranno dare indicazioni in merito ai processi di maturazione ed alle procedure di posa in opera, facendo utile riferimento alla norma UNI EN 13670, alle Linee Guida per la messa in opera del calcestruzzo strutturale ed alle Linee Guida per la valutazione delle caratteristiche del calcestruzzo in opera elaborate e pubblicate dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici.

La resistenza caratteristica a compressione è definita come la resistenza per la quale si ha il 5% di probabilità di trovare valori inferiori. Nelle presenti norme la resistenza caratteristica designa quella dedotta da prove su provini come sopra descritti, confezionati e stagionati come specificato al § 11.2.4, eseguite a 28 giorni di maturazione. Potranno essere indicati altri tempi di maturazione a cui riferire le misure di resistenza ed il corrispondente valore caratteristico. Inoltre, si dovrà tener conto degli effetti prodotti da eventuali processi accelerati di maturazione.

Il conglomerato per il getto delle strutture di un'opera o di parte di essa si considera omogeneo ai fini del controllo (secondo le prestazioni), se possiede le medesime caratteristiche prestazionali (classe di resistenza e classe di esposizione).

11.2.2. CONTROLLI DI QUALITÀ DEL CALCESTRUZZO

Il calcestruzzo deve essere prodotto in regime di controllo di qualità, con lo scopo di garantire che rispetti le prescrizioni definite in sede di progetto.

Il controllo si articola nelle seguenti fasi:

Valutazione preliminare

Serve a determinare, prima dell'inizio della costruzione delle opere, la miscela per produrre il calcestruzzo in accordo con le prescrizioni di progetto.

Controllo di produzione

Riguarda il controllo da eseguire sul calcestruzzo durante la produzione con processo industrializzato del calcestruzzo stesso.

Controllo di accettazione

Riguarda il controllo da eseguire sul calcestruzzo utilizzato per l'esecuzione dell'opera, con prelievo effettuato contestualmente al getto dei relativi elementi strutturali.

Prove complementari

Sono prove che vengono eseguite, ove necessario, a complemento delle prove di accettazione.

Le prove di accettazione e le eventuali prove complementari, compresi i carotaggi di cui al punto 11.2.6, devono essere eseguite e certificate dai laboratori di cui all'art. 59 del DPR n. 380/2001.

Il costruttore resta comunque responsabile della qualità del calcestruzzo posto in opera, che sarà controllata dal Direttore dei Lavori, secondo le procedure di cui al § 11.2.5.

11.2.3. VALUTAZIONE PRELIMINARE

Il costruttore, prima dell'inizio della costruzione dell'opera, deve effettuare idonee prove preliminari di studio ed acquisire idonea documentazione relativa ai componenti, per ciascuna miscela omogenea di calcestruzzo da utilizzare, al fine di ottenere le prestazioni richieste dal progetto.

Nel caso di forniture provenienti da impianto di produzione industrializzata con certificato di controllo della produzione in fabbrica previsto al § 11.2.8, tale documentazione è costituita da quella di identificazione, qualificazione e controllo dei prodotti da fornire.

Il Direttore dei Lavori ha l'obbligo di acquisire, prima dell'inizio della costruzione, la documentazione relativa alla valutazione preliminare delle prestazioni e di accettare le tipologie di calcestruzzo da fornire, con facoltà di far eseguire ulteriori prove preliminari. Il Direttore dei Lavori ha comunque l'obbligo di eseguire controlli sistematici in corso d'opera per verificare la corrispondenza delle caratteristiche del calcestruzzo fornito rispetto a quelle stabilite dal progetto.

11.2.4. PRELIEVO E PROVA DEI CAMPIONI

Un prelievo consiste nel prelevare dagli impasti, al momento della posa in opera ed alla presenza del Direttore dei Lavori o di persona di sua fiducia, il calcestruzzo necessario per la confezione di un gruppo di due provini.

La media delle resistenze a compressione dei due provini di un prelievo rappresenta la "Resistenza di prelievo" che costituisce il valore mediante il quale vengono eseguiti i controlli del calcestruzzo. Il prelievo non viene accettato se la differenza fra i valori di resistenza dei due provini supera il 20% del valore inferiore; in tal caso si applicano le procedure di cui al §11.2.5.3.

È obbligo del Direttore dei Lavori prescrivere ulteriori prelievi rispetto al numero minimo, di cui ai successivi paragrafi, tutte le volte che variazioni di qualità e/o provenienza dei costituenti dell'impasto possano far presumere una variazione di qualità del calcestruzzo stesso, tale da non poter più essere considerato omogeneo.

Per la preparazione, la forma, le dimensioni e la stagionatura dei provini di calcestruzzo vale quanto indicato nelle norme UNI EN 12390-1:2012 e UNI EN 12390-2:2009.

Circa il procedimento da seguire per la determinazione della resistenza a compressione dei provini di calcestruzzo vale quanto indicato nelle norme UNI EN 12390-3:2009 e UNI EN 12390-4:2002.

Circa il procedimento da seguire per la determinazione della massa volumica vale quanto indicato nella norma UNI EN 12390-7:2009.

11.2.5. CONTROLLO DI ACCETTAZIONE

Il controllo di accettazione è eseguito dal Direttore dei Lavori su ciascuna miscela omogenea e si configura, in funzione del quantitativo di calcestruzzo in accettazione, nel:

- controllo di tipo A di cui al § 11.2.5.1;
- controllo di tipo B di cui al § 11.2.5.2.

Il controllo di accettazione è positivo ed il quantitativo di calcestruzzo accettato se risultano verificate le disuguaglianze di cui alla Tab. 11.2.I seguente:

Tab. 11.2.I

Controllo di tipo A	Controllo di tipo B
	$R_{c,min} \ge R_{ck} - 3.5$
$R_{cm28} \ge R_{ck} + 3,5$	$R_{cm28} \ge R_{ck} + 1.48 \text{ s}$
(N° prelievi: 3)	(N° prelievi ≥ 15)

Ove: R_{cm28} = resistenza media dei prelievi (N/mm²); $R_{c,min}$ = minore valore di resistenza dei prelievi (N/mm²); $S_{c,min}$ = scarto quadratico medio

11.2.5.1 CONTROLLO DI TIPO A

Ogni controllo di tipo A è riferito ad un quantitativo di miscela omogenea non maggiore di 300 m³ ed è costituito da tre prelievi, ciascuno dei quali eseguito su un massimo di 100 m³ di getto di miscela omogenea. Risulta quindi un controllo di accettazione ogni 300 m³ massimo di getto. Per ogni giorno di getto va comunque effettuato almeno un prelievo.

Nelle costruzioni con meno di 100 m³ di getto di miscela omogenea, fermo restando l'obbligo di almeno 3 prelievi e del rispetto delle limitazioni di cui sopra, è consentito derogare dall'obbligo di prelievo giornaliero.

11.2.5.2 CONTROLLO DI TIPO B

Nella realizzazione di opere strutturali che richiedano l'impiego di più di 1500 m³ di miscela omogenea è obbligatorio il controllo di accettazione di tipo statistico (tipo B).

Il controllo è riferito ad una miscela omogenea e va eseguito con frequenza non minore di un controllo ogni 1500 m³ di calcestruzzo.

Ogni controllo di accettazione di tipo B è costituito da almeno 15 prelievi, ciascuno dei quali eseguito su 100 m³ di getto di miscela omogenea. Per ogni giorno di getto va comunque effettuato almeno un prelievo.

Se si eseguono controlli statistici accurati, l'interpretazione dei risultati sperimentali può essere svolta con i metodi completi dell'analisi statistica assumendo la legge di distribuzione più corretta e il suo valor medio, unitamente al coefficiente di variazione (rapporto tra deviazione standard e valore medio). Non sono accettabili calcestruzzi con coefficiente di variazione superiore a 0,3. Per calcestruzzi con coefficiente di variazione (s/R_m) superiore a 0,15 occorrono controlli più accurati, integrati con prove complementari di cui al §11.2.7.

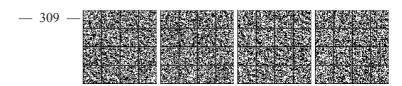
Infine, la resistenza caratteristica R_{ck} di progetto dovrà essere minore del valore sperimentale corrispondente al frattile inferiore 5% delle resistenze di prelievo e la resistenza minima di prelievo $R_{c,min}$ dovrà essere maggiore del valore corrispondente al frattile inferiore 1%.

11.2.5.3 Prescrizioni comuni per entrambi i criteri di controllo

Il prelievo dei provini per il controllo di accettazione va eseguito alla presenza del Direttore dei Lavori o di un tecnico di sua fiducia che provvede alla redazione di apposito verbale di prelievo e dispone l'identificazione dei provini mediante sigle, etichettature indelebili, ecc.; la certificazione effettuata dal laboratorio prove materiali deve riportare riferimento a tale verbale.

Il laboratorio incaricato di effettuare le prove sul calcestruzzo provvede all'accettazione dei campioni accompagnati dalla lettera di richiesta sottoscritta dal direttore dei lavori. Il laboratorio verifica lo stato dei provini e la documentazione di riferimento ed in caso di anomalie riscontrate sui campioni oppure di mancanza totale o parziale degli strumenti idonei per la identificazione degli stessi, deve sospendere l'esecuzione delle prove e darne notizia al Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici.

Il prelievo potrà anche essere eseguito dallo stesso laboratorio incaricato della esecuzione delle prove. I laboratori devono conservare i campioni sottoposti a prova per almeno trenta giorni dopo l'emissione dei certificati di prova, in modo da consentirne l'identificabilità e la rintracciabilità.


La domanda di prove al laboratorio deve essere sottoscritta dal Direttore dei Lavori e deve contenere precise indicazioni sulla posizione delle strutture interessate da ciascun prelievo.

Le prove non richieste dal Direttore dei Lavori non possono fare parte dell'insieme statistico che serve per la determinazione della resistenza caratteristica del materiale.

Le prove a compressione vanno eseguite conformemente alle norme UNI EN 12390-3:2009, tra il 28° e il 30° giorno di maturazione e comunque entro 45 giorni dalla data di prelievo. In caso di mancato rispetto di tali termini le prove di compressione vanno integrate da quelle riferite al controllo della resistenza del calcestruzzo in opera.

I certificati di prova emessi dai laboratori devono contenere almeno:

- l'identificazione del laboratorio che rilascia il certificato;
- una identificazione univoca del certificato (numero di serie e data di emissione) e di ciascuna sua pagina, oltre al numero totale di pagine;
- l'identificazione del committente dei lavori in esecuzione e del cantiere di riferimento;
- il nominativo del Direttore dei Lavori che richiede la prova;

- la descrizione, l'identificazione e la data di prelievo dei campioni da provare;
- la data di ricevimento dei campioni e la data di esecuzione delle prove;
- l'identificazione delle specifiche di prova o la descrizione del metodo o procedura adottata, con l'indicazione delle norme di riferimento per l'esecuzione della stessa;
- le dimensioni effettivamente misurate dei campioni provati, dopo eventuale rettifica;
- le modalità di rottura dei campioni;
- la massa volumica del campione;
- i valori delle prestazioni misurate.

Per gli elementi prefabbricati di serie, realizzati con processo industrializzato, sono valide le specifiche indicazioni di cui al § 11.8.3.1

L'opera o la parte di opera realizzata con il calcestruzzo non conforme ai controlli di accettazione non può essere accettata finché la non conformità non è stata definitivamente risolta. Il costruttore deve procedere ad una verifica delle caratteristiche del calcestruzzo messo in opera mediante l'impiego di altri mezzi d'indagine, secondo quanto prescritto dal Direttore dei Lavori e conformemente a quanto indicato nel successivo § 11.2.6. Qualora i suddetti controlli confermino la non conformità del calcestruzzo, si deve procedere, sentito il progettista, ad un controllo teorico e/o sperimentale della sicurezza della struttura interessata dal quantitativo di calcestruzzo non conforme, sulla base della resistenza ridotta del calcestruzzo.

Qualora non fosse possibile effettuare la suddetta verifica delle caratteristiche del calcestruzzo, oppure i risultati del controllo teorico e/o sperimentale non risultassero soddisfacenti, si può: conservare l'opera o parte di essa per un uso compatibile con le diminuite caratteristiche prestazionali accertate, eseguire lavori di consolidamento oppure demolire l'opera o parte di essa.

I controlli di accettazione sono obbligatori ed il collaudatore è tenuto a verificarne la validità, qualitativa e quantitativa; ove ciò non fosse rispettato, il collaudatore è tenuto a far eseguire delle prove che attestino le caratteristiche del calcestruzzo, seguendo la medesima procedura che si applica quando non risultino rispettati i limiti fissati dai controlli di accettazione.

11.2.6. CONTROLLO DELLA RESISTENZA DEL CALCESTRUZZO IN OPERA

La resistenza del calcestruzzo nella struttura dipende dalla resistenza del calcestruzzo messo in opera, dalla sua posa e costipazione, dalle condizioni ambientali durante il getto e dalla maturazione.

Nel caso in cui:

- a) le resistenze a compressione dei provini prelevati durante il getto non soddisfino i criteri di accettazione della resistenza caratteristica prevista nel progetto, oppure
- b) sorgano dubbi sulle modalità di confezionamento, conservazione, maturazione e prova dei provini di calcestruzzo, oppure
- c) sorgano dubbi sulle modalità di posa in opera, compattazione e maturazione del calcestruzzo, oppure
- d) si renda necessario valutare a posteriori le proprietà di un calcestruzzo precedentemente messo in opera,
- si può procedere ad una valutazione delle caratteristiche di resistenza attraverso una serie di prove sia distruttive che non distruttive.

Tali prove non sono, in ogni caso, sostitutive dei controlli di accettazione, ma potranno servire al Direttore dei Lavori od al collaudatore per formulare un giudizio sul calcestruzzo in opera.

Il valore caratteristico della resistenza del calcestruzzo in opera (definita come resistenza caratteristica in situ, Rokis o fokis) è in genere minore del valore della resistenza caratteristica assunta in fase di progetto Rok o fok. Per i soli aspetti relativi alla sicurezza strutturale e senza pregiudizio circa eventuali carenze di durabilità, è accettabile un valore caratteristico della resistenza in situ non inferiore all'85% della resistenza caratteristica assunta in fase di progetto. Per la modalità di determinazione della resistenza a compressione in situ, misurata con tecniche opportune (distruttive e non distruttive), si potrà fare utile riferimento alle norme UNI EN 12504-1, UNI EN 12504-2, UNI EN 12504-3, UNI EN 12504-4. La resistenza caratteristica in situ va calcolata secondo quanto previsto nella norma UNI EN 13791:2008, ai §§ 7.3.2 e 7.3.3, considerando l'approccio B se il numero di carote è minore di 15, oppure l'approccio A se il numero di carote è non minore di 15, in accordo alle Linee Guida per la messa in opera del calcestruzzo strutturale e per la valutazione delle caratteristiche meccaniche del calcestruzzo elaborate e pubblicate dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici.

11.2.7. PROVE COMPLEMENTARI

Sono prove che eventualmente si eseguono al fine di stimare la resistenza del calcestruzzo in corrispondenza di particolari fasi di costruzione (precompressione, messa in opera) o in condizioni particolari di utilizzo (temperature eccezionali, ecc.).

Il procedimento di controllo è uguale a quello dei controlli di accettazione.

Tali prove non possono essere sostitutive dei controlli di accettazione che vanno riferiti a provini confezionati e maturati secondo le prescrizioni del punto 11.2.4.

I risultati di tali prove potranno servire al Direttore dei Lavori od al collaudatore per formulare un giudizio sul calcestruzzo in opera.

11.2.8. PRESCRIZIONI RELATIVE AL CALCESTRUZZO CONFEZIONATO CON PROCESSO INDUSTRIALIZZATO

Per calcestruzzo confezionato con processo industrializzato si intende quello prodotto mediante impianti, strutture e tecniche organizzate sia in cantiere che in uno stabilimento esterno al cantiere stesso.

Gli impianti per la produzione con processo industrializzato del calcestruzzo disciplinato dalle presenti norme devono essere idonei ad una produzione costante, disporre di apparecchiature adeguate per il confezionamento, nonché di personale esperto e di attrezzature idonee a provare, valutare e mantenere la qualità del prodotto.

Gli impianti devono dotarsi di un sistema permanente di controllo interno della produzione allo scopo di assicurare che il prodotto risponda ai requisiti previsti dalle presenti norme e che tale rispondenza sia costantemente mantenuta fino all'impiego.

Il sistema di controllo della produzione di calcestruzzo confezionato con processo industrializzato in impianti di un fornitore, predisposto in coerenza con la norma UNI EN ISO 9001, deve fare riferimento alle specifiche indicazioni contenute nelle *Linee Guida per la produzione, il trasporto ed il controllo del calcestruzzo preconfezionato* elaborate dal Servizio Tecnico Centrale del Consiglio Superiore dei LL.PP.

Detto sistema di controllo deve essere certificato da organismi terzi indipendenti che operano in coerenza con la norma UNI CEI EN ISO/IEC 17021-1, autorizzati dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici sulla base di criteri appositamente emanati dal Consiglio Superiore dei Lavori Pubblici.

I documenti che accompagnano ogni fornitura di calcestruzzo confezionato con processo industrializzato devono indicare gli estremi di tale certificazione.

Nel caso in cui l'impianto di produzione industrializzata appartenga al costruttore nell'ambito di uno specifico cantiere, la certificazione di cui sopra non è richiesta se il sistema di gestione della qualità del costruttore - predisposto in coerenza con la norma UNI EN ISO 9001 e certificato da un organismo accreditato - prevede l'esistenza e l'applicazione di un sistema di controllo della produzione dell'impianto, conformemente alle specifiche indicazioni contenute nelle Linee Guida per la produzione, il trasporto ed il controllo del calcestruzzo preconfezionato elaborate dal Servizio Tecnico Centrale del Consiglio Superiore dei LL.PP.

Il Direttore dei Lavori, che è tenuto a verificare quanto sopra indicato ed a rifiutare le eventuali forniture provenienti da impianti non conformi, dovrà comunque effettuare le prove di accettazione previste al § 11.2.5 e ricevere, prima dell'inizio della fornitura, copia della certificazione del controllo del processo produttivo.

Per produzioni di calcestruzzo fino a 1500 m³ di miscela omogenea, effettuate direttamente in cantiere, mediante processi di produzione temporanei e non industrializzati, la stessa deve essere confezionata sotto la diretta responsabilità del costruttore. Il Direttore dei Lavori deve acquisire, prima dell'inizio della produzione, documentazione relativa ai criteri ed alle prove che hanno portato alla determinazione delle prestazioni di ciascuna miscela omogenea di conglomerato, così come indicato al § 11.2.3.

11.2.9. COMPONENTI DEL CALCESTRUZZO

11.2.9.1 LEGANTI

Nelle opere oggetto delle presenti norme devono impiegarsi esclusivamente i leganti idraulici previsti dalle disposizioni vigenti in materia, dotati di marcatura CE in conformità alla norma europea armonizzata UNI EN 197-1 oppure ad uno specifico ETA, purché idonei all'impiego previsto nonché, per quanto non in contrasto, conformi alle prescrizioni di cui alla Legge 26 maggio 1965 n. 595.

È escluso l'impiego di cementi alluminosi.

L'impiego dei cementi richiamati all'art. 1, lettera C della legge 26 maggio 1965 n. 595, è limitato ai calcestruzzi per sbarramenti di ritenuta.

Per la realizzazione di dighe ed altre simili opere massive dove è richiesto un basso calore di idratazione devono essere utilizzati i cementi speciali con calore di idratazione molto basso dotati di marcatura CE in conformità alla norma europea armonizzata UNI EN 14216.

I leganti idraulici, qualora immessi sul mercato da un distributore attraverso un centro di distribuzione, devono essere all'origine dotati della marcatura CE sopra richiamata. Il centro di distribuzione, così come definito nella norma UNI EN 197-2, deve possedere un'autorizzazione all'uso di detta marcatura concessa al distributore da un organismo di certificazione notificato, in base alle procedure della norma UNI EN 197-2, a dimostrazione che la conformità del prodotto marcato CE è stata mantenuta durante le fasi di trasporto, ricevimento, deposito, imballaggio e spedizione, unitamente alla sua qualità ed identità.

Qualora il calcestruzzo risulti esposto a condizioni ambientali chimicamente aggressive si devono utilizzare cementi con adeguate caratteristiche di resistenza alle specifiche azioni aggressive. Specificamente in ambiente solfatico si devono impiegare cementi resistenti ai solfati conformi alla norma europea armonizzata UNI EN 197-1 ed alla norma UNI 9156:1997 o, in condizioni di dilavamento, cementi resistenti al dilavamento conformi alla norma UNI 9606:2015.

11.2.9.2 AGGREGATI

Sono idonei alla produzione di calcestruzzo per uso strutturale gli aggregati ottenuti dalla lavorazione di materiali naturali, artificiali, oppure provenienti da processi di riciclo conformi alla norma europea armonizzata UNI EN 12620 e, per gli aggregati leggeri, alla norma europea armonizzata UNI EN 13055.

Il sistema di valutazione e verifica della costanza della prestazione, di tali aggregati, ai sensi del Regolamento UE 305/2011, è indicato nella seguente Tab. 11.2.II.

Tab. 11.2.II

Specifica Tecnica Europea armonizzata di riferimento	Uso Previsto	Sistema di Valutazione e Verifica della Costanza della Prestazione
Aggregati per calcestruzzo UNI EN 12620 e UNI EN 13055-1	Calcestruzzo strutturale	2 +

È consentito l'uso di aggregati grossi provenienti da riciclo, secondo i limiti di cui alla Tab. 11.2.III a condizione che la miscela di calcestruzzo, confezionato con aggregati riciclati, venga preliminarmente qualificata e documentata, nonché accettata in cantiere, attraverso le procedure di cui alle presenti norme.

Tab. 11.2.III

Origine del materiale da riciclo	Classe del calcestruzzo	percentuale di impiego
demolizioni di edifici (macerie)	= C 8/10	fino al 100%
demolizioni di solo calcestruzzo e c.a.	≤ C20/25	fino al 60%
(frammenti di calcestruzzo≥90%,	≤ C30/37	≤30%
UNI EN 933-11:2009)	≤ C45/55	≤ 20%
Riutilizzo di calcestruzzo interno ne-	Classe minore del cal- cestruzzo di origine	fino al 15%
gli stabilimenti di prefabbricazione qualificati - da qualsiasi classe	Stessa classe del calce- struzzo di origine	fino al 10%

Per quanto riguarda i controlli di accettazione degli aggregati da effettuarsi a cura del Direttore dei Lavori, questi sono finalizzati almeno alla verifica delle caratteristiche tecniche riportate nella Tab. 11.2.IV. I metodi di prova da utilizzarsi sono quelli indicati nelle Norme Europee Armonizzate citate, in relazione a ciascuna caratteristica.

Tab. 11.2.IV - Controlli di accettazione per aggregati per calcestruzzo strutturale

Caratteristiche tecniche		
Descrizione petrografica		
Dimensione dell'aggregato (analisi granulometrica e contenuto dei fini)		
Indice di appiattimento		
Tenore di solfati e zolfo		
Dimensione per il filler		
Resistenza alla frammentazione/frantumazione (per calcestruzzo Rck ≥ C50/60 e aggregato		
proveniente da riciclo)		

Il progetto, nelle apposite prescrizioni, potrà fare utile riferimento alle norme UNI 8520-1 e UNI 8520-2, al fine di individuare i limiti di accettabilità delle caratteristiche tecniche degli aggregati.

11.2.9.3 AGGIUNTE

Nei calcestruzzi è ammesso l'impiego di aggiunte, in particolare di ceneri volanti, loppe granulate d'altoforno e fumi di silice, purché non ne vengano modificate negativamente le caratteristiche prestazionali.

Le ceneri volanti devono soddisfare i requisiti della norma europea armonizzata UNI EN 450-1. Per quanto riguarda l'impiego si potrà fare utile riferimento ai criteri stabiliti dalle norme UNI EN 206 ed UNI 11104.

I fumi di silice devono soddisfare i requisiti della norma europea armonizzata UNI EN 13263-1.

11.2.9.4 ADDITIVI

Gli additivi devono essere conformi alla norma europea armonizzata UNI EN 934-2.

11.2.9.5 ACQUA DI IMPASTO

L'acqua di impasto, ivi compresa l'acqua di riciclo, deve essere conforme alla norma UNI EN 1008: 2003.

11.2.9.6 MISCELE PRECONFEZIONATE DI COMPONENTI PER CALCESTRUZZO

In assenza di specifica norma armonizzata europea, il fabbricante di miscele preconfezionate di componenti per calcestruzzi, cui sia da aggiungere in cantiere l'acqua di impasto, deve documentare per ogni componente utilizzato la conformità alla relativa norma armonizzata europea.

11.2.10. CARATTERISTICHE DEL CALCESTRUZZO

Le caratteristiche del calcestruzzo possono essere desunte, in sede di progettazione, dalle formulazioni indicate nei successivi punti. Per quanto non previsto si potrà fare utile riferimento alla Sezione 3 della norma UNI EN 1992-1-1:2005.

11.2.10.1 RESISTENZA A COMPRESSIONE

In sede di progetto strutturale si farà riferimento alla resistenza caratteristica a compressione su cubi R_{ck} così come definita nel § 11.2.1.

Dalla resistenza cubica si passerà a quella cilindrica da utilizzare nelle verifiche mediante l'espressione:

$$f_{ck} = 0.83 \cdot R_{ck}$$
 [11.2]

Sempre in sede di previsioni progettuali, è possibile passare dal valore caratteristico al valor medio della resistenza cilindrica mediante l'espressione

$$f_{cm} = f_{ck} + 8 [N/mm^2]$$
 [11.2.2]

11.2.10.2 RESISTENZA A TRAZIONE

La resistenza a trazione del calcestruzzo può essere determinata a mezzo di diretta sperimentazione, condotta su provini appositamente confezionati, secondo la norma UNI EN 12390-2:2009, per mezzo delle prove di seguito indicate:

- prove di trazione diretta;
- prove di trazione indiretta: (secondo UNI EN 12390-6:2010 o metodo dimostrato equivalente);
- prove di trazione per flessione: (secondo UNI EN 12390-5:2009 o metodo dimostrato equivalente).

In sede di progettazione si può assumere come resistenza media a trazione semplice (assiale) del calcestruzzo il valore (in N/mm²):

$$f_{ctm} = 0.30 \cdot f_{ck}^{2/3}$$
 per classi \leq C50/60 [11.2.3a]
 $f_{ctm} = 2.12 \cdot ln [1+f_{cm}/10]$ per classi \geq C50/60 [11.2.3b]

valori che dovranno essere ridotti del 10% in caso di utilizzo di aggregati grossi di riciclo nei limiti previsti dalla Tab. 11.2.III.

I valori caratteristici corrispondenti ai frattili 5% e 95% sono assunti, rispettivamente, pari a $0.7 f_{ctm}$, ed $1.3 f_{ctm}$

Il valore medio della resistenza a trazione per flessione è assunto, in mancanza di sperimentazione diretta, pari a:

$$f_{cfm} = 1.2 f_{ctm}$$
 [11.2.4]

11.2.10.3 MODULO ELASTICO

Per modulo elastico istantaneo del calcestruzzo va assunto quello secante tra la tensione nulla e 0,40 fcm, determinato sulla base di apposite prove, da eseguirsi secondo la norma UNI EN 12390-13:2013.

In sede di progettazione si può assumere il valore:

$$E_{cm} = 22.000 \cdot [f_{cm}/10]^{0.3} [N/mm^2]$$
 [11.2.5]

che dovrà essere ridotto del 20% in caso di utilizzo di aggregati grossi di riciclo nei limiti previsti dalla Tab. 11.2.III. Tale formula non è applicabile ai calcestruzzi maturati a vapore. Essa non è da considerarsi vincolante nell'interpretazione dei controlli sperimentali delle strutture.

11.2.10.4 COEFFICIENTE DI POISSON

Per il coefficiente di *Poisson* può adottarsi, a seconda dello stato di sollecitazione, un valore compreso tra 0 (calcestruzzo fessurato) e 0,2 (calcestruzzo non fessurato).

11.2.10.5 COEFFICIENTE DI DILATAZIONE TERMICA

Il coefficiente di dilatazione termica del calcestruzzo può essere determinato a mezzo di apposite prove, da eseguirsi secondo la norma LINI EN 1770-2000

In sede di progettazione strutturale, o in mancanza di una determinazione sperimentale diretta, per il coefficiente di dilatazione termica del calcestruzzo può assumersi un valor medio pari a $10 \times 10^{-6} \, ^{\circ}\text{C}^{-1}$, fermo restando che tale grandezza dipende dal tipo di calcestruzzo considerato (rapporto aggregati/legante, tipi di aggregati, ecc.) e può assumere valori anche sensibilmente diversi da quello indicato.

11.2.10.6 RITIRO

La deformazione assiale per ritiro del calcestruzzo può essere determinata a mezzo di apposite prove, da eseguirsi secondo la norma UNI 11307:2008.

In sede di progettazione strutturale, e quando non si ricorra ad additivi speciali, il ritiro del calcestruzzo può essere valutato sulla base delle indicazioni di seguito fornite.

La deformazione totale da ritiro si può esprimere come:

$$\varepsilon_{\rm cs} = \varepsilon_{\rm cd} + \varepsilon_{\rm ca}$$
 [11.2.6]

dove:

 ϵ_{cs} è la deformazione totale per ritiro

 ϵ_{cd} è la deformazione per ritiro da essiccamento

 $\varepsilon_{\rm ca}$ è la deformazione per ritiro autogeno.

Il valore medio a tempo infinito della deformazione per ritiro da essiccamento:

$$\varepsilon_{\rm cd,\infty} = k_{\rm h} \, \varepsilon_{\rm c0}$$
 [11.2.7]

può essere valutato mediante i valori delle seguenti Tabelle 11.2. Va ed 11.2. Vb in funzione della resistenza caratteristica a compressione, dell'umidità relativa e del parametro h_0 :

Tab. 11.2.Va – Valori di ε_{c0}

-	Deformazione da ritiro per essiccamento (in ‰)					
f _{ck}	Umidità Relativa (in %)					
	20 40 60 80 90 100					
20	-0,62	-0,58	-0,49	-0,30	-0,17	+0,00
40	-0,48	-0,46	-0,38	-0,24	-0,13	+0,00
60	-0,38	-0,36	-0,30	-0,19	-0,10	+0,00
80	-0,30	-0,28	-0,24	-0,15	-0,07	+0,00

Tab. 11.2.Vb – Valori di k_h

h ₀ (mm)	$\mathbf{k_h}$
100	1,00
200	0,85
300	0,75
≥ 500	0,70

Per valori intermedi dei parametri indicati è consentita l'interpolazione lineare. Lo sviluppo nel tempo della deformazione ϵ_{cd} può essere valutato come:

$$\varepsilon_{\rm cd}(t) = \beta_{\rm ds}(t - t_{\rm s}) \cdot \varepsilon_{\rm cd,\infty}$$
 [11.2.8]

dove la funzione di sviluppo temporale assume la forma

$$\beta_{ds}(t-t_s) = (t-t_s) / [(t-t_s)+0.04 h_o^{3/2}]$$
 [11.2.9]

in cui:

t è l'età del calcestruzzo nel momento considerato (in giorni)

t_s è l'età del calcestruzzo a partire dalla quale si considera l'effetto del ritiro da essiccamento (normalmente il termine della maturazione, espresso in giorni).

 $h_0 \,\,$ $\,$ è la dimensione fittizia (in mm) pari al rapporto $2A_c\,/\,u$

 A_c è l'area della sezione in calcestruzzo

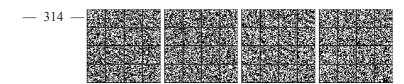
ù è il perimetro della sezione in calcestruzzo esposto all'aria.

Il valore medio a tempo infinito della deformazione per ritiro autogeno $\epsilon_{ca,\infty}$ può essere valutato mediante l'espressione:

$$\varepsilon_{\text{ca},\infty} = -2.5 \cdot (f_{\text{ck}} - 10) \cdot 10^{-6}$$
 [11.2.10]

con f_{ck} in N/mm².

11.2.10.7 VISCOSITÀ


In sede di progettazione, se la tensione di compressione del calcestruzzo, al tempo t_0 = j di messa in carico, non è superiore a 0,45 · f_{ckj} , il coefficiente di viscosità φ (∞ , t_0), a tempo infinito, a meno di valutazioni più precise (per es. § 3.1.4 di UNI EN 1992-1-1:2005), può essere dedotto dalle seguenti Tabelle 11.2.VI e 11.2.VII dove h_0 è la dimensione fittizia definita in § 11.2.10.6:

Tab. 11.2.VI – Valori di ϕ (∞ , t_0). Atmosfera con umidità relativa di circa il 75%

t ₀	h ₀ ≤ 75 mm	$h_0 = 150 \text{ mm}$	$h_0 = 300 \text{ mm}$	h0 ≥ 600 mm
3 giorni	3,5	3,2	3,0	2,8
7 giorni	2,9	2,7	2,5	2,3
15 giorni	2,6	2,4	2,2	2,1
30 giorni	2,3	2,1	1,9	1,8
≥60 giorni	2,0	1,8	1,7	1,6

Tab. 11.2.VII - Valori di ϕ (∞ , t_0). Atmosfera con umidità relativa di circa il 55%

t ₀	h ₀ ≤ 75 mm	$h_0 = 150 \text{ mm}$	$h_0 = 300 \text{ mm}$	$h_0 \ge 600 \text{ mm}$
3 giorni	4,5	4,0	3,6	3,3
7 giorni	3,7	3,3	3,0	2,8
15 giorni	3,3	3,0	2,7	2,5
30 giorni	2,9	2,6	2,3	2,2
≥ 60 giorni	2,5	2,3	2,1	1,9

Per valori intermedi è ammessa una interpolazione lineare.

Nel caso in cui sia richiesta una valutazione in tempi diversi da t = ∞ del coefficiente di viscosità questo potrà essere valutato secondo modelli tratti da documenti di comprovata validità di cui al Capitolo 12.

11.2.11. DURABILITÀ

Per garantire la durabilità delle strutture in calcestruzzo armato ordinario o precompresso, esposte all'azione dell'ambiente, si devono adottare i provvedimenti atti a limitare gli effetti di degrado indotti dall'attacco chimico, fisico e quelli derivanti dalla corrosione delle armature e dai cicli di gelo e disgelo.

A tal fine, valutate opportunamente le condizioni ambientali del sito ove sorgerà la costruzione o quelle di impiego, conformemente alle indicazioni della tabella 4.1.III delle presenti norme, in fase di progetto dovranno essere indicate le caratteristiche del calcestruzzo da impiegare in accordo alle *Linee Guida sul calcestruzzo strutturale* edite dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici facendo anche, in assenza di analisi specifiche, utile riferimento alle norme UNI EN 206 ed UNI 11104. Inoltre devono essere rispettati i valori del copriferro nominale di cui al punto 4.1.6.1.3, nonché le modalità e la durata della maturazione umida in accordo alla UNI EN 13670:2010, alle *Linee Guida per la messa in opera del calcestruzzo strutturale* ed alle *Linee Guida per la valutazione delle caratteristiche del calcestruzzo in opera* pubblicate dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici.

Ai fini della valutazione della durabilità, nella formulazione delle prescrizioni sul calcestruzzo, si potranno prescrivere anche prove per la verifica della resistenza alla penetrazione degli agenti aggressivi, quali ad esempio anidride carbonica e cloruri. Si può, inoltre, tener conto del grado di impermeabilità del calcestruzzo, determinando il valore della profondità di penetrazione dell'acqua in pressione. Per la prova di determinazione della profondità della penetrazione dell'acqua in pressione nel calcestruzzo indurito potrà farsi utile riferimento alla norma UNI EN 12390-8.

11.2.12. CALCESTRUZZO FIBRORINFORZATO (FRC)

Il calcestruzzo fibrorinforzato (FRC) è caratterizzato dalla presenza di fibre discontinue nella matrice cementizia; tali fibre possono essere realizzate in acciaio o materiale polimerico, e devono essere marcate CE in accordo alle norme europee armonizzate, quali la UNI EN 14889-1 ed UNI EN 14889-2 per le fibre realizzate in acciaio o materiale polimerico.

La miscela del calcestruzzo fibrorinforzato deve essere sottoposta a valutazione preliminare secondo le indicazioni riportate nel precedente § 11.2.3 con determinazione dei valori di resistenza a trazione residua frik per lo Stato limite di esercizio e frisk per lo Stato limite Ultimo determinati secondo UNI EN 14651:2007.

Per la qualificazione del calcestruzzo fibrorinforzato e la progettazione delle strutture in FRC si dovrà fare esclusivo riferimento a specifiche disposizioni emanate dal Consiglio Superiore dei Lavori Pubblici.

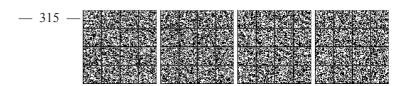
11.3. ACCIAIO

11.3.1. PRESCRIZIONI COMUNI A TUTTE LE TIPOLOGIE DI ACCIAIO

11.3.1.1 CONTROLLI

Le presenti norme prevedono tre forme di controllo obbligatorie:

- in stabilimento di produzione, da eseguirsi sui lotti di produzione;
- nei centri di trasformazione;
- di accettazione in cantiere.


A tale riguardo il *Lotto di produzione* si riferisce a produzione continua, ordinata cronologicamente mediante apposizione di contrassegni al prodotto finito (rotolo finito, bobina di trefolo, fascio di barre, ecc.). Un lotto di produzione deve avere valori delle grandezze nominali omogenee (dimensionali, meccaniche, di formazione) e può essere compreso tra 30 e 120 tonnellate.

11.3.1.2 CONTROLLI DI PRODUZIONE IN STABILIMENTO E PROCEDURE DI QUALIFICAZIONE

Tutti gli acciai oggetto delle presenti norme, siano essi destinati ad utilizzo come armature per calcestruzzo armato normale o precompresso o ad utilizzo diretto come carpenterie in strutture metalliche, devono essere prodotti con un sistema permanente di controllo interno della produzione in stabilimento che deve assicurare il mantenimento dello stesso livello di affidabilità nella conformità del prodotto finito, indipendentemente dal processo di produzione.

Fatto salvo quanto disposto dalle norme europee armonizzate, ove applicabili, il sistema di gestione della qualità del prodotto che sovrintende al processo di fabbricazione deve essere predisposto in coerenza con la norma UNI EN ISO 9001 e certificato da parte di un organismo terzo indipendente, di adeguata competenza ed organizzazione, che opera in coerenza con le norme UNI CEI EN ISO/IEC 17021-1.

Quando non sia applicabile la marcatura CE, ai sensi del Regolamento UE 305/2011, la valutazione della conformità del controllo di produzione in stabilimento e del prodotto finito è effettuata attraverso la procedura di qualificazione di seguito indicata.

Il Servizio Tecnico Centrale della Presidenza del Consiglio Superiore dei Lavori Pubblici è organismo per il rilascio dell'attestato di qualificazione per gli acciai di cui sopra.

L'inizio della procedura di qualificazione deve essere preventivamente comunicato al Servizio Tecnico Centrale allegando una relazione ove siano riportati:

- 1) elenco e caratteristiche dei prodotti che si intende qualificare (tipo, dimensioni, caratteristiche meccaniche e chimiche, ecc.);
- 2) indicazione dello stabilimento e descrizione degli impianti e dei processi di produzione;
- 3) descrizione dell'organizzazione del controllo interno di qualità con indicazione delle responsabilità aziendali;
- 4) copia della certificazione del sistema di gestione della qualità;
- 5) indicazione dei responsabili aziendali incaricati della firma dei certificati;
- 6) descrizione particolareggiata delle apparecchiature e degli strumenti del laboratorio interno di stabilimento per il controllo continuo di qualità;
- dichiarazione con la quale si attesti che il servizio di controllo interno della qualità sovrintende ai controlli di produzione ed è indipendente dai servizi di produzione;
- 8) modalità di marchiatura che si intende adottare per l'identificazione del prodotto finito;
- descrizione delle condizioni generali di fabbricazione del prodotto nonché dell'approvvigionamento delle materie prime e/o del prodotto intermedio (billette, rotoli, vergella, lamiere, laminati, ecc.);
- 10) copia del manuale di qualità aziendale, coerente alla norma UNI EN ISO 9001.
- 11) nel caso in cui il fabbricante non sia stabilito sul territorio dell'Unione Europea, copia della nomina, mediante mandato scritto, del mandatario.

Il Servizio Tecnico Centrale verifica la completezza e congruità della documentazione presentata e procede a una verifica documentale preliminare della idoneità dei processi produttivi e del Sistema di Gestione della Qualità nel suo complesso.

Se tale verifica preliminare ha esito positivo, il Servizio Tecnico Centrale può effettuare una verifica ispettiva presso lo stabilimento di produzione.

Il risultato della verifica documentale preliminare unitamente al risultato della verifica ispettiva sono oggetto di successiva valutazione da parte del Servizio Tecnico Centrale per la necessaria ratifica e notifica al fabbricante. In caso di esito positivo il fabbricante può proseguire nella procedura di qualificazione del prodotto. In caso negativo viene richiesto al fabbricante di apportare le opportune azioni correttive che devono essere implementate.

La procedura di qualificazione del Prodotto prosegue attraverso le seguenti ulteriori fasi:

- esecuzione delle prove di qualificazione a cura di un laboratorio di cui all'articolo 59 del DPR n. 380/2001 incaricato dal Servizio Tecnico Centrale su proposta del fabbricante secondo le procedure di cui al § 11.3.1.4;
- invio dei risultati delle prove di qualificazione da sottoporre a giudizio di conformità al Servizio Tecnico Centrale da parte del laboratorio di cui all'art. 59 del DPR n. 380/2001 incaricato;
- in caso di giudizio positivo il Servizio Tecnico Centrale provvede al rilascio dell'Attestato di Qualificazione al fabbricante e inserisce quest'ultimo nel Catalogo ufficiale dei prodotti qualificati che viene reso pubblicamente disponibile;
- in caso di giudizio negativo, il fabbricante può individuare le cause delle non conformità, apportare le opportune azioni correttive, dandone comunicazione sia al Servizio Tecnico Centrale che al laboratorio incaricato e successivamente ripetere le prove di qualificazione.

Il prodotto può essere immesso sul mercato solo dopo il rilascio dell'Attestato di Qualificazione. La qualificazione ha validità di cinque anni.

11.3.1.3 MANTENIMENTO E RINNOVO DELLA QUALIFICAZIONE

Per il mantenimento della qualificazione i produttori sono tenuti, con cadenza annuale entro 60 giorni dalla data di scadenza dell'anno di riferimento ad inviare al Servizio Tecnico Centrale:

- dichiarazione attestante la permanenza delle condizioni iniziali di idoneità del processo produttivo, dell'organizzazione del controllo interno di produzione in fabbrica;
- 2) i risultati dei controlli interni eseguiti nell'anno sul prodotto nonché la loro elaborazione statistica con l'indicazione del quantitativo di produzione e del numero delle prove;
- 3) i risultati dei controlli eseguiti nel corso delle prove di verifica periodica di sorveglianza sul prodotto, da parte del laboratorio di cui all'art. 59 del DPR n. 380/2001 incaricato;
- 4) la documentazione di conformità statistica dei parametri rilevati (di cui ai prospetti relativi agli acciai specifici) nel corso delle prove di cui ai punti 2) e 3). Per la conformità statistica tra i risultati dei controlli interni ed i risultati dei controlli effettuati dal laboratorio incaricato, devono essere utilizzati metodi statistici di comprovata validità per il confronto delle varianze e delle medie delle due serie di dati, secondo i procedimenti del controllo della qualità.

Il fabbricante deve segnalare al Servizio Tecnico Centrale ogni eventuale modifica anche temporanea, al processo produttivo o al sistema di controllo, apportata ad uno dei requisiti richiesti durante la procedura di qualificazione

Il Servizio Tecnico Centrale esamina la documentazione al fine del mantenimento della qualificazione.

Ogni sospensione della produzione deve essere tempestivamente comunicata al Servizio Tecnico Centrale indicandone le motivazioni. Qualora la produzione venga sospesa per oltre un anno, la procedura di qualificazione deve essere ripetuta.

Il Servizio Tecnico Centrale può effettuare o far effettuare, in qualsiasi momento, al laboratorio incaricato ulteriori visite ispettive finalizzate all'accertamento della sussistenza dei requisiti previsti per la qualificazione.

Al termine del periodo di validità di cinque anni dell'Attestato di Qualificazione il fabbricante deve chiedere il rinnovo; il Servizio Tecnico Centrale, valutata anche la conformità relativa all'intera documentazione fornita nei cinque anni precedenti, rinnova la qualificazione.

Il mancato invio della documentazione di cui sopra entro i previsti sessanta giorni oppure l'accertamento da parte del Servizio Tecnico Centrale di rilevanti non conformità, comporta la sospensione oppure la decadenza della qualificazione.

11.3.1.4 IDENTIFICAZIONE E RINTRACCIABILITÀ DEI PRODOTTI QUALIFICATI

Ciascun prodotto qualificato deve costantemente essere riconoscibile per quanto concerne le caratteristiche qualitative e riconducibile allo stabilimento di produzione tramite marchiatura indelebile depositata presso il Servizio Tecnico Centrale, dalla quale risulti, in modo inequivocabile, il riferimento all'Azienda produttrice, allo Stabilimento, al tipo di acciaio ed alla sua eventuale saldabilità.

Ogni prodotto deve essere marchiato con identificativi diversi sia da quelli di prodotti fabbricati nello stesso stabilimento ma aventi differenti caratteristiche, sia da quelli di prodotti con uguali caratteristiche ma fabbricati in altri stabilimenti, siano essi o meno dello stesso fabbricante. La marchiatura deve essere inalterabile nel tempo e senza possibilità di manomissione.

Per stabilimento si intende una unità produttiva a sé stante, con impianti propri e magazzini per il prodotto finito. Nel caso di unità produttive multiple appartenenti allo stesso fabbricante, la qualificazione deve essere ripetuta per ognuna di esse e per ogni tipo di prodotto in esse fabbricato.

Considerate la diversa natura, forma e dimensione dei prodotti, le caratteristiche degli impianti per la loro produzione, nonché la possibilità di fornitura sia in pezzi singoli sia in fasci, possono essere adottati differenti sistemi di marchiatura, anche in relazione all'uso, quali ad esempio l'impressione sui cilindri di laminazione, la punzonatura a caldo e a freddo, la stampigliatura a vernice, l'apposizione di targhe o cartellini, la sigillatura dei fasci e altri. Permane comunque l'obbligatorietà del marchio di laminazione per quanto riguarda barre e rotoli.

L'identificazione e la rintracciabilità dei prodotti qualificati sono requisiti obbligatori. Le modalità di applicazione sono specificate nei paragrafi relativi alle singole tipologie di prodotto.

Tenendo presente che l'elemento determinante della marchiatura è costituito dalla sua inalterabilità nel tempo e dalla impossibilità di manomissione, il fabbricante deve rispettare le modalità di marchiatura dichiarate nella documentazione presentata al Servizio Tecnico Centrale e deve comunicare tempestivamente eventuali modifiche apportate.

La mancata marchiatura, la non corrispondenza a quanto depositato o la sua illeggibilità, anche parziale, rendono il prodotto non impiegabile.

Qualora, sia presso gli utilizzatori, sia presso i commercianti, l'unità marchiata (pezzo singolo o confezione) venga scorporata, per cui una parte, o il tutto, perda l'originale marchiatura del prodotto è responsabilità sia degli utilizzatori sia dei commercianti documentare la provenienza mediante i documenti di accompagnamento del materiale e gli estremi del deposito del marchio presso il Servizio Tecnico Centrale.

Nel primo caso i campioni destinati al laboratorio incaricato delle prove di cantiere devono essere accompagnati dalla sopraindicata documentazione e da una dichiarazione di provenienza rilasciata dal Direttore dei Lavori, quale risulta dai documenti di accompagnamento del materiale.

I produttori ed i successivi intermediari devono assicurare una corretta archiviazione della documentazione di accompagnamento dei materiali garantendone la disponibilità per almeno 10 anni. Ai fini della rintracciabilità dei prodotti, il costruttore deve inoltre assicurare la conservazione della medesima documentazione, unitamente a marchiature o etichette di riconoscimento, fino al completamento delle operazioni di collaudo statico.

Eventuali disposizioni supplementari atte a facilitare l'identificazione e la rintracciabilità del prodotto attraverso il marchio possono essere emesse dal Servizio Tecnico Centrale.

Tutti i certificati relativi alle prove meccaniche degli acciai, sia in stabilimento che in cantiere o nel luogo di lavorazione, devono riportare l'indicazione del marchio identificativo, rilevato a cura del laboratorio incaricato dei controlli, sui campioni da sottoporre a prove. Ove i campioni fossero sprovvisti di tale marchio, oppure il marchio non dovesse rientrare fra quelli depositati presso il Servizio Tecnico Centrale, le certificazioni emesse dal laboratorio non possono assumere valenza ai sensi delle presenti norme e di ciò ne deve essere fatta esplicita menzione sul certificato stesso. In tal caso il materiale non può essere utilizzato ed il laboratorio incaricato è tenuto ad informare di ciò il Servizio Tecnico Centrale.

11.3.1.5 FORNITURE E DOCUMENTAZIONE DI ACCOMPAGNAMENTO

Tutte le forniture di acciaio, per le quali non sussista l'obbligo della Marcatura CE, devono essere accompagnate dalla copia dell'attestato di qualificazione del Servizio Tecnico Centrale e dal certificato di controllo interno tipo 3.1, di cui alla norma UNI EN 10204, dello specifico lotto di materiale fornito .

Tutte le forniture di acciaio, per le quali sussista l'obbligo della Marcatura CE, devono essere accompagnate dalla "Dichiarazione di prestazione" di cui al Regolamento UE 305/2011, dalla prevista marcatura CE nonché dal certificato di controllo interno tipo 3.1, di cui alla norma UNI EN 10204, dello specifico lotto di materiale fornito .

Il riferimento agli attestati comprovanti la qualificazione del prodotto deve essere riportato sul documento di trasporto.

Le forniture effettuate da un distributore devono essere accompagnate da copia dei documenti rilasciati dal fabbricante e completati con il riferimento al documento di trasporto del distributore stesso.

Nel caso di fornitura in cantiere non proveniente da centro di trasformazione, il Direttore dei Lavori, prima della messa in opera, è tenuto a verificare quanto sopra indicato ed a rifiutare le eventuali forniture non conformi, ferme restando le responsabilità del fabbricante.

11.3.1.6 Prove di oualificazione e verifiche periodiche della oualità

I laboratori incaricati, di cui all'art. 59 del DPR n. 380/2001, devono operare secondo uno specifico piano di qualità approvato dal Servizio Tecnico Centrale.

I certificati di prova emessi devono essere uniformati ad un modello standard elaborato dal Servizio Tecnico Centrale.

I relativi certificati devono contenere almeno:

- l'identificazione dell'azienda produttrice e dello stabilimento di produzione;
- l'indicazione del tipo di prodotto e della eventuale dichiarata saldabilità;
- il marchio di identificazione del prodotto depositato presso il Servizio Tecnico Centrale;
- gli estremi dell'attestato di qualificazione nonché l'ultimo attestato di conferma della qualificazione (per le sole verifiche periodiche della qualità);
- la data del prelievo, il luogo di effettuazione delle prove e la data di emissione del certificato;
- le dimensioni nominali ed effettive del prodotto ed i risultati delle prove eseguite;
- l'analisi chimica per i prodotti dichiarati saldabili (o comunque utilizzati per la fabbricazione di prodotti finiti elettrosaldati);
- le elaborazioni statistiche previste nei §§: 11.3.2.12 e 11.3.3.5.

I prelievi in stabilimento sono effettuati, ove possibile, dalla linea di produzione.

Le prove possono essere effettuate dai tecnici del laboratorio incaricato, anche presso lo stabilimento del fabbricante, qualora le attrezzature utilizzate siano tarate e la loro idoneità sia accertata e documentata.

Di ciò ne deve essere fatta esplicita menzione nel rapporto di prova nel quale deve essere presente la dichiarazione del rappresentante del laboratorio incaricato relativa all'idoneità delle attrezzature utilizzate.

In caso di risultato negativo delle prove il fabbricante deve individuare le cause e apportare le opportune azioni correttive, dandone comunicazione al laboratorio incaricato e successivamente ripetere le prove di verifica.

Le specifiche per l'effettuazione delle prove di qualificazione e delle verifiche periodiche della qualità, ivi compresa la cadenza temporale dei controlli stessi, sono riportate rispettivamente nei seguenti paragrafi.

§ 11.3.2.12, per acciai per calcestruzzo armato in barre o rotoli, reti e tralicci elettrosaldati;

§ 11.3.3.5, per acciai per calcestruzzo armato precompresso;

§ 11.3.4.11, per acciai per carpenterie metalliche.

CENTRI DI TRASFORMAZIONE 11.3.1.7

Si definisce Centro di trasformazione un impianto esterno alla fabbrica e/o al cantiere, fisso o mobile, che riceve dal produttore di acciaio elementi base (barre, rotoli, reti, lamiere o profilati, profilati cavi, ecc.) e confeziona elementi strutturali direttamente impiegabili in cantiere, pronti per la messa in opera o per successive lavorazioni.

Il Centro di trasformazione può ricevere e lavorare solo prodotti qualificati all'origine, accompagnati dalla documentazione prevista al § 11.3.1.5.

Particolare attenzione deve essere posta nel caso in cui nel centro di trasformazione vengano utilizzati elementi base, comunque qualificati, ma provenienti da produttori differenti, attraverso specifiche procedure documentate che garantiscano la rintracciabilità dei prodotti.

I centri di trasformazione devono dotarsi di un sistema di controllo della lavorazione allo scopo di garantire che le lavorazioni effettuate assicurino il mantenimento della conformità delle caratteristiche meccaniche e geometriche dei prodotti alle presenti

Il sistema di gestione della qualità del prodotto, che sovrintende al processo di trasformazione, deve essere predisposto in coerenza con la norma UNI EN ISO 9001.

Tutti i prodotti forniti in cantiere dopo l'intervento di un centro di trasformazione devono essere accompagnati da idonea documentazione, specificata nel seguito, che identifichi in modo inequivocabile il centro di trasformazione stesso e che consenta la completa tracciabilità del prodotto.

I centri di trasformazione sono tenuti ad effettuare controlli atti a garantire al prodotto finale caratteristiche meccaniche conformi alla classificazione dell'acciaio originale non lavorato.

Nell'ambito del processo produttivo deve essere posta particolare attenzione ai processi di piegatura e di saldatura. In particolare il Direttore Tecnico del centro di trasformazione deve verificare, tramite opportune prove, che le piegature e le saldature, anche nel caso di quelle non resistenti, non alterino le caratteristiche meccaniche originarie del prodotto. Per i processi sia di saldatura che di piegatura, si potrà fare utile riferimento alla normativa europea applicabile.

Il Direttore Tecnico dello stabilimento, nominato dal Centro di Trasformazione, dovrà essere abilitato all'esercizio di idonea professione tecnica.

I centri di trasformazione sono tenuti a dichiarare al Servizio Tecnico Centrale la loro attività, indicando le tipologie di prodotti trasformati, l'organizzazione, i procedimenti di lavorazione, nonché fornire copia della certificazione del sistema di gestione della qualità che sovrintende al processo di trasformazione. Ogni centro di trasformazione deve inoltre indicare un proprio logo o marchio che identifichi in modo inequivocabile il centro stesso; il sistema di gestione della qualità che sovrintende al processo di trasformazione, predisposto in coerenza con la norma UNI EN ISO 9001, deve essere certificato da parte di un organismo terzo indipendente, di adeguata competenza ed organizzazione, che opera in coerenza con la norma UNI CEI EN ISO/IEC 17021-1.

Nella dichiarazione di attività al Servizio Tecnico Centrale deve essere indicato l'impegno ad utilizzare esclusivamente elementi di base qualificati all'origine.

Alla dichiarazione deve essere allegata la nota di incarico al Direttore Tecnico del centro di trasformazione, controfirmata dallo stesso per accettazione ed assunzione delle responsabilità, ai sensi delle presenti norme, sui controlli sui materiali.

Il Servizio Tecnico Centrale, con il rilascio del relativo Attestato di "Denuncia dell'attività del centro di trasformazione", attesta l'avvenuta presentazione della dichiarazione di cui sopra.

I centri di trasformazione sono tenuti a comunicare ogni variazione rispetto a quanto dichiarato in sede di presentazione della denuncia di attività. Il Servizio Tecnico Centrale provvede ad aggiornare l'elenco della documentazione necessaria ad ottenere l'Attestato di "Denuncia dell'attività del centro di trasformazione", in base ai progressi tecnici ed agli aggiornamenti normativi che dovessero successivamente intervenire.

I Centri di Trasformazione devono far eseguire da laboratori di cui all'art. 59 del D.P.R. 380/2001 le prove indicate negli specifici paragrafi relativi a ciascun prodotto in acciaio (§11.3.2.10.3, § 11.3.3.5.3, § 11.3.4.11.2) e devono comunicare al Servizio Tecnico Centrale le eventuali variazioni apportate al processo di produzione depositato.

Ogni fornitura in cantiere di elementi presaldati, presagomati o preassemblati, proveniente da un Centro di trasformazione, deve essere accompagnata:

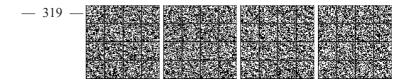
- a) da dichiarazione, su documento di trasporto, degli estremi dell'Attestato di "Denuncia dell'attività del centro di trasformazione", rilasciato dal Servizio Tecnico Centrale, recante il logo o il marchio del centro di trasformazione;
- b) dall'attestazione inerente l'esecuzione delle prove di controllo interno di cui ai paragrafi specifici relativi a ciascun prodotto (§ 11.3.2.10.3, § 11.3.3.5.3, § 11.3.4.11.2), fatte eseguire dal Direttore Tecnico del centro di trasformazione, con l'indicazione dei giorni nei quali la fornitura è stata lavorata. Qualora il Direttore dei Lavori lo richieda, può prendere visione del Registro di cui al § 11.3.2.10.3;
- c) da dichiarazione contenente i riferimenti alla documentazione fornita dal fabbricante ai sensi del § 11.3.1.5 in relazione ai prodotti utilizzati nell'ambito della specifica fornitura. Copia della documentazione fornita dal fabbricante e citata nella dichiarazione del centro di trasformazione, è consegnata al Direttore dei Lavori se richiesta.

Il Direttore dei Lavori è tenuto a verificare quanto sopra indicato ed a rifiutare le eventuali forniture non conformi, ferme restando le responsabilità del Centro di trasformazione. Gli atti di cui sopra sono consegnati al collaudatore che, tra l'altro, riporta nel Certificato di collaudo gli estremi del Centro di trasformazione che ha fornito il materiale lavorato.

Il Centro di trasformazione fornisce copia della documentazione di cui ai precedenti punti b) e c) in caso di richiesta delle competenti autorità di vigilanza.

E' prevista la sospensione o, nei casi più gravi o di recidiva, la revoca dell'Attestato di "Denuncia dell'attività del centro di trasformazione" qualora il Servizio Tecnico Centrale accerti difformità fra i documenti forniti e l'attività effettivamente svolta, la non veridicità delle dichiarazioni prestate oppure la mancata ottemperanza alle prescrizioni contenute nella vigente normativa tecnica. I provvedimenti di sospensione e di revoca vengono adottati dal Servizio Tecnico Centrale.

11.3.2. ACCIAIO PER CALCESTRUZZO ARMATO


È ammesso esclusivamente l'impiego di acciai saldabili qualificati secondo le procedure di cui al precedente § 11.3.1.2 e controllati con le modalità riportate nel § 11.3.2.11.

11.3.2.1 ACCIAIO PER CALCESTRUZZO ARMATO B450C

L'acciaio per calcestruzzo armato B450C è caratterizzato dai seguenti valori nominali della tensione di snervamento e della tensione a carico massimo da utilizzare nei calcoli:

Tab. 11.3.Ia

f _{y nom}	450 N/mm ²
f _{t nom}	540 N/mm ²

e deve rispettare i requisiti indicati nella seguente Tab. 11.3.Ib:

Tab. 11.3.Ib

Caratteristiche		Requisiti	Frattile (%)
Tensione caratteristica di snervamento	f_{yk}	≥ f _{y nom}	5.0
Tensione caratteristica a carico massimo	f_{tk}	$\geq f_{t \text{ nom}}$	5.0
	(f /f)	≥1,15	10.0
	$(f_t/f_y)_k$	< 1,35	10.0
	$(f_y/f_{ynom})_k$	≤ 1,25	10.0
Allungamento	$(A_{gt})_k$	≥7,5%	10.0
Diametro del mandrino per prove di piegam	ento a 90°		
e successivo raddrizzamento senza cricche:	φ < 12 mm	4 φ	
	$12 \le \varphi \le 16 \text{ mm}$	5ф	
	per 16 < φ ≤ 25 mm	8ф	
_	per 25 < φ ≤ 40 mm	10 ф]

Per l'accertamento delle caratteristiche meccaniche vale quanto indicato al § 11.3.2.3.

11.3.2.2 ACCIAIO PER CALCESTRUZZO ARMATO B450A

L'acciaio per calcestruzzo armato B450A, caratterizzato dai medesimi valori nominali della tensione di snervamento e della tensione a carico massimo dell'acciaio B450C, deve rispettare i requisiti indicati nella seguente Tab.11.3.Ic.

Tab. 11.3.Ic

Caratteristiche	Requisiti	Frattile (%)
Tensione caratteristica di snervamento f_{yk}	$\geq f_{y \text{ nom}}$	5.0
Tensione caratteristica a carico massimo $$f_{\rm tk}$$	$\geq f_{t \text{ nom}}$	5.0
$(f_t/f_y)_k$	≥ 1,05	10.0
$(f_y/f_{ynom})_k$	≤ 1,25	10.0
Allungamento $(A_{gt})_k$	≥ 2,5%	10.0
Diametro del mandrino per prove di piegamento a 90°		
e successivo raddrizzamento senza cricche: per $\phi \le 10 \text{ mm}$	4 φ	

Per l'accertamento delle caratteristiche meccaniche vale quanto indicato al § 11.3.2.3.

11.3.2.3 ACCERTAMENTO DELLE PROPRIETÀ MECCANICHE

Per l'accertamento delle proprietà meccaniche di cui alle precedenti tabelle si applica la norma UNI EN ISO 15630-1: 2010.

Le proprietà meccaniche dei campioni ottenuti da rotolo raddrizzato, reti e tralicci sono determinate su provette mantenute per 60 (+15, -0) minuti a 100 ± 10 °C e successivamente raffreddate in aria calma a temperatura ambiente.

In ogni caso, qualora lo snervamento non sia chiaramente individuabile, si sostituisce f_y con $f_{(0,2)}$.

La prova di piegamento e raddrizzamento si esegue alla temperatura di 20 ± 5 °C piegando la provetta a 90°, mantenendola poi per 60 minuti a 100 ± 10 °C e procedendo, dopo raffreddamento in aria, al parziale raddrizzamento per almeno 20°. Dopo la prova il campione non deve presentare cricche.

11.3.2.4 CARATTERISTICHE DIMENSIONALI E DI IMPIEGO

L'acciaio per calcestruzzo armato è esclusivamente prodotto in stabilimento sotto forma di barre o rotoli, reti o tralicci, per utilizzo diretto o come elementi di base per successive trasformazioni.

Prima della fornitura in cantiere gli elementi di cui sopra possono essere saldati, presagomati (staffe, ferri piegati, ecc.) o preassemblati (gabbie di armatura, ecc.) a formare elementi composti direttamente utilizzabili in opera.

La sagomatura e/o l'assemblaggio possono avvenire:

- in cantiere, sotto la vigilanza della Direzione Lavori;
- in centri di trasformazione, solo se provvisti dei requisiti di cui al § 11.3.1.7.

Tutti gli acciai per calcestruzzo armato devono essere ad aderenza migliorata, aventi cioè una superficie dotata di nervature o dentellature trasversali, uniformemente distribuite sull'intera lunghezza, atte a garantire adeguata aderenza tra armature e conglomerato cementizio.

Per quanto riguarda la marchiatura delle barre e dei rotoli vale quanto indicato al § 11.3.1.4.

Per la documentazione di accompagnamento delle forniture di acciaio provenienti dallo stabilimento di produzione o da un distributore intermedio, vale quanto indicato al § 11.3.1.5; per quanto riguarda i prodotti pre-sagomati o pre-assemblati vale quanto indicato al § 11.3.1.7.

Tutti i prodotti sono caratterizzati dal diametro \varnothing della barra tonda liscia equipesante, calcolato nell'ipotesi che la densità dell'acciaio sia pari a 7,85 kg/dm³.

Gli acciai B450C, di cui al § 11.3.2.1, possono essere impiegati in barre di diametro \varnothing compreso tra 6 e 40 mm.

Per gli acciai B450A, di cui al § 11.3.2.2 il diametro ∅ delle barre deve essere compreso tra 5 e 10 mm.

L'uso di acciai forniti in rotolo è ammesso, esclusivamente per impieghi strutturali, per diametri \varnothing non superiori a 16 mm per gli acciai B450C e diametri \varnothing non superiori a 10 mm per gli acciai B450A.

L'acciaio in rotoli deve essere utilizzato direttamente per sagomatura e assemblaggio ed esclusivamente da un Centro di Trasformazione di cui al §11.3.1.7 oppure da un fabbricante per la produzione di reti o tralicci elettrosaldati di cui al § 11.3.2.5. Non è consentito altro impiego di barre d'acciaio provenienti dal raddrizzamento di rotoli.

Per quanto riguarda le tolleranze dimensionali si fa riferimento a quanto previsto nella UNI EN 10080:2005.

11.3.2.5 RETI E TRALICCI ELETTROSALDATI

Gli acciai delle reti e tralicci elettrosaldati devono essere saldabili. L'interasse delle barre non deve superare, nelle due direzioni, 330 mm.

I tralicci e le reti sono prodotti reticolari assemblati in stabilimento mediante elettrosaldature, eseguite da macchine automatiche in tutti i punti di intersezione.

Per le reti ed i tralicci costituiti con acciaio B450C, gli elementi base devono avere diametro \varnothing che rispetta la limitazione: 6 mm $\le \varnothing \le 16$ mm.

Per le reti ed i tralicci costituiti con acciaio B450A, gli elementi base devono avere diametro \varnothing che rispetta la limitazione: 5 mm $\le \varnothing \le 10$ mm.

Il rapporto tra i diametri delle barre componenti reti e tralicci deve essere:

$$\emptyset_{\min} / \emptyset_{\max} \ge 0.6$$
 [11.3.1]

I nodi delle reti devono resistere ad una forza di distacco determinata in accordo con la norma UNI EN ISO 15630-2:2010 pari al 25% della forza di snervamento della barra, da computarsi per quella di diametro maggiore sulla tensione di snervamento pari a 450 N/mm².

Oltre a quanto sopra citato, con riferimento ai procedimenti di saldatura non automatizzati ed ai saldatori di reti e tralicci elettrosaldati, si applicano la norma UNI EN ISO 17660-1:2007 per i giunti saldati destinati alla trasmissione dei carichi ed UNI EN 17660-2:2007 per i giunti saldati non destinati alla trasmissione dei carichi.

In ogni elemento di rete o traliccio le singole armature componenti devono essere della stessa classe di acciaio. Nel caso dei tralicci è ammesso l'uso di elementi di collegamento fra correnti superiori ed inferiori aventi superficie liscia purché realizzate con acciaio B450A oppure B450C.

In ogni caso il fabbricante deve procedere alla qualificazione del prodotto finito, rete o traliccio, secondo le procedure di cui al \$11.3.2.11.

11.3.2.5.1 Identificazione delle reti e dei tralicci elettrosaldati

La produzione di reti e tralicci elettrosaldati deve essere effettuata a partire da materiale di base qualificato.

Nel caso di reti e tralicci formati con elementi base prodotti nello stesso stabilimento, la marchiatura del prodotto finito può coincidere con quella dell'elemento base.

Nel caso di reti e tralicci formati con elementi base prodotti in altro stabilimento, deve essere apposta su ogni confezione di reti o tralicci un'apposita etichettatura con indicati tutti i dati necessari per la corretta identificazione del prodotto e del fabbricante delle reti e dei tralicci stessi. Il Direttore dei Lavori, al momento dell'accettazione della fornitura in cantiere, deve verificare la presenza della predetta etichettatura.

11.3.2.6 SALDABILITÀ

L'analisi chimica effettuata su colata e l'eventuale analisi chimica di controllo effettuata sul prodotto finito devono soddisfare le limitazioni riportate nella Tab. 11.3.II dove il calcolo del carbonio equivalente C_{eq} è effettuato con la seguente formula:

$$C_{eq} = C + \frac{Mn}{6} + \frac{Cr + Mo + V}{5} + \frac{Ni + Cu}{15}$$
 [11.3.2]

in cui i simboli chimici denotano il contenuto degli elementi stessi espresso in percentuale.

Tab. 11.3.II – Massimo contenuto di elementi chimici in %

		Analisi di prodotto	Analisi di colata
Carbonio	С	0,24	0,22
Fosforo	P	0,055	0,050
Zolfo	S	0,055	0,050
Rame	Cu	0,85	0,80
Azoto	N	0,014	0,012
Carbonio equivalente	C_{eq}	0,52	0,50

È possibile eccedere il valore massimo di C dello 0.03% in massa, a patto che il valore del C_{eq} sia ridotto dello 0.02% in massa. Contenuti di azoto più elevati sono consentiti in presenza di una sufficiente quantità di elementi che fissano l'azoto stesso.

11.3.2.7 TOLLERANZE DIMENSIONALI

La deviazione ammissibile per la massa nominale per metro deve essere come riportato nella Tab. 11.3.III seguente.

Tab. 11.3.III

Diametro nominale, (mm)	5 ≤ φ ≤ 8	8 < φ ≤ 40
Tolleranza in % sulla massa nominale per metro	± 6	± 4,5

11.3.2.8 ALTRI TIPI DI ACCIAI

11.3.2.8.1 Acciai inossidabili

È ammesso l'impiego di acciai inossidabili di natura austenitica o austeno-ferritica, purché le caratteristiche meccaniche siano conformi alle prescrizioni relative agli acciai di cui al \S 11.3.2.1, con l'avvertenza di sostituire al termine f_t della Tab. 11.3.Ib, solo nel calcolo del rapporto f_t / f_y , il termine $f_{7\%}$, tensione corrispondente ad un allungamento totale pari al 7%. La saldabilità di tali acciai va documentata attraverso prove di saldabilità certificate da un laboratorio di cui all'art. 59 del DPR n. 380/2001 ed effettuate su campioni realizzati con gli specifici procedimenti di saldatura previsti dal fabbricante per l'utilizzo in cantiere o nei Centri di trasformazione.

Per essi la qualificazione è ammessa anche nel caso di produzione non continua, permanendo tutte le altre regole relative alla qualificazione degli acciai per calcestruzzo armato.

11.3.2.8.2 Acciai zincati

È ammesso l'uso di acciai zincati purché le caratteristiche fisiche, meccaniche e tecnologiche siano conformi alle prescrizioni relative agli acciai B450C e B450A.

Il materiale base da sottoporre a zincatura deve essere qualificato all'origine.

I controlli di accettazione in cantiere e la relativa verifica di quanto sopra indicato, devono essere effettuati sul prodotto finito, dopo il procedimento di zincatura, presso un laboratorio di cui all'articolo 59 del DPR 380/2001, secondo quanto previsto al § 11.3.2.12.

In ogni caso occorre verificare le caratteristiche di aderenza del prodotto finito secondo le procedure indicate per i Centri di trasformazione di prodotti per costruzioni di calcestruzzo armato.

Per le modalità di controllo del rivestimento di zinco (qualità superficiale, adesione del rivestimento, massa di rivestimento per unità di superficie) e quale utile guida per la scelta dei quantitativi minimi di zinco, si può fare riferimento alle norme UNI EN 10622 ed UNI EN ISO 1461.

11.3.2.9 GIUNZIONI MECCANICHE

L'assemblaggio o unione di due barre d'armatura può essere effettuato mediante dispositivi, o giunzioni meccaniche, che ne garantiscano la continuità. Tali giunzioni meccaniche devono essere marchiate, tracciabili e messe in opera in accordo alle apposite istruzioni di installazione e, qualora non marcate CE, devono soddisfare i requisiti contenuti nella norma UNI 11240-1:2018. Le prove sulle giunzioni meccaniche devono essere eseguite in accordo alla norma UNI 11240-2:2018.

Ai fini della qualificazione di tali prodotti si applica il caso C) del paragrafo 11.1.

Le prove di accettazione in cantiere devono essere effettuate in conformità alla norma UNI 11240-2:2018, secondo le modalità di cui al §11.3.4.11.3.

11.3.2.10 PROCEDURE DI CONTROLLO PER ACCIAI DA CALCESTRUZZO ARMATO NORMALE – BARRE E ROTOLI

11.3.2.10.1 Controlli sistematici in stabilimento

11.3.2.10.1.1 Generalità

Le prove di qualificazione e di verifica periodica, di cui ai successivi punti, devono essere ripetute per ogni prodotto avente caratteristiche differenti o realizzato con processi produttivi differenti, anche se provenienti dallo stesso stabilimento.

I rotoli devono essere soggetti a qualificazione separata dalla produzione in barre e dotati di marchiatura differenziata.

11.3.2.10.1.2 Prove di qualificazione

Il laboratorio incaricato deve effettuare, presso lo stabilimento di produzione, il prelievo di una serie di 75 campioni, ricavati da tre diverse colate o lotti di produzione, 25 per ogni colata o lotto di produzione, scelti su 3 diversi diametri opportunamente differenziati, nell'ambito della gamma prodotta. Il prelievo deve essere effettuato su tutti i prodotti che portano il marchio depositato in Italia, indipendentemente dall'etichettatura o dalla destinazione specifica.

Sui campioni devono essere determinati, a cura del laboratorio incaricato, i valori delle tensioni di snervamento e carico massimo $f_v e f_t e l'$ allungamento $A_{gt} e$ devono essere effettuate le prove di piegamento e la verifica della saldabilità.

11.3.2.10.1.3 Procedura di valutazione

Valutazione dei risultati

Le grandezze caratteristiche f_y , f_t , $A_{g\underline{t}}$ ed il valore caratteristico inferiore di f_t / f_y devono soddisfare la seguente relazione:

 $x - k s \ge C_v$ [11.3.3]

La grandezza caratteristica $(f_y/f_{ynom})\underline{k}$ ed il valore caratteristico superiore di f_t/f_y devono soddisfare la seguente relazione: $x + k \ s \le C_v$ [11.3.4]

dove:

C_v = valore prescritto per le singole grandezze nelle tabelle di cui ai §§ 11.3.2.1 e 11.3.2.2

- x = valore medio
- s = deviazione standard della popolazione
- $k = \text{coefficiente riportato in Tab. 11.3.IV per } f_t \text{ ed } f_y \text{ e in Tab. 11.3.V per } A_{gt}, f_t/f_y \text{ ed } (f_y/f_{ynom}) \text{ e che deve essere stabilito in base al numero dei campioni.}$

In ogni caso il coefficiente *k* assume, in funzione di *n*, i valori riportati nelle Tab. 11.3.IV e 11.3.V.

Su almeno un campione per colata o lotto di produzione è calcolato il valore dell'area relativa di nervatura o di dentellatura di cui al $\S 11.3.2.10.4$.

Qualora uno dei campioni sottoposti a prova di qualificazione non soddisfi i requisiti di resistenza o duttilità di cui al § 11.3.2 delle presenti norme tecniche, il prelievo relativo al diametro di cui trattasi va ripetuto ed il nuovo prelievo sostituisce a tutti gli effetti quello precedente. Un ulteriore risultato negativo comporta la ripetizione della prova di qualificazione.

Tab. 11.3.IV - f_y - f_t - Coefficiente k in funzione del numero n di campioni (per una probabilità di insuccesso attesa del 5% [p = 0,95] con una probabilità del 90%)

n	k	n	K
5	3,40	30	2,08
6	3,09	40	2,01
7	2,89	50	1,97
8	2,75	60	1,93
9	2,65	70	1,90
10	2,57	80	1,89
11	2,50	90	1,87
12	2,45	100	1,86
13	2,40	150	1,82
14	2,36	200	1,79
15	2,33	250	1,78
16	2,30	300	1,77
17	2,27	400	1,75
18	2,25	500	1,74
19	2,23	1000	1,71
20	2,21		1,64

Tab. 11.3.V - A_{gt} , $f_t | f_y$, $f_y | f_{y^{nom}}$. – Coefficiente k in funzione del numero n di campioni (per una probabilità di insuccesso attesa del 10% [p = 0.90] con una probabilità del 90%)

n	k	n	K
5	2,74	30	1,66
6	2,49	40	1,60
7	2,33	50	1,56
8	2,22	60	1,53
9	2,13	70	1,51
10	2,07	80	1,49
11	2,01	90	1,48
12	1,97	100	1,47
13	1,93	150	1,43
14	1,90	200	1,41
15	1,87	250	1,40
16	1,84	300	1,39
17	1,82	400	1,37
18	1,80	500	1,36
19	1,78	1000	1,34
20	1,77	-	1,282

— 323

11.3.2.10.1.4 Prove periodiche di verifica della qualità

Ai fini della verifica della qualità il laboratorio incaricato deve effettuare controlli saltuari, ad intervalli non superiori a tre mesi, prelevando 3 serie di 5 campioni di barre di uno stesso diametro, scelte con le medesime modalità contemplate nelle prove a carattere statistico di cui al punto 11.3.2.10.1.2, e provenienti da una stessa colata.

Il prelievo deve essere effettuato su tutti i prodotti qualificati ai sensi delle presenti norme , indipendentemente dall'etichettatura o dalla destinazione specifica. Su tali serie sono effettuate le prove di resistenza e di duttilità. La serie dei 15 valori della tensione di snervamento e della tensione a carico massimo ottenute nelle prove è aggiunta a quelli dei precedenti prelievi e sostituisce i 15 valori della prima serie in ordine di tempo. I nuovi valori delle medie e degli scarti quadratici così ottenuti sono quindi utilizzati per la determinazione delle nuove tensioni caratteristiche, sostitutive delle precedenti (ponendo n=75).

Ove i valori caratteristici riscontrati risultino inferiori ai minimi di cui ai §§ 11.3.2.1 e 11.3.2.2, il laboratorio incaricato ne deve dare comunicazione al Servizio Tecnico Centrale e ripetere le prove di qualificazione solo dopo che il fabbricante ha ovviato alle cause che hanno dato luogo al risultato insoddisfacente.

Qualora uno dei campioni sottoposti a prova di verifica della qualità non soddisfi i requisiti di duttilità di cui ai citati §§ 11.3.2.1 e 11.3.2.2, il prelievo relativo al diametro di cui trattasi va ripetuto. Il nuovo prelievo sostituisce quello precedente a tutti gli effetti. Un ulteriore risultato negativo comporta la ripetizione della qualificazione.

Le tolleranze dimensionali di cui al \S 11.3.2.7 vanno riferite alla media delle misure effettuate su tutti i campioni di ciascuna colata o lotto di produzione.

Su almeno un campione per colata o lotto di produzione è calcolato il valore dell'area relativa di nervatura o di dentellatura e la composizione chimica.

11.3.2.10.2 Controlli su singole colate o lotti di produzione

Oltre a quanto già prescritto riguardo ai controlli sistematici in stabilimento, i produttori già qualificati possono richiedere, di loro iniziativa, di sottoporsi a controlli su singole colate o lotti di produzione, che devono essere anch'essi eseguiti a cura di un laboratorio di cui all'art. 59 del DPR n. 380/2001. Le colate o lotti di produzione sottoposti a controllo devono essere cronologicamente ordinati nel quadro della produzione globale. I controlli consistono nel prelievo, per ogni colata e lotto di produzione e per ciascun gruppo di diametri da essi ricavato, di un numero n di campioni, non inferiore a 10, sui quali si effettuano le prove previste al \S 11.3.2.10.1.2. Le tensioni caratteristiche di snervamento e carico massimo vengono calcolate a mezzo delle espressioni di cui al \S 11.3.2.10.1.3 nelle quali n è il numero dei campioni prelevati dalla colata.

11.3.2.10.3 Controlli nei centri di trasformazione

I controlli nei Centri di trasformazione, da effettuarsi, prima dell'invio in cantiere, a cura di un laboratorio di cui all'articolo 59 del DPR 380/2001 sul prodotto lavorato, sono obbligatori e devono essere eseguiti:

- a) in caso di utilizzo di barre, un controllo ogni 90 t della stessa classe di acciaio proveniente dallo stesso stabilimento, anche se con forniture successive, su cui si effettuano prove di trazione e piegamento;
- b) in caso di utilizzo di rotoli, un controllo ogni 30 t per ogni tipologia di macchina e per ogni diametro lavorato della stessa classe di acciaio proveniente dallo stesso stabilimento, anche se con forniture successive, su cui si effettuano prove di trazione e piegamento ed una verifica dell'area relativa di nervatura o di dentellatura, secondo il metodo geometrico di cui alla seconda parte del § 11.3.2.10.4; il campionamento deve garantire che, nell'arco temporale di 3 mesi, vengano controllati tutti i fornitori e tutti i diametri per ogni tipologia di acciaio utilizzato e tutte le macchine raddrizzatrici presenti nel Centro di trasformazione.

Ogni controllo è costituito da 1 prelievo, ciascuno costituito da 3 campioni di uno stesso diametro sempre che il marchio e la documentazione di accompagnamento dimostrino la provenienza del materiale da uno stesso stabilimento nonché la stessa classe di acciaio.

Qualora non si raggiungano le quantità sopra riportate deve essere effettuato almeno un controllo per ogni giorno di lavorazione. Tutte le prove suddette, che vanno eseguite dopo le lavorazioni e le piegature, devono riguardare la resistenza, l'allungamento, il piegamento e l'aderenza.

I risultati delle prove devono essere conformi a quanto indicato nella Tabella seguente.

Tab. 11.3.VI a) – Valori di accettazione nei centri di trasformazione – barre e rotoli dopo la raddrizzatura

Caratteristica	Valore limite	Note
f _y minimo	425 N/mm ²	per acciai B450A e B450C
f _y massimo	572 N/mm ²	per acciai B450A e B450C
Agt minimo	≥ 6,0%	per acciai B450C
Agt minimo	≥ 2,0%	per acciai B450A
ft / fy	$1.13 \le f_t / f_y \le 1.37$	per acciai B450C
f_t / f_y	$f_t / f_y \ge 1.03$	per acciai B450A
Piegamento / Raddrizzamento	Assenza di cricche	per acciai B450A e B450C
f _r / f _p	$\begin{array}{lll} \text{per 5 mm} \leq \varnothing \leq 6 \text{ mm} & \geq 0.035 \\ \text{per 6 mm} \leq \varnothing \leq 12 \text{ mm} & \geq 0.040 \\ \text{per } \varnothing \geq 12 \text{ mm} & \geq 0.056 \end{array}$	per acciai B450A e B450C provenienti da rotolo

Qualora il risultato di una delle suddette prove non sia conforme, il direttore tecnico dispone la ripetizione della prova su 6 ulteriori campioni dello stesso diametro.

Ove anche da tale accertamento i limiti dichiarati non risultino rispettati, il controllo deve estendersi, previo avviso al fabbricante, a 25 campioni, applicando ai dati ottenuti la formula generale valida per i controlli sistematici in stabilimento (si faccia anche riferimento al 11.3.2.10.1.3).

L'ulteriore risultato negativo comporta l'inidoneità della partita e la trasmissione dei risultati al fabbricante, che sarà tenuto a farli inserire tra i risultati dei controlli statistici della sua produzione. Analoghe norme si applicano ai controlli di duttilità, aderenza e distacco al nodo saldato: un singolo risultato negativo sul primo prelievo comporta l'esame di 6 nuovi campioni dello stesso diametro, un ulteriore singolo risultato negativo comporta l'inidoneità della partita.

Inoltre il direttore tecnico deve comunicare il risultato anomalo sia al laboratorio di cui all'art. 59 del DPR n. 380/2001 incaricato dal Servizio tecnico centrale del controllo in stabilimento, sia al Servizio tecnico centrale stesso.

Il Direttore tecnico di stabilimento cura la registrazione di tutti i risultati delle prove di controllo interno su apposito registro, di cui deve essere consentita la visione a quanti ne abbiano titolo.

In caso di mancata sottoscrizione della richiesta di prove da parte del Direttore Tecnico, le certificazioni emesse dal laboratorio non possono assumere valenza ai sensi del presente decreto e di ciò deve essere fatta esplicita menzione sul certificato stesso.

I certificati emessi dai laboratori devono obbligatoriamente contenere almeno:

- l'identificazione del laboratorio che rilascia il certificato;
- una identificazione univoca del certificato (numero di serie e data di emissione) e di ciascuna sua pagina, oltre al numero totale di pagine;
- l'identificazione del Centro di Trasformazione;
- l'identificazione della fornitura cui le prove si riferiscono e l'indicazione dei giorni in cui è stata lavorata;
- il nominativo del Direttore Tecnico che richiede la prova;
- la descrizione e l'identificazione dei campioni da provare;
- la data di prelievo dei campioni da provare;
- la data di ricevimento dei campioni e la data di esecuzione delle prove;
- l'identificazione delle specifiche di prova o la descrizione del metodo o procedura adottata, con l'indicazione delle norme di riferimento per l'esecuzione della stessa;
- le dimensioni effettivamente misurate dei campioni;
- i valori delle grandezze misurate e l'esito delle prove di piegamento.

I certificati devono riportare, inoltre, l'indicazione del marchio identificativo di cui al §11.3.1.4, rilevato sui campioni da sottoporre a prova a cura del laboratorio incaricato dei controlli. Ove i campioni fossero sprovvisti di tale marchio, oppure il marchio non dovesse rientrare fra quelli depositati presso il Servizio Tecnico Centrale, di ciò deve essere riportata specifica annotazione sul certificato stesso; detti certificati, pertanto, non sono validi ai sensi delle presenti norme. Il lotto deve essere, quindi, respinto e tale non conformità deve essere segnalata al Servizio Tecnico Centrale.

11.3.2.10.4 Prove di aderenza

Ai fini della qualificazione, i prodotti in barre e in rotolo devono superare con esito positivo prove di aderenza conformemente al metodo *Beam-test* da eseguirsi presso uno dei laboratori di cui all'art. 59 del DPR n. 380/2001, con le modalità specificate nella norma UNI EN 10080:2005.

Le tensioni di aderenza ricavate devono soddisfare le seguenti relazioni:

 $\tau_m \ge 0.098 (80 - 1.2 \varnothing)$ [11.3.5] $\tau_r \ge 0.098 (130 - 1.9 \varnothing)$ [11.3.6]

essendo:

- Ø il diametro nominale del campione in mm;
- τ_m il valor medio della tensione di aderenza in MPa calcolata in corrispondenza di uno scorrimento pari a 0,01 , 0,1 ed 1 mm;
- τ_r la tensione di aderenza massima al collasso.

Le prove devono essere estese ad almeno 3 diametri, come segue:

- uno nell'intervallo $5 \le \emptyset \le 10$ mm (barre) e $5 \le \emptyset \le 8$ mm (rotoli);
- uno nell'intervallo $12 \le \emptyset \le 18$ mm (barre) e $10 \le \emptyset \le 14$ mm (rotoli);
- uno pari al diametro massimo (barre e rotoli).

Per le verifiche periodiche della qualità e per le verifiche delle singole partite, non è richiesta la ripetizione delle prove di aderenza quando se ne possa determinare la rispondenza nei riguardi delle caratteristiche e delle misure geometriche, con riferimento alla serie di barre che hanno superato le prove stesse con esito positivo.

Con riferimento sia all'acciaio nervato che all'acciaio dentellato, per accertare la rispondenza delle singole partite nei riguardi delle proprietà di aderenza, si valuteranno su 3 campioni per ciascun diametro considerato, conformemente alle procedure riportate nella norma UNI EN ISO 15630-1:2010:

- il valore dell'area relativa di nervatura f_r, per l'acciaio nervato;
- il valore dell'area relativa di dentellatura f_p, per l'acciaio dentellato.

Il valore minimo di tali parametri è di seguito riportato:

Tab. 11.3.VI b)

		Barre	Rotoli
per 5 ≤ Ø ≤ 6 mm	fr oppure fp≥	0.035	0.037
per 6 < Ø ≤ 12 mm	fr oppure fp≥	0.040	0.042
per ∅ > 12 mm	fr oppure f _p ≥	0.056	0.059

Nel certificato di prova, oltre agli esiti delle verifiche di cui sopra, devono essere descritte le caratteristiche geometriche della sezione e delle nervature o delle dentellature.

11.3.2.11 PROCEDURE DI CONTROLLO PER ACCIAI DA CALCESTRUZZO ARMATO NORMALE – RETI E TRALICCI ELETTROSALDATI

11.3.2.11.1 Controlli sistematici in stabilimento

11.3.2.11.1.1 Prove di qualificazione

Il laboratorio di cui all'art. 59 del DPR n. 380/2001 effettua, presso lo stabilimento di produzione, il prelievo di una serie di 80 campioni, ricavati da 40 diversi pannelli, 2 per ogni elemento.

Per le reti si preleverà un campione per ognuna delle due direzioni ortogonali del pannello. Per i tralicci si preleveranno i campioni da uno dei correnti inferiori e dal corrente superiori.

Ogni campione deve consentire due prove:

- prova di trazione su un campione di filo comprendente almeno un nodo saldato, per la determinazione della tensione a carico massimo, della tensione di snervamento e dell'allungamento;
- prova di resistenza al distacco offerta dalla saldatura del nodo, determinata forzando con idoneo dispositivo il filo trasversale nella direzione di quello longitudinale posto in trazione (secondo la norma UNI EN 10080:2005 per i tralicci e secondo la norma UNI EN ISO 15630-2:2010 per le reti elettrosaldate).

Il prelievo deve essere effettuato su tutti i prodotti che portano il marchio depositato in Italia, indipendentemente dall'etichettatura o dalla destinazione specifica.

Per la determinazione delle tensioni caratteristiche di snervamento ed al carico massimo, determinate in accordo con il § 11.3.2.3, valgono le medesime formule di cui al § 11.3.2.10.1.3 dove n, numero dei campioni considerati, va assunto nel presente caso pari a 80, ed il coefficiente k assume, in funzione di n, i valori riportati nelle tabelle di cui al § 11.3.2.10.1.3.

Qualora uno dei campioni sottoposti a prove di qualificazione non soddisfi i requisiti previsti nelle Norme Tecniche relativamente ai valori di allungamento o resistenza al distacco, il prelievo relativo all'elemento di cui trattasi va ripetuto su un altro elemento della stessa partita. Il nuovo prelievo sostituisce quello precedente a tutti gli effetti. Un ulteriore risultato negativo comporta la ripetizione delle prove di qualificazione.

11.3.2.11.1.2 Prove di verifica della qualità

Il laboratorio incaricato, di cui all'articolo 59 del DPR 380/01, deve effettuare controlli saltuari ad intervalli non superiori a tre mesi, su una serie di 20 campioni, ricavati da 10 diversi elementi, 2 per ogni elemento. Il prelievo deve essere effettuato su tutti i prodotti recanti il marchio depositato in Italia, indipendentemente dall'etichettatura o dalla destinazione specifica.

Sulla suddetta serie il laboratorio effettua la prova di trazione e di distacco. I corrispondenti risultati vengono aggiunti a quelli dei precedenti prelievi dopo aver eliminato la prima serie in ordine di tempo.

Si determinano così le nuove tensioni caratteristiche sostitutive delle precedenti sempre ponendo n = 80.

Ove i valori caratteristici riscontrati risultino inferiori ai minimi di cui ai §§ 11.3.2.1 e 11.3.2.2, il laboratorio incaricato sospende le prove di verifica della qualità dandone comunicazione al Servizio Tecnico Centrale e ripete la qualificazione solo dopo che il fabbricante ha ovviato alle cause che hanno dato luogo al risultato insoddisfacente.

Qualora uno dei campioni sottoposti a prove di verifica non soddisfi i valori previsti al § 11.3.2, il prelievo relativo all'elemento di cui trattasi va ripetuto su un altro elemento della stessa partita. Il nuovo prelievo sostituisce quello precedente a tutti gli effetti. In caso di ulteriore risultato negativo, il laboratorio incaricato sospende le prove di verifica della qualità dandone comunicazione al Servizio Tecnico Centrale e ripete la qualificazione dopo che il fabbricante ha ovviato alle cause che hanno dato luogo al risultato insoddisfacente.

11.3.2.11.2 Controlli su singoli lotti di produzione

Negli stabilimenti soggetti ai controlli sistematici, i produttori qualificati possono sottoporre a ulteriori controlli singoli lotti di produzione a cura del laboratorio incaricato.

I controlli consistono nel prelievo per ogni lotto di un numero n di campioni, non inferiore a 20 e ricavati da almeno 10 diversi elementi, sui quali si effettuano le prove previste al \S 11.3.2.11.1.2.

Le tensioni caratteristiche di snervamento e carico massimo devono essere calcolate a mezzo delle formule di cui al § 11.3.2.10.1.3 nelle quali *n* è il numero dei saggi prelevati.

11.3.2.12 CONTROLLI DI ACCETTAZIONE IN CANTIERE

I controlli di accettazione in cantiere sono obbligatori e devono essere effettuati, entro 30 giorni dalla data di consegna del materiale, a cura di un laboratorio di cui all'art. 59 del DPR n. 380/2001.

Essi devono essere eseguiti in ragione di 3 campioni ogni 30 t di acciaio impiegato della stessa classe proveniente dallo stesso stabilimento o Centro di trasformazione, anche se con forniture successive.

Il prelievo dei campioni va eseguito alla presenza del Direttore dei Lavori o di un tecnico di sua fiducia che provvede alla redazione di apposito verbale di prelievo ed alla identificazione dei provini mediante sigle, etichettature indelebili, ecc.; la certificazione effettuata dal laboratorio prove materiali deve riportare il riferimento a tale verbale. La richiesta di prove al laboratorio incaricato deve essere sempre firmata dal Direttore dei Lavori, che rimane anche responsabile della trasmissione dei campioni.

Il laboratorio incaricato di effettuare le prove provvede all'accettazione dei campioni accompagnati dalla lettera di richiesta sottoscritta dal direttore dei lavori. Il laboratorio verifica lo stato dei provini e la documentazione di riferimento ed in caso di anomalie riscontrate sui campioni oppure di mancanza totale o parziale degli strumenti idonei per la identificazione degli stessi, deve sospendere l'esecuzione delle prove e darne notizia al Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici.

Il prelievo potrà anche essere eseguito dallo stesso laboratorio incaricato della esecuzione delle prove. I laboratori devono conservare i campioni sottoposti a prova per almeno trenta giorni dopo l'emissione dei certificati di prova, in modo da consentirne l'identificabilità e la rintracciabilità.

I campioni devono essere ricavati da barre di uno stesso diametro o della stessa tipologia (in termini di diametro e dimenioni) per reti e tralicci, e recare il marchio di provenienza.

I valori di resistenza ed allungamento di ciascun campione, accertati in accordo con il § 11.3.2.3, da eseguirsi comunque prima della messa in opera del prodotto riferiti ad uno stesso diametro, devono essere compresi fra i valori massimi e minimi riportati nelle Tabelle seguenti, rispettivamente per barre e reti e tralicci:

Tab. 11.3.VII a) – Valori di accettazione in cantiere – barre

Caratteristica	Valore limite	Note
fy minimo	425 N/mm ²	per acciai B450A e B450C
fy massimo	572 N/mm ²	per acciai B450A e B450C
Agt minimo	≥ 6,0%	per acciai B450C
Agt minimo	≥ 2,0%	per acciai B450A
ft / fy	$1,13 \le f_t / f_y \le 1,37$	per acciai B450C
ft / fy	$f_t / f_y \ge 1.03$	per acciai B450A
Piegamento/raddrizzamento	assenza di cricche	per acciai B450A e B450C

Tab. 11.3.VII b) – Valori di accettazione in cantiere – reti e tralicci

Caratteristica	Valore limite	Note
fy minimo	425 N/mm ²	per acciai B450A e B450C
fy massimo	572 N/mm ²	per acciai B450A e B450C
Agt minimo	≥ 6,0%	per acciai B450C
Agt minimo	≥ 2,0%	per acciai B450A
ft / fy	$1,13 \le f_t / f_y \le 1,37$	per acciai B450C
ft / fy	$f_t / f_y \ge 1.03$	per acciai B450A
Distacco del nodo	≥ Sez. nom. Ø maggio- re × 450 × 25%	per acciai B450A e B450C

Qualora il risultato non sia conforme a quello dichiarato dal fabbricante, il direttore dei lavori dispone la ripetizione della prova su 6 ulteriori campioni dello stesso diametro.

Ove anche da tale accertamento i limiti dichiarati non risultino rispettati, il controllo deve estendersi, previo avviso al fabbricante nel caso di fornitura di acciaio non lavorato presso un centro di trasformazione, o al centro di trasformazione, a 25 campioni, applicando ai dati ottenuti la formula generale valida per controlli sistematici in stabilimento (Cfr. § 11.3.2.10.1.3).

L'ulteriore risultato negativo comporta l'inidoneità della partita e la trasmissione dei risultati al fabbricante, nel caso di fornitura di acciaio non lavorato presso un centro di trasformazione, o al centro di trasformazione, che sarà tenuto a farli inserire tra i risultati dei controlli statistici della sua produzione. Analoghe norme si applicano ai controlli di duttilità, aderenza e distacco al nodo saldato: un singolo risultato negativo sul primo prelievo comporta l'esame di sei nuovi campioni dello stesso diametro, un ulteriore singolo risultato negativo comporta l'inidoneità della partita.

Inoltre il direttore dei lavori deve comunicare il risultato anomalo al Servizio tecnico centrale.

I certificati relativi alle prove meccaniche degli acciai devono riportare l'indicazione del marchio identificativo di cui al § 11.3.1.4 delle presenti Norme tecniche, rilevato sui campioni da sottoporre a prova a cura del laboratorio incaricato dei controlli. Ove i campioni fossero sprovvisti di tale marchio, oppure il marchio non dovesse rientrare fra quelli depositati presso il Servizio tecnico centrale, di ciò deve essere riportata specifica annotazione sul certificato di prova.

Il prelievo dei campioni va effettuato a cura del Direttore dei Lavori o di un tecnico di sua fiducia che deve assicurare, mediante sigle, etichettature indelebili, ecc., che i campioni inviati per le prove al laboratorio incaricato siano effettivamente quelli da lui prelevati.

Qualora la fornitura di elementi sagomati o assemblati, provenga da un Centro di trasformazione, il Direttore dei Lavori, dopo essersi accertato preliminarmente che il suddetto Centro di trasformazione sia in possesso dei requisiti previsti al § 11.3.1.7, può recarsi presso il medesimo Centro di trasformazione ed effettuare in stabilimento tutti i controlli di accettazione prescritti al presente paragrafo. In tal caso il prelievo dei campioni viene effettuato dal Direttore Tecnico del Centro di trasformazione secondo le disposizioni del Direttore dei Lavori; quest'ultimo deve assicurare, mediante sigle, etichettature indelebili, ecc., che i campioni inviati per le prove da effettuarsi presso il laboratorio di cui all'art. 59 del DPR n. 380/2001 incaricato delle prove di accettazione in cantiere, siano effettivamente quelli prelevati, nonché sottoscrivere la relativa richiesta di prove contenente l'indicazione delle strutture cui si riferisce ciascun prelievo. In caso di mancata sottoscrizione della richiesta di prove da parte del Direttore dei Lavori, le certificazioni emesse dal laboratorio non possono assumere valenza ai sensi del presente decreto e di ciò ne deve essere fatta esplicita menzione sul certificato stesso.

I certificati emessi dai laboratori devono obbligatoriamente contenere almeno:

- l'identificazione del laboratorio che rilascia il certificato;
- una identificazione univoca del certificato (numero di serie e data di emissione) e di ciascuna sua pagina, oltre al numero totale di pagine;
- l'identificazione del committente dei lavori in esecuzione e del cantiere di riferimento;
- il nominativo del Direttore dei Lavori che richiede la prova;
- la descrizione e l'identificazione dei campioni da provare;
- la data di ricevimento dei campioni e la data di esecuzione delle prove;
- l'identificazione delle specifiche di prova o la descrizione del metodo o procedura adottata, con l'indicazione delle norme di riferimento per l'esecuzione della stessa;
- le dimensioni effettivamente misurate dei campioni;
- i valori delle grandezze misurate e l'esito delle prove di piegamento.

I certificati devono riportare, inoltre, l'indicazione del marchio identificativo rilevato a cura del laboratorio incaricato dei controlli, sui campioni da sottoporre a prove. Ove i campioni fossero sprovvisti di tale marchio, oppure il marchio non dovesse rientrare fra quelli depositati presso il Servizio Tecnico Centrale, le certificazioni emesse dal laboratorio non possono assumere valenza ai sensi delle presenti norme e di ciò ne deve essere fatta esplicita menzione sul certificato stesso.

11.3.3. ACCIAIO PER CALCESTRUZZO ARMATO PRECOMPRESSO

È ammesso esclusivamente l'impiego di acciai qualificati secondo le procedure di cui al precedente § 11.3.1.2 e controllati con le modalità riportate nel § 11.3.3.5.

11.3.3.1 CARATTERISTICHE DIMENSIONALI E DI IMPIEGO

L'acciaio per armature da precompressione è generalmente fornito sotto forma di:

Filo: prodotto trafilato di sezione piena che possa fornirsi in rotoli o in fasci;

Barra: prodotto laminato di sezione piena che possa fornirsi soltanto in forma di elementi rettilinei, le caratteristiche finali del prodotto possono essere conferite con trattamento termico o meccanico successivo alla laminazione;

Treccia: prodotti formati da 2 o 3 fili trafilati dello stesso diametro nominale avvolti ad elica intorno al loro comune asse longitudinale fornito in rotolo o bobine; passo e senso di avvolgimento dell'elica sono eguali per tutti i fili della treccia;

Trefolo: prodotto formato da 6 fili trafilati avvolti ad elica intorno ad un filo trafilato rettilineo completamente ricoperto dai fili elicoidali, fornito in bobine. Il passo ed il senso di avvolgimento dell'elica sono uguali per tutti i fili di uno stesso strato esterno.

Per quanto non specificato nel presente paragrafo riguardo fili, trecce e trefoli si deve fare riferimento alle norme UNI 7675:2016 ed UNI 7676:2016.

- 328

I fili possono essere a sezione trasversale circolare o di altre forme e devono essere prodotti da vergella avente composizione chimica conforme a una delle seguenti norme:

- UNI EN ISO 16120-2:2017,
- UNI EN ISO 16120-4:2017.

I fili sono individuati mediante il diametro nominale o il diametro nominale equivalente riferito alla sezione circolare equipesante. La superficie dei fili può essere liscia o improntata.

Non è consentito l'impiego di fili lisci nelle strutture precompresse ad armature pre-tese.

I fili delle trecce possono essere lisci o improntati. I fili dello strato esterno dei trefoli possono essere lisci od improntati. I fili dei trefoli e delle trecce devono essere prodotti da vergella avente caratteristiche meccaniche e composizione chimica omogenee e conformi ad una delle seguenti norme:

- UNI EN ISO 16120-2:2017.
- UNI EN ISO 16120-4: 2017.

Il processo di improntatura deve essere completato prima della trecciatura o della trefolatura, rispettivamente per le trecce e per i trefoli.

I trefoli compattati possono essere prodotti per trafilatura o laminazione dopo la trefolatura e prima del trattamento termico. Quando la trefolatura e la compattazione sono eseguite contemporaneamente, il filo centrale rettilineo deve avere diametro almeno uguale a quello dei fili esterni.

Le barre possono essere lisce, a filettatura continua o parziale, con risalti o nervature; vengono individuate mediante il diametro nominale nel caso di barre lisce o mediante il diametro nominale equivalente riferito alla sezione circolare equipesante nel caso di barre non lisce. Le barre filettate devono avere filetto con passo uniforme e non superiore a 0,8 volte il diametro nominale. Le barre a filettatura continua o parziale, con risalti o nervature, devono avere geometria superficiale conforme a quanto specificato nel § 11.3.3.5.2.3.

Per quanto riguarda la marchiatura dei prodotti, generalmente costituita da sigillo o etichettatura sulle legature, vale quanto indicato al § 11.3.1.4. Le barre con risalti o nervature dovranno essere fornite con marchio apposto sulle singole barre.

Per la documentazione di accompagnamento delle forniture vale quanto indicato al § 11.3.1.5. Le forniture dovranno altresì essere accompagnate da un certificato di qualità e conformità, tipo 3.1, rilasciato secondo la Norma UNI EN 10204.

I trefoli e le trecce possono essere prodotti e forniti protetti con guaina oppure protetti con cera o grasso, oltre alla guaina. Le caratteristiche delle guaina, della cera e del grasso sono specificate nella norma UNI 7676:2009.

Tutti i prodotti possono essere forniti con protezione superficiale costituita da uno strato di zinco. L'operazione di zincatura deve essere eseguita come specificato nelle UNI 7675:2009 ed UNI 7676:2009. Lo spessore dello strato di zinco o la quantità di zinco per unità di lunghezza di prodotto, deve essere verificato secondo quanto specificato nelle UNI 7675:2009 ed UNI 7676:2009.

I fili devono essere forniti in rotoli di diametro tale che, all'atto dello svolgimento, allungati al suolo su un tratto di 10 m non presentino curvatura con freccia superiore a 400 mm; il fabbricante deve indicare il diametro minimo di avvolgimento.

I fili devono essere esenti da saldature.

Sono ammesse le saldature di fili destinati alla produzione di trecce e di trefoli se effettuate prima della trafilatura; non sono ammesse saldature durante l'operazione di cordatura.

All'atto della posa in opera gli acciai devono presentarsi privi di ossidazione, corrosione, difetti superficiali visibili, pieghe.

È tollerata un'ossidazione che scompaia totalmente mediante sfregamento con un panno asciutto.

In cantiere non è ammessa alcuna operazione di raddrizzamento.

Con riferimento ai procedimenti di saldatura ed alla qualifica dei saldatori impiegati per giunzioni saldate delle barre, si applicano la norma UNI EN ISO 17660-1:2007 per i giunti saldati destinati alla trasmissione dei carichi ed UNI EN 17660-2:2007 per i giunti saldati non destinati alla trasmissione dei carichi.

11.3.3.2 CARATTERISTICHE DEI PRODOTTI

Gli acciai per armature da precompressione devono possedere proprietà meccaniche e di duttilità, garantite dal fabbricante, non inferiori a quelle indicate nella successiva Tab. 11.3.VIII:

Tab. 11.3.VIII

Tipo di acciaio	Barre	Fili	Trefoli e trecce	Trefoli compattati
Tensione caratteristica al carico massimo f_{ptk} N/mm ²	≥ 1000	≥ 1570	≥1860	≥ 1820
Tensione caratteristica allo 0,1 % di deformazione residua - scostamento dalla proporzionalità $f_{p(0,1)k}N/mm^2$	na	≥ 1420	na	na
Tensione caratteristica all'1 % di deformazione totale $f_{p(1)k}$ N/mm²	na	na	≥1670	≥ 1620
Tensione caratteristiche di snervamento $f_{pyk} N/mm^2$	≥ 800	na	na	na
Allungamento totale percentuale a carico massimo \mathbf{A}_{gt}	≥ 3,5	≥ 3,5	≥3,5	≥ 3,5

na=non applicabile

Per il modulo di elasticità si farà riferimento al catalogo del fabbricante.

Le grandezze qui di seguito elencate: \emptyset , A, M, Z, f_{ptlv} , $f_{p(0,1)k}f_{pyk}$, $f_{p(0,1)}/f_{pt}$, f_{py}/f_{pt} , $f_{p(1)}/f_{pt}$, f_{pv}/f_{ptk} , A_{gtv} Ep, I, N, α (180°), N, L, ρ , p, t devono formare oggetto di garanzia da parte del fabbricante ed i corrispondenti valori garantiti figurare nel relativo catalogo.

Il controllo delle grandezze di cui sopra è eseguito secondo le modalità e le prescrizioni indicate nei punti successivi.

Pertanto i valori delle grandezze:

Ø. A. M

sono confrontati con quelli che derivano dall'applicazione ai valori nominali, delle tolleranze prescritte

al § 11.3.3.5.2.3;

 f_{ptk} , f_{pyk} , $f_{p(1)k}$, $f_{p(0,1)k}$ ottenuti applicando ai valori singoli f_{ptk} , f_{pyk} , $f_{p(1)}$, $f_{p(0,1)}$ la formula $x_k = \bar{x} - k$ s, sono confrontati con i corri-

spondenti valori caratteristici garantiti che figurano nel catalogo del fabbricante e con quelli della Tab. 11.3.VIII; nella formula precedente è inteso che sia:

xk = valore caratteristico della grandezza;

 \bar{x} = valore medio dei singoli valori in considerazione;

k = coefficiente dedotto dalla Tab. 11.3.IV in funzione del numero n di valori singoli in consi-

s = scarto quadratico medio della distribuzione dei valori singoli;

 $f_{p(0,1)}/f_{pv}, \ f_{py}/f_{pv}, \ e \ f_{p(1)}/f_{pv} \ \ ottenuti \ come \ rapporto \ tra \ i \ valori \ singoli \ f_{p(0,1)}, \ f_{py}, \ f_{p(1)} \ e \ il \ corrispondente \ valore \ al \ carico \ massimo \ f_{pv},$

devono risultare compresi tra il valore minimo e il valore massimo riportati al successivo § 11.3.3.5.2.3;

 f_{pl}/f_{plk} , A_{gt} sono confrontati, rispettivamente, con il corrispondente valore massimo indicato al \S 11.3.3.5.2.3 e con il

valore minimo che figura nella Tab. 11.3.VIII;

 $\begin{array}{ll} 1 & \text{\`e confrontato con quanto riportato nella Tab.11.3.X;} \\ N, \alpha \, (180^\circ) & \text{sono confrontati con quelli prescritti al § 11.3.3.5.2.3;} \\ E_P, D, L, \rho & \text{sono conformi con quelli prescritto al § 11.3.3.5.2.3;} \\ \end{array}$

 $\begin{array}{ll} Z,\,p & \text{sono confrontati con i corrispondenti valori limite indicati al successivo § 11.3.3.5.2.3;} \\ t & \text{è confrontato con i corrispondenti valori limite indicati al successivo § 11.3.3.5.2.1.} \\ \end{array}$

Si prende inoltre in considerazione la forma del diagramma sforzi deformazioni ottenuta nella prova di trazione.

11.3.3.3 CADUTE DI TENSIONE PER RILASSAMENTO

Le cadute di tensione per rilassamento devono essere riferite al valore percentuale ottenuto sperimentalmente dopo 1000 ore dalla messa in tensione (ρ_{1000}). La tensione iniziale (σ_{spi}) di prova deve essere pari al 70% del valore f_{pt} ottenuto come valore medio della tensione al carico massimo ottenuta su due saggi prelevati in adiacenza a quello sottoposto a prova.

Il valore della caduta di rilassamento dopo 1000 ore (p1000), non può essere assunto superiore a quello indicato nella tabella

In mancanza di specifica sperimentazione, i valori di ρ_{1000} possono essere tratti dalla Tab. 11.3.IX.

Tab. 11.3.IX

armatura Prodotto	ρ ₁₀₀₀
Trecce, filo o trefolo stabilizzato	2,5
Barre laminate a caldo	4.0

Il rilassamento di armature che subiscono un ciclo termico dopo la messa in tensione deve essere valutato sperimentalmente.

11.3.3.4 CENTRI DI TRASFORMAZIONE

Si definisce Centro di trasformazione, nell'ambito degli acciai per calcestruzzo armato precompresso, un impianto esterno alla fabbrica e/o al cantiere, fisso o mobile, che riceve dal fabbricante di acciaio elementi base (fili, trecce, trefoli, barre, ecc.) e confeziona elementi strutturali direttamente impiegabili in cantiere per la messa in opera.

11.3.3.5 PROCEDURE DI CONTROLLO PER ACCIAI DA CALCESTRUZZO ARMATO PRECOMPRESSO

11.3.3.5.1 Prescrizioni comuni - Modalità di prelievo

I saggi destinati ai controlli:

- non devono essere avvolti con diametro inferiore a quello della bobina o rotolo di provenienza;
- devono essere prelevati con le lunghezze richieste dal laboratorio incaricato delle prove ed in numero sufficiente per eseguire eventuali prove di controllo o ripetizioni successive e devono essere contrassegnati univocamente;
- devono essere adeguatamente protetti nel trasporto.

11.3.3.5.2 Controlli sistematici in stabilimento

11.3.3.5.2.1 Prove di qualificazione

Il laboratorio incaricato deve effettuare, presso lo stabilimento di produzione, il prelievo di una serie di 50 saggi, 5 per lotto, da 10 lotti di produzione diversi. I 10 lotti di produzione presi in esame per le prove di qualificazione devono essere costituiti da produtti della stessa forma ed avere la stessa resistenza nominale, ma non necessariamente lo stesso diametro e la stessa caratteristica di formazione. I diametri dei prodotti sottoposti a prova devono comprendere i valori minimo e massimo per i quali il fabbricante chiede la qualificazione. Per quanto riguarda i trefoli e le trecce, è inteso che le caratteristiche di omogeneità e di continuità di produzione richiamate nella definizione di lotto di produzione di cui al § 11.3.1.1, si estendono a tutti i fili che costituiscono il prodotto. Gli acciai devono essere raggruppati in categorie nel catalogo del fabbricante ai fini della relativa qualificazione.

I 5 saggi di ogni singolo lotto vengono prelevati da differenti fasci, rotoli o bobine. Ogni saggio deve recare contrassegni atti ad individuare il lotto ed il rotolo, la bobina o il fascio di provenienza.

Sulla serie di 50 saggi vengono determinate le grandezze \varnothing , A, M, Z, f_{pv} f_{pv} , $f_{p(1)}$, $f_{p(1)}$, $f_{p(1)}$, $f_{q(1)}$, α (180°) sotto il controllo di un laboratorio di cui all'art. 59 del DPR n. 380/2001. Le relative prove possono essere eseguite alla presenza dei tecnici del laboratorio incaricato presso il laboratorio dello stabilimento di produzione purché venga rispettato quanto prescritto dalle norme in merito alla verifica della taratura delle attrezzature.

I valori caratteristici f_{ptk}, f_{pyk}, f_{p(0,1)k}, f_{p(1)k} ottenuti dall'elaborazione statistica dei risultati con la relazione del punto 11.3.3.2, devono rispettare i valori minimi di cui alla Tab. 11.3.VIII, oppure quelli dichiarati e garantiti dal fabbricante.

Gli scarti quadratici medi delle rispettive distribuzioni devono risultare non superiori al 3% del valore medio per f_{pv} , e al 4% per f_{pv} , $f_{p(0,1)}$, $f_{p(1)}$.

Il valore dei rapporti $f_{p(0,1)}/f_{pt}$, f_{py}/f_{pt} , e $f_{p(1)}/f_{pt}$ ed il valore massimo della tensione al carico massimo f_{pt} non possono eccedere i limiti indicati al § 11.3.3.5.2.3.

 $Tutti\ i\ valori\ di\ allungamento\ totale\ percentuale\ A_{gt}\ devono\ risultare\ almeno\ uguali\ a\ quelli\ riportati\ nella\ Tab.\ 11.3. VIII.$

Vengono quindi ulteriormente determinati:

- la caduta per rilassamento r, su saggi provenienti da 4 lotti, in numero di 3 saggi per ogni lotto.
- il limite di fatica L sotto carico assiale, con la procedura indicata al punto 6.8.4 della norma UNI EN 1992-1-1:2005.
- la grandezza D, per i trefoli di diametro maggiore o uguale a 12,5 mm, su saggi provenienti da 5 lotti. Per ciascun lotto il numero di saggi è indicato nella UNI EN ISO 15630-3:2010. Il risultato dovrà essere confrontato con il limite specificato al § 11.3.3.5.2.3.
- la durata di vita a rottura t con delle prove di corrosione sotto tensione, secondo norma UNI EN ISO 15630-3:2010 soluzione A, effettuate su 3 lotti in numero di 6 per lotto. Il diametro nominale dei lotti scelti deve essere possibilmente diverso. In ogni caso per almeno uno dei lotti il diametro deve essere il più piccolo tra quelli appartenenti alla gamma di produzione oggetto della qualificazione e presenti all'atto del controllo. Il risultato dovrà essere confrontato con i limiti specificati al § 11.3.3.5.2.3.
- la durata di vita a rottura t2 con delle prove di corrosione sotto tensione, secondo norma UNI EN ISO 15630-3:2010 soluzione B, effettuate su 2 lotti in numero di 1 per lotto. Il diametro nominale dei 2 lotti scelti deve essere diverso. In ogni caso per almeno uno dei lotti il diametro deve essere il più piccolo tra quelli appartenenti alla gamma di produzione oggetto della qualificazione e presenti all'atto del controllo. Il risultato ottenuto dal test non dovrà essere inferiore alle 2000 ore.

Le prove per la determinazione di r, L, D e t, devono essere eseguite nel laboratorio di cui all'art. 59 del DPR n. 380/2001. Tutti i risultati di prova devono essere positivi in relazione al valore garantito dal fabbricante per il rilassamento ed alle prescrizioni contenute nel § 11.3.3.5.2.3 per le rimanenti grandezze.

Infine si effettueranno le determinazioni:

- del minimo valore del rapporto tra il diametro del filo centrale e quello dei fili periferici su un saggio per lotto di trefoli;
- del passo di avvolgimento, su un saggio per lotto di trecce e di trefoli;
- del comportamento al piegamento del filo centrale di un saggio per lotto di trefoli;
- del coefficiente di strizione a rottura Z su un saggio per ogni lotto nel caso delle trecce e dei trefoli;
- delle profondità delle impronte per i prodotti improntati;

verificando che i risultati ottenuti siano tutti conformi alle limitazioni date al § 11.3.3.5.2.3.

11.3.3.5.2.2 Prove di verifica della qualità

Ai fini della verifica della qualità il laboratorio incaricato deve effettuare controlli saltuari su un campione costituito da 5 saggi provenienti da un lotto per ogni categoria di armatura. Il controllo verte su un minimo di sei lotti ogni trimestre da sottoporre a prelievo in non meno di tre sopralluoghi. Su tali saggi il laboratorio viene determinato il valore delle grandezze \varnothing , A, M, L, f_{pv} , 1, f_{py} , $f_{p(0,1)}$, $f_{p(0,1)}$, $f_{p(0,1)}$ / f_{pt} , f_{py} / f_{pt} , e $f_{p(1)}$ / f_{pt} , f_{py} , $f_{q(0,1)}$, $f_{p(0,1)}$

I valori caratteristici f_{ptk} , f_{pyk} , $f_{p(1)k}$, $f_{p(1)k}$ calcolati con la formula del precedente § 11.3.3.5.2.1 devono rispettare i valori minimi di cui alla Tab. 11.3.VIII oppure i valori dichiarati dal fabbricante.

Se gli scarti quadratici medi risultano superiori al 3% del valore medio per $f_{p\nu}$ e al 4% per $f_{py\nu}$ $f_{(0,1)\nu}$, $f_{p(1)\nu}$ il controllo si intende sospeso e la procedura di qualificazione deve essere ripresa dall'inizio.

Ove i valori caratteristici $f_{plk'}$ $f_{pyk'}$ $f_{(0,1)k'}$ $f_{p(1)k}$ riscontrati risultino inferiori ai valori minimi di cui alla Tab. 11.3.VIII, oppure i valori dei rapporti $f_{p(0,1)}/f_{pv}$, f_{py}/f_{pv} , e $f_{p(1)}/f_{pv}$ non siano compresi tra i limiti specificati nel § 11.3.3.5.2.3, il laboratorio incaricato sospende le verifiche della qualità dandone comunicazione al Servizio Tecnico Centrale che autorizzerà il laboratorio di cui all'art. 59 del DPR n. 380/2001 a ripetere le prove di qualificazione solo dopo che il fabbricante abbia ovviato alle cause che hanno dato luogo al risultato insoddisfacente e previa eventuale nuova visita ispettiva.

Per il calcolo del valore caratteristico delle grandezze f_{PP} , f_{PP} , f_{PP} , f_{PP} , f_{PP} , f_{PP} , devono essere prese in considerazione sempre 10 serie di 5 saggi, facenti parte dei prodotti oggetto della qualificazione, da aggiornarsi ad ogni prelievo, aggiungendo la nuova serie ed eliminando la prima in ordine di tempo. I nuovi valori delle medie e degli scarti quadratici medi così ottenuti vengono utilizzati per la determinazione delle nuove tensioni caratteristiche, sostitutive di quelle precedenti, ponendo sempre n = 50.

Per le grandezze r e per la resistenza alla fatica, i controlli si effettuano una volta al semestre, per entrambe su 3 saggi provenienti dallo stesso lotto per ogni categoria di armatura.

La grandezza D, per i trefoli di diametro maggiore o uguale a 12,5 mm, è determinata una volta al semestre su saggi provenienti da un lotto, nel numero previsto dalla UNI EN ISO 15630-3:2010.

Le prove di corrosione sotto tensione per la determinazione della durata di vita a rottura t sono effettuate 1 volta al semestre su 1 lotto, in numero di 6 saggi per lotto.

Le prove per la determinazione delle grandezze r, D e t e per la valutazione delle resistenza alla fatica, vengono eseguite nel laboratorio di cui all'art. 59 del DPR n. 380/2001. Tutti i risultati di prova devono essere positivi in relazione al valore indicato nella Tabella 11.3.VIII per la caduta di rilassamento e alle limitazioni date nel § 11.3.3.5.2.3 per le grandezze D e t.

Su un saggio per lotto di trefoli si effettueranno le determinazioni del rapporto tra il diametro del filo centrale e quello dei fili periferici confrontandoli con quelli limite indicati al § 11.3.3.5.2.3.

Su un saggio per lotto di trecce e di trefoli, si calcolerà il valore del coefficiente di strizione a rottura Z e si misurerà il passo di avvolgimento p di cui al \S 11.3.3.5.2.3.

Il laboratorio di cui al all'art. 59 del DPR n. 380/2001 provvederà ad effettuare i prelievi sopramenzionati, provvedendo, per quanto possibile, a coprire tutti i diametri compresi nell'intervallo oggetto della qualificazione.

11.3.3.5.2.3 Determinazione delle proprietà e tolleranze

Qualora non diversamente specificato, le determinazioni e le misure di cui al presente paragrafo si effettuano, per i fili, le trecce, i trefoli e le barre, secondo quanto indicato nelle pertinenti parti delle norme UNI EN ISO 15630-1, 2 e 3.

I valori delle tensioni f_{Pl} , f_{Pl} , $f_{P(0,1)}$, $f_{P(0)}$ devono essere riferiti al valore nominale dell'area della sezione trasversale riportata nel catalogo del fabbricante.

Diametro (Ø), area della sezione trasversale (A) e massa per unità di lunghezza (M)

L'area della sezione trasversale si valuta per pesata assumendo che la densità dell'acciaio sia pari a 7,81 kg/dm³ per i fili, le trecce e i trefoli e 7,85 kg/dm³ per le barre.

Qualora richiesto, il diametro dei fili lisci e delle barre lisce si misura con uno strumento appropriato che garantisca una accuratezza di lettura di 0,01 mm o migliore.

Il valore ottenuto per la massa deve essere riferito a un metro di lunghezza di prodotto.

Sui valori nominali delle aree delle sezioni dei fili, delle barre, delle trecce e dei trefoli è ammessa una tolleranza di \pm 2%. Per le barre la tolleranza è compresa tra -2% e +6%. Le stesse tolleranze si applicano al valore della massa nominale per unità di lunghezza dichiarata dal fabbricante.

Nei calcoli statici si adottano le aree delle sezioni nominali.

Rettilineità

I prodotti forniti in rotolo o in bobine devono avere raggio di avvolgimento tale per cui all'atto dello svolgimento, allungati al suolo, su un tratto di 1 m non presentino curvatura con freccia superiore a 25 mm; il fabbricante deve indicare il diametro minimo di avvolgimento del prodotto. Nel caso di fili forniti in fasci il valore massimo di curvatura come sopra definito è pari a 10 mm. Per le barre il valore massimo di deviazione dalla rettilineità, misurato su una qualsiasi lunghezza, non deve superare 4 mm per metro di lunghezza.

Ovalità

L'ovalità dei fili lisci, definita come differenza tra massimo e minimo diametro misurato, non deve essere maggiore di 2/100 del loro diametro nominale. La misurazione delle dimensioni deve essere effettuata con uno strumento che garantisca una accuratezza di lettura di 1/100 di mm o migliore. Il diametro medio, inteso come media delle misurazione di due diametri ortogonali tra loro di cui uno sia il massimo tra quelli ottenuti, non deve differire per più dell'1% dal valore nominale del diametro dichiarato dal fabbricante.

Passo di avvolgimento (p)

Il passo di avvolgimento dei fili delle trecce deve essere compreso tra 14 e 22 volte il loro diametro nominale.

Il passo di avvolgimento dei fili esterni dei trefoli deve essere compreso tra 14 e 18 volte il loro diametro nominale.

Diametro dei fili delle trecce e dei trefoli

Il rapporto tra il diametro del filo interno e quello di ciascuno dei fili esterni di un trefolo a fili lisci o improntati deve essere almeno pari a 1,03.

Per la misurazione deve essere usato uno strumento che assicuri una risoluzione di 0,01 mm o migliore.

Dimensioni delle impronte nei prodotti improntati.

Nei fili, nelle trecce e nei trefoli improntati, le dimensioni delle impronte devono rispettare quanto riportato nella Tab. 11.3.X.

 Tab. 11.3.X - Dimensioni e tolleranze per le impronte dei fili, delle trecce e dei trefoli improntati (mm).

Diametro no	minale del prodotto	Limiti della profondità massima delle impronte	Lunghezza delle impronte e relativa tolleranza "1"	Distanza tra le impronte e relativa tolleranza
	Ø ≤ 5 mm	Minimo = 0,03 Massimo = 0,16	3,5 ± 0,5	5,5 ± 0,5
Fili	5 mm < Ø ≤ 8 mm	Minimo = 0,05 Massimo = 0,20		
	8 mm < Ø ≤ 11 mm	Minimo = 0.05 Massimo = 0.25		8,0 ± 0,5
Trecce e	Ø ≤ 12 mm	Minimo = 0,03 Massimo = 0,09		
trefoli	Ø > 12 mm	Minimo = 0,04 Massimo = 0,10	3,5 ± 0,5	5,5 ± 0,5

Coefficiente di strizione (Z)

Il valore minimo del coefficiente di strizione Z, riferito al valore dell'area della sezione trasversale effettiva dei fili costituenti le trecce e i trefoli, è pari al 25% per i fili lisci e pari al 20% per i fili improntati.

 $Per\ i\ fili\ lisci\ la\ grandezza\ Z\ non\ deve\ essere\ inferiore\ al\ 25\%.\ Tale\ limite\ si\ riduce\ al\ 20\%\ per\ i\ fili\ improntati.$

Per le barre è richiesta una rottura duttile (con strizione) visibile ad occhio nudo.

Tensione al carico massimo (fpt)

La determinazione di f_{pt} si effettua per mezzo della prova di trazione. La tensione al carico massimo non può essere maggiore del corrispondente valore caratteristico garantito dal fabbricante, incrementato del 15%.

Tensione di scostamento dalla proporzionalità allo 0.1% ($f_{p(0,1)}$)

Il valore della tensione $f_{p(0,1)}$ si ricava dal corrispondente diagramma sforzi – deformazioni, ottenuto con prove di trazione.

Tensione di snervamento (fpy)

Per le barre, il valore della tensione di snervamento f_{py} si ricava dal corrispondente diagramma sforzi – deformazioni ottenuto con la prova di trazione.

Modulo di elasticità (E_v)

Il modulo di elasticità E_P è inteso come rapporto fra la differenza di tensione media e la differenza di deformazione corrispondente, valutato per l'intervallo di tensione (0,2-0,7) f_{pt} sul diagramma sforzi-deformazioni ottenuto con la prova di trazione . Sono tollerati scarti del \pm 5% rispetto al valore dichiarato dal fabbricante.

Tensione all'1% di deformazione totale $(f_{p(1)})$

Il valore della tensione corrispondente all'1% di deformazione totale si ricava dal diagramma sforzi-deformazioni ottenuto con la prova di trazione.

Limiti del rapporto tra le tensioni $f_{p(0,1)}$, f_{py} , $f_{p(1)}$ e la tensione al carico massimo f_{pt}

Il valore delle grandezze $f_{p(0,1)}/f_{pt}$, f_{py}/f_{pt} , e $f_{p(1)}/f_{pt}$ ottenute come rapporto tra i valori singoli $f_{p(0,1)}$, f_{py} , $f_{p(1)}$ e il corrispondente valore al carico massimo f_{pt} , deve risultare compreso tra i limiti 0,87 e 0,95.


Allungamento totale percentuale sotto carico massimo (A_{gt})

Il valore dell'allungamento totale percentuale sotto carico massimo si ricava dal diagramma sforzi-deformazioni ottenuto con la prova di trazione La base di misura dell'estensimetro deve essere in accordo alla UNI 7676:2016 per trefolo e treccia; UNI 7675:2016 per i fili $e \ge 200$ mm per le barre.

Prova di piegamento alternato (N)

La prova di piegamento alternato si esegue su fili aventi $\emptyset \le 8$.

Il numero dei piegamenti alterni a rottura non deve risultare inferiore a 4 per i fili lisci e a 3 per i fili con impronte. Per il filo centrale dei trefoli valgono gli stessi limiti precedenti.

Prova di piegamento (α)

La prova di piegamento si esegue su fili aventi $\emptyset \ge 8$ mm e su barre.

L'angolo di piegamento deve essere di 180° e il diametro del mandrino deve essere pari a:

5 Ø per i fili;

6 Ø per le barre con Ø ≤ 26 mm

 $8 \varnothing$ per le barre con $\varnothing > 26$ mm.

Resistenza a fatica (L)

Le prove per la determinazione del limite di fatica L e della resistenza alla fatica, vengono condotte con sollecitazione assiale a ciclo pulsante, facendo oscillare la tensione fra un valore superiore σ_1 e un valore inferiore σ_2 . Il risultato della prova per la verifica di resistenza a fatica è ritenuto soddisfacente se il campione sopporta, senza rompersi, almeno due milioni di cicli.

Nelle prove di resistenza alla fatica, il valore superiore della tensione di prova σ_1 deve essere pari al 70% del valore ottenuto come media delle tensioni al carico massimo, ricavate su due saggi prelevati in adiacenza a quello sottoposto a prova. Il valore inferiore della tensione di prova σ_2 è dato in Tab. 11.3.XI.

Tab. 11.3.XI - Valori inferiori della tensione di prova, ϖ (MPa), nella prova di verifica della resistenza a fatica

Fili lisci, trecce e trefoli con fili lisci	$\sigma_1 - 200 \text{ MPa}$	
Fili improntati, trecce e trefoli con fili improntati	$\sigma_1 - 180 \text{ MPa}$	
Barre lisce	$\sigma_1 - 200 \text{ MPa } (\varnothing \le 40 \text{ mm})$	$\sigma_1 - 150 \text{ MPa } (\emptyset > 40 \text{ mm})$
Barre filettate o improntate	$\sigma_1 - 180 \text{ MPa } (\varnothing \le 40 \text{ mm})$	$\sigma_1 - 120 \text{ MPa } (\emptyset > 40 \text{ mm})$

La frequenza di prova deve essere non superiore a 120 Hz per i fili e le barre e 20 Hz per i trefoli.

Prove di rilassamento a temperatura ordinaria (ρ)

Le prove per la determinazione della caduta di tensione nel tempo a lunghezza costante ed a alla temperatura T= di $20^{\circ}C \pm 1^{\circ}C$ devono essere condotte a partire dalla tensione iniziale σ_{spi} del punto 11.3.3.3 e per la durata stabilita. I diagrammi sperimentali ottenuti devono essere allegati al certificato di prova. La durata stabilita della singola prova è di 1000 ore. Sono consentiti tempi di prova pari a 120 ore. In sede di prima qualificazione del prodotto, tutte le prove devono avere durata di 1000 ore. In sede di verifica della qualità le prove devono avere durata di 120 ore. I risultati di prova, per ciascuna delle durate stabilite, devono essere tutti non superiori:

- Per treccia, trefolo e filo: a 1,5% a 120 ore
- Per barre: 4% a 1000 ore
- Per tutti i prodotti: a quanto stabilito in tabella 11.3.IX

Il campione deve essere sollecitato per un tratto non inferiore a 100 cm; in conseguenza la lunghezza del saggio deve essere convenientemente incrementata per tener conto della lunghezza dei dispositivi di afferraggio. Nella zona sollecitata il campione non deve subire alcuna lavorazione, deformazione meccanica o pulitura.

Prove per la determinazione del coefficiente medio D di riduzione del carico massimo (trazione deviata).

Le prove per la determinazione del coefficiente medio D di riduzione del carico massimo per trazione deviata, sono richieste per i trefoli con diametro nominale maggiore o uguale a 12,5 mm e per i trefoli compattati. Il valore limite di D non può superare il 28%.

11.3.3.5.2.4 Controlli su singoli lotti di produzione

Negli stabilimenti soggetti a controlli sistematici di cui al presente § 11.3.3.5.2, i produttori possono richiedere di sottoporsi a controlli, eseguiti a cura del laboratorio di cui all'art. 59 del DPR n. 380/2001 già incaricato per le prove di verifica della qualità, su singoli lotti di produzione (massima massa del lotto = 100 t) di quei prodotti che, per ragioni di produzione, non possono ancora rispettare le condizioni minime quantitative per qualificarsi. Le prove da effettuare sono quelle di cui al successivo § 11.3.3.5.3.

11.3.3.5.3 Controlli nei centri di trasformazione

Si applicano le disposizioni relative ai Centri di Trasformazione di cui al \S 11.3.1.7.

I controlli sono obbligatori e devono essere effettuati a cura del Direttore tecnico del centro di trasformazione.

I controlli vengono eseguiti secondo le modalità di seguito indicate.

Effettuato un prelievo di 3 saggi ogni 30 t della stessa categoria di acciaio proveniente dallo stesso stabilimento, anche se con forniture successive, si determinano, mediante prove eseguite presso un laboratorio di cui all'art. 59 del DPR n. 380/2001, i corrispondenti valori minimi di $f_{pt'}$ $f_{py'}$ $f_{p(1)'}$ $f_{p(0,1)_r}$ A_{gt} e E_{p} .

I risultati delle prove sono considerati accettabili se:

- nessuno dei valori di tensione sopra indicati è inferiore al corrispondente valore caratteristico dichiarato dal fabbricante;
- tutti i valori di tensione al carico massimo f_{pt} non superano il valore caratteristico f_{ptk} corrispondente, incrementato del
- tutti i valori dell'allungamento totale percentuale al carico massimo Agt non sono inferiori al limite della Tab. 11.3.VIII;

Nel caso che anche uno solo dei valori delle tensioni o dell'allungamento totale percentuale al carico massimo non rispetti la corrispondente condizione, verranno eseguite prove supplementari su un campione costituito da almeno 10 saggi prelevati da altrettanti rotoli, bobine o fasci. Se il numero dei rotoli, bobine o fasci è inferiore a 10, da alcuni fasci sono prelevati due saggi da due barre diverse, mentre da alcuni rotoli o bobine verranno prelevati due saggi, uno da ciascuna estremità.

Ogni saggio deve recare contrassegni atti ad individuare il lotto ed il rotolo, bobina o fascio di provenienza.

Effettuato il prelievo supplementare si determinano, mediante prove effettuate presso un laboratorio di cui all'art. 59 del DPR n. 380/2001, i valori di $f_{pt'}$ $f_{py'}$ $f_{p(1)'}$ $f_{p(0,1)'}$ A_{gt} , E_{p} .

La fornitura è considerata conforme se:

- la media dei risultati ottenuti per le grandezze f_{pl}, f_{py}, f_{p(0,1)}, f_{p(1)} sugli ulteriori saggi è almeno uguale al valore caratteristico garantito dal fabbricante e i singoli valori sono superiori allo stesso valore caratteristico garantito, diminuito del 1,5%.
- la media dei risultati ottenuti per la grandezza f_{pt} sui 10 ulteriori saggi è al massimo uguale a 1,15 volte il valore caratteristico f_{ptk} garantito dal fabbricante e i singoli valori sono inferiori allo stesso limite, incrementato del 1,5%.
 la media dei risultati ottenuti per la grandezza A_{gt} sui 10 ulteriori saggi è al minimo uguale al limite indicato nella Tab.
 11.3.VIII e i singoli valori sono superiori allo stesso limite, diminuito del 5%.

L'ulteriore risultato negativo comporta l'inidoneità della fornitura e la trasmissione dei risultati al fabbricante, che è tenuto a farli inserire tra i risultati dei controlli statistici della sua produzione.

In tal caso il Direttore tecnico del centro di trasformazione deve comunicare il risultato anomalo sia al laboratorio incaricato del controllo che al Servizio Tecnico Centrale.

Il prelievo dei campioni va effettuato a cura del Direttore tecnico del centro di trasformazione che deve assicurare, mediante sigle, etichettature indelebili, ecc., che i campioni inviati per le prove al laboratorio incaricato siano effettivamente quelli da lui prelevati, nonché sottoscrivere la relativa richiesta di prove contenente l'indicazione dei giorni nei quali ciascuna fornitura è stata lavorata e del cantiere o dei cantieri ove è destinata.

In caso di mancata sottoscrizione della richiesta di prove da parte del Direttore Tecnico, le certificazioni emesse dal laboratorio non possono assumere valenza ai sensi del presente decreto e di ciò ne deve essere fatta esplicita menzione sul certificato stesso.

Per le caratteristiche dei certificati emessi dal laboratorio, si fa riferimento a quanto riportato al § 11.3.1.6, fatta eccezione per il marchio di qualificazione, normalmente non presente sugli acciai da calcestruzzo armato precompresso, per il quale si potrà fare riferimento ad eventuali cartellini identificativi oppure ai dati dichiarati del richiedente.

Il Direttore tecnico del centro di trasformazione curerà la registrazione di tutti i risultati delle prove di controllo interno su apposito registro, di cui dovrà essere consentita la visione a quanti ne abbiano titolo.

Tutte le forniture provenienti da un Centro di trasformazione devono essere accompagnate dalla documentazione di cui al § 11.3.1.7.

11.3.3.5.4 Controlli di accettazione in cantiere

I controlli di accettazione in cantiere devono essere eseguiti secondo le medesime indicazioni di cui al precedente § 11.3.3.5.3, ogni 30 t della stessa categoria di acciaio proveniente dallo stesso stabilimento, anche se con forniture successive.

Il prelievo dei campioni va eseguito alla presenza del Direttore dei Lavori o di un tecnico di sua fiducia che provvede alla redazione di apposito verbale di prelievo ed alla identificazione dei provini mediante sigle, etichettature indelebili, ecc.; la certificazione effettuata dal laboratorio prove materiali deve riportare riferimento a tale verbale. La richiesta di prove al laboratorio incaricato deve essere sempre firmata dal Direttore dei Lavori, che rimane anche responsabile della trasmissione dei campioni.

Il laboratorio incaricato di effettuare le prove provvede all'accettazione dei campioni accompagnati dalla lettera di richiesta sottoscritta dal direttore dei lavori. Il laboratorio verifica lo stato dei provini e la documentazione di riferimento ed in caso di anomalie riscontrate sui campioni oppure di mancanza totale o parziale degli strumenti idonei per la identificazione degli stessi, deve sospendere l'esecuzione delle prove e darne notizia al Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici.

Il prelievo potrà anche essere eseguito dallo stesso laboratorio incaricato della esecuzione delle prove. I laboratori devono conservare i campioni sottoposti a prova per almeno trenta giorni dopo l'emissione dei certificati di prova, in modo da consentirne l'identificabilità e la rintracciabilità.

Per le modalità di prelievo dei campioni, di esecuzione delle prove, di compilazione dei certificati, di accettazione delle forniture e per le procedure derivanti da risultati non conformi, valgono le medesime disposizioni di cui al precedente § 11.3.3.5.3.

11.3.3.5.5 Prodotti inguainati o inguainati e cerati.

Trattandosi di ulteriori trasformazioni, è richiesto che gli acciai di partenza (trefoli per calcestruzzo armato precompresso) siano già qualificati secondo le procedure finora descritte.

Per le ulteriori caratteristiche (materiale protettivo, quantità, guaine, spessore, ecc...) si rimanda a quanto contenuto nella specifica UNI 7676:2009.

11.3.3.5.6 Prodotti zincati.

È ammesso l'uso di acciai zincati purché le caratteristiche fisiche, meccaniche e tecnologiche siano conformi alle prescrizioni relative agli acciai di cui al presente paragrafo §11.3.3.

Il materiale base da sottoporre a zincatura deve essere qualificato all'origine.

I controlli di accettazione in cantiere e la relativa verifica di quanto sopra indicato, devono essere effettuati sul prodotto finito, dopo il processo di zincatura, presso un laboratorio di cui all'articolo 59 del DPR 380/2001, secondo quanto previsto al § 11.3.3.5.4.

Per le modalità di controllo del rivestimento di zinco (qualità superficiale, adesione del rivestimento, massa di rivestimento per unità di superficie) si può fare riferimento alle norme UNI 7675: 2016 e UNI 7676:2016.

11.3.3.5.7 Certificati di prova rilasciati dal laboratorio di cui all'art. 59 del DPR 380/2001.

Nei certificati di prova che il laboratorio di cui all'art. 59 del DPR n. 380/2001 rilascia a seguito delle prove di cui ai § 11.3.3.5.2.1 e 11.3.3.5.2.2, devono essere riportati sia i valori delle forze F_{Pt} , F_{Py} , $F_{P(0.1)}$, $F_{P(1)}$, ottenuti dalle singole prove, sia i corrispondenti valori delle tensioni f_{Pt} , f_{Py} , $f_{P(0.1)}$, $f_{P(1)}$ calcolate in riferimento alle aree delle sezioni trasversali nominali dei saggi sottoposti a prova. Nei certificati rilasciati dal menzionato laboratorio e relativi a prove ove non sono richieste elaborazioni statistiche dei risultati, oppure dove il solo riferimento per lo svolgimento della prova è il valore del carico massimo ottenuto su saggi gemelli (prova di rilassamento, di fatica, di corrosione sotto tensione, ecc.), i dati di prova possono essere espressi anche solo in termini di forza F_{Pt} .

11.3.4. ACCIAIO PER STRUTTURE METALLICHE E PER STRUTTURE COMPOSTE

11.3.4.1 GENERALITÀ

Per la realizzazione di strutture metalliche e di strutture composte si dovranno utilizzare acciai conformi alle norme armonizzate UNI EN 10025-1, UNI EN 10210-1 e UNI EN 10219-1, recanti la Marcatura CE, cui si applica il sistema di valutazione e verifica della costanza della prestazione 2+, e per i quali si rimanda a quanto specificato al punto A del § 11.1. Solo per i prodotti per cui non sia applicabile la marcatura CE si rimanda a quanto specificato al punto B del § 11.1 e si applica la procedura di cui ai § 11.3.1.2 e § 11.3.4.11.1.

Per le palancole metalliche e per i nastri zincati di spessore ≤ 4 mm si farà riferimento rispettivamente alle UNI EN 10248-1:1997 ed UNI EN 10346:2015.

Per gli acciai inossidabili si veda il § 11.3.4.8.

Per l'identificazione e qualificazione di elementi strutturali in acciaio realizzati in serie nelle officine di produzione di carpenteria metallica e nelle officine di produzione di elementi strutturali, si applica quanto specificato al punto 11.1, caso A), in conformità alla norma europea armonizzata UNI EN 1090-1.

Per la dichiarazione delle prestazioni ed etichettatura si applicano i metodi previsti dalla norme europee armonizzate, ed in particolare:

- Dichiarazione delle caratteristiche geometriche e delle proprietà del materiale.
- Dichiarazione delle prestazioni dei componenti, da valutarsi applicando le vigenti Appendici Nazionali agli Eurocodici;
- Dichiarazione basata su una determinata specifica di progetto, per la quale si applicano le presenti norme tecniche.

In ogni caso ai fini dell'accettazione e dell'impiego, tutti i componenti o sistemi strutturali devono rispondere ai requisiti della presente norma; in particolare i materiali base devono essere qualificati all'origine ai sensi del §11.1.

Per l'accertamento delle caratteristiche meccaniche indicate nel seguito, il prelievo dei saggi, la posizione nel pezzo da cui essi devono essere prelevati, la preparazione delle provette e le modalità di prova devono rispondere alle prescrizioni delle norme UNI EN ISO 377:2017, UNI EN ISO 6892-1:2016, UNI EN ISO 148-1:2016.

11.3.4.2 ACCIAI LAMINATI

Gli acciai laminati di uso generale per la realizzazione di strutture metalliche e per le strutture composte comprendono:

Prodotti lunghi

- laminati mercantili (angolari, L, T, piatti e altri prodotti di forma);
- travi ad ali parallele del tipo HE e IPE, travi IPN;
- laminati ad U;
- palancole.

Prodotti piani

- lamiere e piatti;
- nastri;
- nastri zincati di spessore≤4 mm.

Profilati cavi

- tubi prodotti a caldo

Prodotti derivati

- travi saldate (ricavate da lamiere o da nastri a caldo);

- profilati a freddo (ricavati da nastri a caldo);
- tubi saldati (cilindrici o di forma ricavati da nastri a caldo);
- lamiere grecate (ricavate da nastri a caldo).

11.3.4.2.1 Controlli sui prodotti laminati

I controlli sui laminati verranno eseguiti secondo le prescrizioni di cui al § 11.3.4.11.

11.3.4.2.2 Fornitura dei prodotti laminati

Per la documentazione di accompagnamento delle forniture vale quanto indicato al § 11.3.1.5.

11.3.4.3 ACCIAIO PER GETTI

Per l'esecuzione di parti in getti si devono impiegare acciai conformi alla norma UNI EN 10293:2015.

Quando tali acciai debbano essere saldati, valgono le stesse limitazioni di composizione chimica previste per gli acciai laminati di resistenza similare

11.3.4.4 ACCIAIO PER STRUTTURE SALDATE

Gli acciai per strutture saldate, oltre a soddisfare le condizioni indicate al § 11.3.4.1, devono avere composizione chimica conforme a quanto riportato nelle norme europee armonizzate applicabili, di cui al punto 11.3.4.1.

11.3.4.5 Processo di Saldatura

La saldatura degli acciai dovrà avvenire con uno dei procedimenti all'arco elettrico codificati secondo la norma UNI EN ISO 4063:2011. È ammesso l'uso di procedimenti diversi purché sostenuti da adeguata documentazione teorica e sperimentale.

I saldatori nei procedimenti semiautomatici e manuali dovranno essere qualificati secondo la norma UNI EN ISO 9606-1:2017 da parte di un Ente terzo. Ad integrazione di quanto richiesto in tale norma, i saldatori che eseguono giunti a T con cordoni d'angolo dovranno essere specificamente qualificati e non potranno essere qualificati soltanto mediante l'esecuzione di giunti testa-testa.

Gli operatori dei procedimenti automatici o robotizzati dovranno essere certificati secondo la norma UNI EN ISO 14732:2013. Tutti i procedimenti di saldatura dovranno essere qualificati mediante WPQR (qualifica di procedimento di saldatura) secondo la norma UNI EN ISO 15614-1:2017.

Le durezze eseguite sulle macrografie non dovranno essere superiori a 350 HV30.

Per la saldatura ad arco di prigionieri di materiali metallici (saldatura ad innesco mediante sollevamento e saldatura a scarica di condensatori ad innesco sulla punta) si applica la norma UNI EN ISO 14555:2017; valgono perciò i requisiti di qualità di cui al prospetto A1 della appendice A della stessa norma.

Le prove di qualifica dei saldatori, degli operatori e dei procedimenti dovranno essere eseguite da un Ente terzo; in assenza di prescrizioni in proposito l'Ente sarà scelto dal costruttore secondo criteri di competenza e di indipendenza.

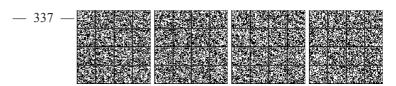
Sono richieste caratteristiche di duttilità, snervamento, resistenza e tenacità in zona fusa e in zona termica alterata non inferiori a quelle del materiale base.

Nell'esecuzione delle saldature dovranno inoltre essere rispettate le norme UNI EN 1011-1:2009 ed UNI EN 1011-2:2005 per gli acciai ferritici ed UNI EN 1011-3:2005 per gli acciai inossidabili. Per la preparazione dei lembi si applicherà, salvo casi particolari, la norma UNI EN ISO 9692-1:2013.

Le saldature saranno sottoposte a controlli non distruttivi finali per accertare la corrispondenza ai livelli di qualità stabiliti dal progettista sulla base delle norme applicate per la progettazione.

In assenza di tali dati per strutture non soggette a fatica si adotterà il livello C della norma UNI EN ISO 5817:2014 e il livello B per strutture soggette a fatica.

L'entità ed il tipo di tali controlli, distruttivi e non distruttivi, in aggiunta a quello visivo al 100%, saranno definiti dal Collaudatore e dal Direttore dei Lavori; per i cordoni ad angolo o giunti a parziale penetrazione si useranno metodi di superficie (ad es. liquidi penetranti o polveri magnetiche), mentre per i giunti a piena penetrazione, oltre a quanto sopra previsto, si useranno metodi volumetrici e cioè raggi X o gamma o ultrasuoni per i giunti testa a testa e solo ultrasuoni per i giunti a T a piena penetrazione.


Per le modalità di esecuzione dei controlli ed i livelli di accettabilità si potrà fare utile riferimento alle prescrizioni della norma UNI EN ISO 17635.

Tutti gli operatori che eseguiranno i controlli dovranno essere qualificati secondo la norma UNI EN ISO 9712:2012 almeno di secondo livello.

Oltre alle prescrizioni applicabili di cui al precedente § 11.3.1.7, il costruttore deve corrispondere ai seguenti requisiti.

In relazione alla tipologia dei manufatti realizzati mediante giunzioni saldate, il costruttore deve essere certificato secondo la norma UNI EN ISO 3834:2006 parti 2, 3 e 4. I requisiti sono riassunti nella Tab. 11.3.XII di seguito riportata.

La certificazione dell'azienda e del personale dovrà essere operata da un Ente terzo, scelto, in assenza di prescrizioni, dal costruttore secondo criteri di indipendenza e di competenza.

Tab. 11.3.XII

Tipo di azione sulle strutture	Strutture so	Strutture soggette a fatica in modo signi- ficativo		
Riferimento	A	В	C	D
	S235, s≤30 mm	S355, s≤30 mm	S235	S235
	S275, s≤30 mm	S235	S275	S275
		S275	S355	S355
Materiale Base:			S460, s ≤ 30 mm	S460 (Nota 1)
Spessore minimo delle membrature				Acciai inossidabili e
				altri acciai non e-
				splicitamente men-
				zionati (Nota 1)
Livello dei requisiti di qualità secondo la norma	Elementare	Medio	Medio	Completo
UNI EN ISO 3834:2006	UNI EN ISO 3834-4	UNI EN ISO 3834-3	UNI EN ISO 3834-3	UNI EN ISO 3834-2
Livello di conoscenza tecnica del personale di	Di base	Considian	Commisto	Commisto
Coordinamento della saldatura secondo la	Di base	Specifico	Completo	Completo
norma UNI EN ISO 14731:2007				

Nota 1) Vale anche per strutture non soggette a fatica in modo significativo

11.3.4.6 BULLONI E CHIODI

11.3.4.6.1 Bulloni "non a serraggio controllato"

Agli assiemi Vite/Dado/Rondella impiegati nelle giunzioni 'non precaricate' si applica quanto specificato al punto A del \S 11.1 in conformità alla norma europea armonizzata UNI EN 15048-1.

In alternativa anche gli assiemi ad alta resistenza conformi alla norma europea armonizzata UNI EN 14399-1 sono idonei per l'uso in giunzioni non precaricate.

Viti, dadi e rondelle, in acciaio, devono essere associate come in tabella 11.3.XIII.a.

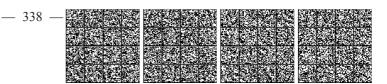
Tab. 11.3.XIII.a

Viti	Dadi	Rondelle	Riferimento
Classe di resistenza	Classe di resistenza	Durezza	
UNI EN ISO 898-1:2013	UNI EN ISO 898-2:2012	Durezza	
4.6	4.5.6		UNI EN 15048-1
4.8	4; 5; 6 oppure 8		
5.6	5.6	100 HV min.	
5.8	5; 6 oppure 8		
6.8	6 oppure 8		
8.8	8 oppure 10	100 HV min	
10.9	10 oppure 12	oppure 300 HV min.	

Le tensioni di snervamento f_{yb} e di rottura f_{tb} delle viti appartenenti alle classi indicate nella precedente Tab. 11.3.XIII.a sono riportate nella seguente Tab. 11.3.XIII.b:

Tab. 11.3.XIII.b

Classe	4.6	4.8	5.6	5.8	6.8	8.8	10.9
f _{vb} (N/mm ²)	240	320	300	400	480	640	900
f _{tb} (N/mm ²)	400	400	500	500	600	800	1000


11.3.4.6.2 Bulloni "a serraggio controllato"

Agli assiemi Vite/Dado/Rondella impiegati nelle giunzioni 'Precaricate' si applica quanto specificato al punto A del § 11.1 in conformità alla norma europea armonizzata UNI EN 14399-1.

Viti, dadi e rondelle, in acciaio, devono essere associate come in tabella 11.3.XIV.

Tab. 11.3.XIV

	Viti		Dadi		Rondelle	
Sistema	Classe di resistenza	Riferimento	Classe di resistenza	Riferimento	Durezza	Riferimento
HR	8.8	UNI EN 14399-1	8	UNI EN 14399-3	200 270	UNI EN 14399
HK	10.9	UNI EN 14399-3	10	UNI EN 14399-3	300-370 HV	
HV	10.9	UNI EN 14399-4	10	UNI EN 14399-4	пν	parti 5 e 6

11.3.4.6.3 Elementi di collegamento in acciaio inossidabile

Gli elementi di collegamento, costituita dagli assiemi vite/dado/rondella in acciaio inossidabile resistente alla corrosione devono essere conformi alle prescrizioni di cui alla UNI EN ISO 3506-1:2010 (Viti e viti prigioniere), UNI EN ISO 3506-2:2010 (Dadi), UNI EN ISO 3506-3:2010 (Viti senza testa e particolari similari non soggetti a trazione), UNI EN ISO 3506-4:2010 (Viti autofilettanti). Per essi si applica quanto riportato al §11.3.4.8 per i materiali base ed il § 11.3.4.10 per le officine per la produzione di bulloni e chiodi

11.3.4.6.4 Chiodi

Per i chiodi da ribadire a caldo si devono impiegare gli acciai previsti dalla pertinente parte della norma UNI EN 10263:2017. Per essi si applica quanto riportato al § 11.3.4.10 per le officine per la produzione di bulloni e chiodi.

11.3.4.7 CONNETTORI A PIOLO

Nel caso si utilizzino connettori a piolo, l'acciaio deve essere qualificato ed idoneo al processo di formazione dello stesso e compatibile per saldatura con il materiale costituente l'elemento strutturale interessato dai pioli stessi. Esso deve avere le seguenti caratteristiche meccaniche:

- allungamento percentuale a rottura (valutato su base $L_0 = 5,65\sqrt{A_0}$, dove A_0 è l'area della sezione trasversale del saggio) ≥ 12;
- rapporto f_t / f_v ≥1,2.

Quando i connettori vengono uniti alle strutture con procedimenti di saldatura speciali, senza metallo d'apporto, essi devono essere fabbricati con acciai la cui composizione chimica soddisfi le limitazioni seguenti:

 $C \le 0.18\%$, $Mn \le 0.9\%$, $S \le 0.04\%$, $P \le 0.05\%$

Per essi si applica quanto riportato al § 11.3.4.10 per le officine per la produzione di elementi strutturali in serie.

11.3.4.8 ACCIAI INOSSIDABILI

E' consentito l'impiego di acciaio inossidabile per la realizzazione di strutture metalliche e composte.

Si dovranno utilizzare acciai conformi alle norme armonizzate UNI EN 10088-4 e UNI EN 10088-5, recanti la Marcatura CE e per i quali si rimanda a quanto specificato al punto A del § 11.1.

11.3.4.9 ACCIAI DA CARPENTERIA PER STRUTTURE SOGGETTE AD AZIONI SISMICHE

L'acciaio costituente le membrature, le saldature ed i bulloni devono essere comunque conformi ai requisiti riportati nelle presenti norme.

Per le zone dissipative si applicano le seguenti regole addizionali:

- per gli acciai da carpenteria il rapporto fra i valori caratteristici della tensione di rottura f_{tk} e la tensione di snervamento f_{yk} deve essere maggiore di 1,10 e l'allungamento a rottura A₅, misurato su provino standard, deve essere non inferiore al 20%;
- la tensione di snervamento media $f_{y,media}$ deve risultare inferiore ad 1,20 $f_{y,k}$ per acciaio S235 e S275, oppure ad 1,10 $f_{y,k}$ per acciai S355 S420 ed S460;
- i collegamenti bullonati devono essere realizzati con bulloni ad alta resistenza di classe 8.8 o 10.9.

Il valore del coefficiente γον è specificato nel § 7.5.

Tali requisiti devono essere, ove applicabili, specificati negli elaborati progettuali e verificati a cura del Direttore dei Lavori.

11.3.4.10 CENTRI DI TRASFORMAZIONE E CENTRI DI PRODUZIONE DI ELEMENTI IN ACCIAIO

Nell'ambito degli acciai per carpenteria metallica, per i prodotti e/o componenti strutturali per cui non sia applicabile la marcatura CE, si definiscono

- Centri di trasformazione per carpenteria metallica: i centri di prelavorazione e le officine di produzione di carpenterie metalliche . I Centri di trasformazione devono possedere tutti i requisiti previsti al § 11.3.1.7, salvo diversamente specificato al punto 11.3.4.11.2.
- Centri di produzione di elementi in acciaio: i centri di produzione di lamiere grecate e profilati formati a freddo, le officine per la produzione di bulloni e chiodi, le officine di produzione di elementi strutturali in serie. Ai produttori di elementi tipologici in acciaio si applicano le disposizioni previste al §11.3.4.1 ed al §11.3.1.7 per i centri di trasformazione. Agli elementi seriali da essi fabbricati si applicano le disposizioni di cui al punto 11.1.

In particolare si definiscono:

- centri di prelavorazione o di servizio: quegli impianti che ricevono dai produttori di acciaio elementi base (prodotti lunghi e/o piani) e realizzano elementi singoli prelavorati che vengono successivamente utilizzati dalle officine di produzione di carpenteria
 metallica che realizzano, a loro volta, strutture complesse nell'ambito delle costruzioni;
- officine di produzione di carpenteria metallica: quegli impianti che ricevono dai produttori di acciaio elementi base (prodotti lunghi
 e/o piani) oppure dai centri di prelavorazione o di servizio elementi singoli prelavorati e realizzano, a seguito di una specifica
 ordinazione e su specifico progetto, strutture complesse destinate ad una singola ed identificata opera di costruzione;

- centri di produzione di prodotti formati a freddo e lamiere grecate: tutti quegli impianti che ricevono dai produttori di acciaio nastri o lamiere e realizzano profilati formati a freddo, lamiere grecate e pannelli composti profilati, ivi compresi quelli saldati che però non siano sottoposti a successive modifiche o trattamenti termici. Per quanto riguarda i materiali soggetti a lavorazione, può farsi utile riferimento, oltre alle norme citate nel precedente § 11.3.4.1, anche alle norme UNI EN 10346, UNI EN 10268 ed UNI EN 10149 (parti 1, 2 e 3).
- le officine per la produzione di bulloni e chiodi: tutti quegli impianti che ricevono dai produttori di acciaio prodotti base e realizzano elementi di cui al punto 11.3.4.6.
- le officine di produzione di elementi strutturali: tutti quegli impianti che ricevono dai produttori di acciaio prodotti base qualificati e realizzano elementi strutturali in serie per l'impiego nelle costruzioni non ricadenti nelle precedenti categorie.

11.3.4.11 PROCEDURE DI CONTROLLO SU ACCIAI DA CARPENTERIA

11.3.4.11.1 Controlli in stabilimento di produzione

Le procedure di cui ai seguenti § 11.3.4.11.1.1, 11.3.4.11.1.2, 11.3.4.11.1.3, 11.3.4.11.1.4 ed 11.3.4.11.1.5 si applicano soltanto ai prodotti per cui sia applicabile il punto B di cui al §11.1.

11.3.4.11.1.1 Suddivisione dei prodotti

Sono prodotti qualificabili sia quelli raggruppabili per colata che quelli per lotti di produzione.

Ai fini delle prove di qualificazione e di controllo di cui ai paragrafi successivi), i prodotti nell'ambito di ciascuna gamma merceologica di cui al § 11.3.4.2, sono raggruppabili per gamme di spessori così come definito nelle norme europee armonizzate UNI EN 10025-1, UNI EN 10210-1, UNI EN 10219-1, UNI EN 10088-4 e UNI EN 10088-5.

Agli stessi fini, ove previsto dalle suddette norme europee armonizzate, sono raggruppabili anche i diversi gradi di acciai (JR, J0, J2, K2), sempre che siano garantite per tutti le caratteristiche del grado superiore del raggruppamento.

Un lotto di produzione è costituito da un quantitativo compreso fra 30 e 120 t, o frazione residua, per ogni profilo, qualità e gamma di spessore, senza alcun riferimento alle colate che sono state utilizzate per la loro produzione. Per quanto riguarda i profilati cavi, il lotto di produzione corrisponde all'unità di collaudo come definita dalle norme europee armonizzate UNI EN 10210-1 e UNI EN 10219-1 in base al numero dei pezzi.

11.3.4.11.1.2 Prove di qualificazione

Ai fini della qualificazione, fatto salvo quanto prescritto ed obbligatoriamente applicabile per i prodotti di cui a norme armonizzate in regime di cogenza, il fabbricante deve predisporre una idonea documentazione sulle caratteristiche chimiche, ove pertinenti, e meccaniche riscontrate per quelle qualità e per quei prodotti che intende qualificare.

La documentazione deve essere riferita ad una produzione relativa ad un periodo di tempo di almeno sei mesi e ad un quantitativo di prodotti tale da fornire un quadro statisticamente significativo della produzione stessa e comunque ≥ 500 t oppure ad un numero di colate o di lotti ≥ 25 .

Tale documentazione di prova deve basarsi sui dati sperimentali rilevati dal fabbricante, integrati dai risultati delle prove di qualificazione effettuate a cura di un laboratorio di cui all'art. 59, comma 1, del DPR n. 380/2001, incaricato dal Servizio Tecnico Centrale su proposta del fabbricante stesso.

Le prove di qualificazione devono riferirsi a ciascun tipo di prodotto, inteso individuato da gamma merceologica, classe di spessore e qualità di acciaio, ed essere relative al rilievo dei valori caratteristici; per ciascun tipo verranno eseguite almeno 30 prove su 30 saggi appositamente prelevati da almeno 3 lotti diversi.

La documentazione del complesso delle prove meccaniche deve essere elaborata in forma statistica calcolando, per lo snervamento e la resistenza al carico massimo, il valore medio, lo scarto quadratico medio e il relativo valore caratteristico delle corrispondenti distribuzioni di frequenza.

11.3.4.11.1.3 Controllo continuo della qualità della produzione

Il servizio di controllo interno della qualità dello stabilimento fabbricante deve predisporre un'accurata procedura atta a mantenere sotto controllo con continuità tutto il ciclo produttivo.

Per ogni colata, o per ogni lotto di produzione, contraddistinti dal proprio numero di riferimento, viene prelevato dal prodotto finito un saggio per colata e comunque un saggio ogni 80 t oppure un saggio per lotto e comunque un saggio ogni 40 t o frazione; per quanto riguarda i profilati cavi, il lotto di produzione è definito dalle relative norme UNI di prodotto, in base al numero dei pezzi.

Dai saggi di cui sopra verranno ricavati i provini per la determinazione delle caratteristiche chimiche e meccaniche previste dalle norme europee armonizzate UNI EN 10025-1, UNI EN 10210-1, UNI EN 10219-1, UNI EN 10088-4 e UNI EN 10088-5 rilevando il quantitativo in tonnellate di prodotto finito cui la prova si riferisce.

Per quanto concerne f_y e f_t i dati singoli raccolti, suddivisi per qualità e prodotti (secondo le gamme dimensionali) vengono riportati su idonei diagrammi per consentire di valutare statisticamente nel tempo i risultati della produzione rispetto alle prescrizioni delle presenti norme tecniche.

I restanti dati relativi alle caratteristiche chimiche, di resilienza e di allungamento vengono raccolti in tabelle e conservati, dopo averne verificato la rispondenza alle norme UNI EN 10025-1, UNI EN 10210-1 UNI EN 10219-1, UNI EN 10088-4 e UNI EN 10088-5 per quanto concerne le caratteristiche chimiche e, per quanto concerne resilienza e allungamento, alle prescrizioni di cui alle tabelle delle corrispondenti norme europee della serie UNI EN 10025 oppure delle tabelle di cui alle norme europee UNI EN 10210 ed UNI EN 10219 per i profilati cavi ed alle UNI EN 10088-4 e UNI EN 10088-5 per gli acciai inossidabili.

È cura e responsabilità del fabbricante individuare, a livello di colata o di lotto di produzione, gli eventuali risultati anomali che portano fuori limiti la produzione e di provvedere ad ovviarne le cause. I diagrammi sopra indicati devono riportare gli eventuali dati anomali.

I prodotti non conformi non possono essere impiegati ai fini strutturali, previa punzonatura di annullamento, tenendone esplicita nota nei registri.

La documentazione raccolta presso il controllo interno di qualità dello stabilimento produttore deve essere conservata a cura del fabbricante.

11.3.4.11.1.4 Verifica periodica della qualità

Il laboratorio incaricato dal Servizio Tecnico Centrale su proposta del fabbricante effettua periodicamente a sua discrezione, almeno ogni sei mesi, una visita presso lo stabilimento produttore nel corso della quale su tre tipi di prodotto, scelti di volta in volta tra qualità di acciaio, gamma merceologica e classe di spessore, effettua per ciascun tipo non meno di 15 prove a trazione, sia da saggi prelevati direttamente dai prodotti, sia da saggi appositamente accantonati dal fabbricante in numero di almeno 2 per colata o lotto di produzione, relativa alla produzione intercorsa dalla visita precedente.

Inoltre il laboratorio incaricato effettua le altre prove previste (resilienza e analisi chimiche) sperimentando su provini ricavati da 3 campioni per ciascun tipo sopraddetto.

Infine si controlla che siano rispettati i valori minimi prescritti per la resilienza e quelli massimi per le analisi chimiche.

Nel caso che i risultati delle prove siano tali per cui viene accertato che i limiti prescritti non siano rispettati, vengono prelevati altri saggi (nello stesso numero) e ripetute le prove. Inoltre quanto verificatosi deve essere registrato secondo le procedure di controllo di qualità adottate dal fabbricante; i relativi lotti non possono essere impiegati ad uso strutturale.

Ove i risultati delle prove, dopo ripetizione, fossero ancora insoddisfacenti, il laboratorio incaricato sospende le verifiche della qualità dandone comunicazione al Servizio Tecnico Centrale che sospende la validità dell'attestato di qualificazione. Dopo che il fabbricante ha ovviato alle cause che hanno dato luogo al risultato insoddisfacente e ne ha inviato comunicazione al Servizio Tecnico Centrale, il laboratorio incaricato ripete la qualificazione stessa.

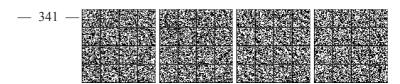
Per quanto concerne le prove di verifica periodica della qualità per gli acciai di cui al § 11.3.4.1, con caratteristiche comprese tra i tipi S235 ed S355, si utilizza un coefficiente di variazione pari all'8%.

Per gli acciai con snervamento o rottura superiore al tipo S355 si utilizza un coefficiente di variazione pari al 6%.

Per tali acciai la qualificazione è ammessa anche nel caso di produzione non continua nell'ultimo semestre ed anche nei casi in cui i quantitativi minimi previsti non siano rispettati, permanendo tutte le altre regole relative alla qualificazione.

11.3.4.11.1.5 Controlli su singole colate

Negli stabilimenti soggetti a controlli sistematici di cui al § 11.3.4.11.1, i produttori possono richiedere di loro iniziativa al Servizio Tecnico Centrale di sottoporsi a controlli, eseguiti a cura di un laboratorio di cui all'art. 59, comma 1, del DPR n. 380/2001, su singole colate di quei prodotti che, per ragioni produttive, non possono ancora rispettare le condizioni quantitative minime per qualificarsi.


Le prove da effettuare sono quelle relative alle norme europee armonizzate UNI EN 10025-1, UNI EN 10210-1, UNI EN 10219-1, UNI EN 10088-4 e UNI EN 10088-5 ed i valori da rispettare sono quelli di cui alle tabelle delle corrispondenti norme europee della serie UNI EN 10025 oppure delle tabelle di cui alle norme europee della serie UNI EN 10210 ed UNI EN 10219 per i profilati cavi ed alle UNI EN 10088-4 e UNI EN 10088-5 per gli acciai inossidabili.

11.3.4.11.2 Controlli nei centri di trasformazione e nei centri di produzione di elementi tipologici in acciaio

Le procedure di cui ai seguenti § 11.3.4.11.2.1, 11.3.4.11.2.2, 11.3.4.11.2.3 e 11.3.4.11.2.4 si applicano soltanto ai prodotti per cui sia applicabile il punto B di cui al §11.1

11.3.4.11.2.1 Centri di produzione di lamiere grecate e profilati formati a freddo

Oltre a quanto previsto al $\S11.3.1.7$ per i centri di trasformazione, per le lamiere grecate da impiegare in solette composte (di cui al precedente \S 4.3.6 delle presenti norme) il fabbricante deve effettuare una specifica sperimentazione al fine di determinare la resistenza a taglio longitudinale di progetto $\tau_{u,Rd}$ della lamiera grecata. La sperimentazione e la elaborazione dei risultati sperimentali devono essere conformi alle prescrizioni dell'Appendice B.3 alla norma UNI EN 1994-1-1:2005. Questa sperimentazione e l'elaborazione dei risultati sperimentali devono essere eseguite da un laboratorio di cui all'articolo 59 del DPR 380/2001, di adeguata competenza. Il rapporto di prova deve essere trasmesso in copia al Servizio Tecnico Centrale e deve essere riprodotto integralmente nel catalogo dei prodotti.

I documenti che accompagnano ogni fornitura in cantiere devono indicare gli estremi della certificazione del sistema di gestione della qualità del prodotto che sovrintende al processo di trasformazione (di cui al § 11.3.1.7), ed inoltre ogni fornitura in cantiere deve essere accompagnata da copia della dichiarazione sopra citata.

Gli utilizzatori dei prodotti e/o il Direttore dei Lavori sono tenuti a verificare quanto sopra indicato ed a rifiutare le eventuali forniture non conformi.

I controlli in officina devono essere effettuati in ragione di almeno 2 prelievi ogni 10 t di acciaio della stessa categoria, proveniente dallo stesso stabilimento, anche se acquisito con forniture diverse, avendo cura di prelevare di volta in volta i campioni da tipologie di prodotti diverse.

11.3.4.11.2.2 Centri di prelavorazione di componenti strutturali

In generale, il centro di prelavorazione deve rispettare le prescrizioni di cui al § 11.3.1.7 relative ai centri di trasformazione, nonché, relativamente ai controlli ed alla relativa certificazione, quanto riportato al successivo paragrafo 11.3.4.11.2.3 relativo alle officine per la produzione di carpenterie metalliche.

Nell'ambito del processo produttivo si effettuano esclusivamente lavorazioni di spianatura dei rotoli, di taglio, foratura e piegatura. Il Direttore Tecnico del centro di prelavorazione deve assicurare che le lavorazioni adottato non alterino le caratteristiche meccaniche originarie.

Qualora i produzione di centri di prelavorazione siano forniti ad una officina di produzione di carpenteria metallica o ad una officina di produzione di elementi strutturali in serie di cui al § 11.3.4.1, quest'ultima verifica il processo di produzione del centro di prelavorazione.

11.3.4.11.2.3 Officine per la produzione di carpenterie metalliche

Le officine per la produzione di carpenterie metalliche devono rispettare le prescrizioni di cui al § 11.3.1.7 relative ai centri di trasformazione, nonché quanto riportato al presente paragrafo.

Nell'ambito del processo produttivo deve essere posta particolare attenzione ai processi di spianatura dei rotoli, ai processi di taglio, foratura e piegatura ed ai processi di saldatura. Il Direttore Tecnico dell'officina deve assicurare che i processi adottati non alterino le caratteristiche meccaniche originarie. Per la saldatura si applicano le prescrizioni cui al § 11.3.4.5.

I controlli in officina sono obbligatori e devono essere effettuati a cura del Direttore Tecnico, secondo le modalità di cui al precedente § 11.3.1.7.

Detti controlli in officina devono essere effettuati in ragione di almeno 1 prova ogni 30 t di acciaio della stessa categoria, proveniente dallo stesso stabilimento, anche se acquisito in tempi diversi, avendo cura di prelevare di volta in volta i campioni da tipi di prodotti o spessori diversi.

I dati sperimentali ottenuti devono soddisfare le prescrizioni di cui alle tabelle delle corrispondenti norme europee armonizzate della serie UNI EN 10025 oppure delle tabelle di cui al § 11.3.4.1 per i profilati cavi per quanto concerne l'allungamento e la resilienza, nonché delle norme europee armonizzate della serie UNI EN 10025, UNI EN 10210-1 e UNI EN 10219-1 per le caratteristiche chimiche.

Ogni singolo valore della tensione di snervamento e di rottura non deve risultare inferiore ai limiti tabellari.

Deve inoltre essere controllato che le tolleranze di fabbricazione rispettino i limiti indicati nelle norme europee applicabili sopra richiamate e che quelle di montaggio siano entro i limiti indicati dal progettista. In mancanza deve essere verificata la sicurezza con riferimento alla nuova geometria.

Per le modalità di prelievo e certificazione delle prove si applica quanto riportato al § 11.3.2.10.3.

Per le caratteristiche dei certificati emessi dal laboratorio, si fa riferimento a quanto riportato al § 11.3.2.10.4, fatta eccezione per il marchio di qualificazione, non sempre presente sugli acciai da carpenteria, per il quale si potrà fare riferimento ad eventuali cartellini identificativi oppure ai dati dichiarati dal fabbricante.

Il Direttore Tecnico dell'officina curerà la registrazione di tutti i risultati delle prove di controllo interno su apposito registro, di cui dovrà essere consentita la visione a quanti ne abbiano titolo.

 $Tutte \ le forniture provenienti \ da \ un'officina \ devono \ essere \ accompagnate \ dalla \ documentazione \ di \ cui \ al \ \S \ 11.3.1.7.$

11.3.4.11.2.4 Officine per la produzione di bulloni e chiodi

Le officine per la produzione di bulloni e chiodi devono rispettare le prescrizioni di cui al § 11.3.1.7 relative ai centri di trasformazione, nonché quanto riportato al presente paragrafo.

I produttori di bulloni e chiodi per carpenteria metallica devono dotarsi di un sistema di gestione della qualità del processo produttivo per assicurare che il prodotto abbia i requisiti previsti dalle presenti norme e che tali requisiti siano costantemente mantenuti fino alla posa in opera. Il sistema di gestione della qualità del prodotto che sovrintende al processo di fabbricazione deve essere predisposto in coerenza con la norma UNI EN ISO 9001 e certificato da parte di un organismo terzo indipendente, di adeguata competenza ed organizzazione, che opera in coerenza con le norme UNI CEI EN ISO/IEC 17021-1.

I controlli in stabilimento sono obbligatori e devono essere effettuati a cura del Direttore Tecnico dell'officina in numero di almeno 1 prova a trazione su bullone o chiodo ogni 1000 prodotti.

I documenti che accompagnano ogni fornitura in cantiere di bulloni o chiodi da carpenteria devono indicare gli estremi dell'atvenuto deposito della documentazione presso il Servizio Tecnico Centrale.

11.3.4.11.3 Controlli di accettazione in cantiere

I controlli di accettazione in cantiere, da eseguirsi presso un laboratorio di cui all'art. 59 del DPR n. 380/2001, sono obbligatori per tutte le forniture di elementi e/o prodotti, qualunque sia la loro provenienza e la tipologia di qualificazione.

Il prelievo dei campioni va eseguito alla presenza del Direttore dei Lavori o di un tecnico di sua fiducia che provvede alla redazione di apposito verbale di prelievo ed alla identificazione dei provini mediante sigle, etichettature indelebili, ecc.; la certificazione effettuata dal laboratorio prove materiali deve riportare riferimento a tale verbale. La richiesta di prove al laboratorio incaricato deve essere sempre firmata dal Direttore dei Lavori, che rimane anche responsabile della trasmissione dei campioni.

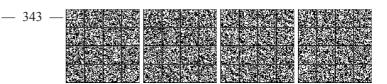
Qualora la fornitura di elementi lavorati provenga da un Centro di trasformazione o da un fabbricante di elementi marcati CE dopo essersi accertato preliminarmente che il suddetto Centro di trasformazione o il fabbricante sia in possesso di tutti i requisiti previsti dalla norma, Il Direttore dei Lavori può recarsi presso il medesimo Centro di trasformazione o fabbricante ed effettuare in stabilimento tutti i controlli di cui sopra. In tal caso il prelievo dei campioni viene effettuato dal Direttore Tecnico del Centro di trasformazione o del fabbricante secondo le disposizioni del Direttore dei Lavori; quest'ultimo deve assicurare, mediante sigle, etichettature indelebili, ecc., che i campioni inviati per le prove al laboratorio incaricato siano effettivamente quelli da lui prelevati, nonché sottoscrivere la relativa richiesta di prove.

Il laboratorio incaricato di effettuare le prove provvede all'accettazione dei campioni accompagnati dalla lettera di richiesta sottoscritta dal direttore dei lavori. Il laboratorio verifica lo stato dei provini e la documentazione di riferimento ed in caso di anomalie riscontrate sui campioni oppure di mancanza totale o parziale degli strumenti idonei per la identificazione degli stessi, deve sospendere l'esecuzione delle prove e darne notizia al Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici.

Il prelievo potrà anche essere eseguito dallo stesso laboratorio incaricato della esecuzione delle prove. I laboratori devono conservare i campioni sottoposti a prova per almeno trenta giorni dopo l'emissione dei certificati di prova, in modo da consentirne l'identificabilità e la rintracciabilità.

A seconda delle tipologie di materiali pervenute in cantiere il Direttore dei Lavori deve effettuare i seguenti controlli:

- Elementi di Carpenteria Metallica: 3 prove ogni 90 tonnellate; il numero di campioni, prelevati e provati nell'ambito di una stessa opera, non può comunque essere inferiore a tre. Per opere per la cui realizzazione è previsto l'impiego di quantità di acciaio da carpenteria non superiore a 2 tonnellate, il numero di campioni da prelevare è individuato dal Direttore dei Lavori, che terrà conto anche della complessità della struttura.
- Lamiere grecate e profili formati a freddo: 3 prove ogni 15 tonnellate; il numero di campioni, prelevati e provati nell'ambito di una stessa opera,, non può comunque essere inferiore a tre. Per opere per la cui realizzazione è previsto l'impiego di una quantità di lamiere grecate o profili formati a freddo non superiore a 0.5 tonnellate, il numero di campioni da prelevare è individuato dal Direttore dei Lavori.
- Bulloni e chiodi: 3 campioni ogni 1500 pezzi impiegati; il numero di campioni, prelevati e provati nell'ambito di una stessa opera, non può comunque essere inferiore a tre. Per opere per la cui realizzazione è previsto l'impiego di una quantità di pezzi non superiore a 100, il numero di campioni da prelevare è individuato dal Direttore dei Lavori.
- *Giunzioni meccaniche*: 3 campioni ogni 100 pezzi impiegati; il numero di campioni, prelevati e provati nell'ambito di una stessa opera, non può comunque essere inferiore a tre. Per opere per la cui realizzazione è previsto l'impiego di una quantità di pezzi non superiore a 10, il numero di campioni da prelevare è individuato dal Direttore dei Lavori.


I controlli di accettazione devono essere effettuati prima della posa in opera degli elementi e/o dei prodotti.

I criteri di valutazione dei risultati dei controlli di accettazione devono essere adeguatamente stabiliti dal Direttore dei Lavori in relazione alle caratteristiche meccaniche dichiarate dal fabbricante nella documentazione di identificazione e qualificazione e previste dalle presenti norme o dalla documentazione di progetto per la specifica opera. Questi criteri tengono conto della dispersione dei dati e delle variazioni che possono intervenire tra diverse apparecchiature e modalità di prova. Tali criteri devono essere adeguatamente illustrati nella "Relazione sui controlli e sulle prove di accettazione sui materiali e prodotti strutturali" predisposta dal Direttore dei lavori al termine dei lavori stessi.

Se un risultato è non conforme, sia il provino che il metodo di prova devono essere esaminati attentamente. Se nel provino è presente un difetto o si ha ragione di credere che si sia verificato un errore durante la prova, il risultato della prova stessa deve essere ignorato. In questo caso occorrerà prelevare un ulteriore (singolo) provino.

Se i tutti risultati validi della prova sono maggiori o uguali del previsto valore di accettazione, il lotto consegnato deve essere considerato conforme.

Se i criteri sopra riportati non sono soddisfatti, un ulteriore campionamento, di numerosità doppia rispetto a quanto precedentemente previsto in relazione alle varie tipologie di prodotto, deve essere effettuato da prodotti diversi del lotto in presenza del fabbricante o suo rappresentante che potrà anche assistere all'esecuzione delle prove presso un laboratorio di cui all'art. 59 del DPR n. 380/2001.

Il lotto deve essere considerato conforme se i singoli risultati ottenuti sugli ulteriori provini è maggiore di accettazione.

In caso contrario il lotto deve essere respinto e il risultato segnalato al Servizio Tecnico Centrale.

Per la i compilazione dei certificati, per quanto applicabile, valgono le medesime disposizioni di cui al § 11.3.2.12 .

11.4. ANCORANTI PER USO STRUTTURALE E GIUNTI DI DILATAZIONE

11.4.1. ANCORANTI PER USO STRUTTURALE

Per la qualificazione degli ancoranti per uso strutturale si applica quanto specificato al punto C) del § 11.1, sulla base della Linea guida di benestare tecnico europeo ETAG 001, la quale vale anche per le modalità di esecuzione delle prove di accettazione. Con riferimento alla tabella 1.1 del paragrafo 1.2 dell'Annesso E della citata Linea guida ETAG 001, riguardante le categorie minime raccomandate per la qualificazione degli ancoranti in presenza di azioni sismiche, per tutte le classi d'uso di cui al punto 2.4.2 delle presenti norme, la categoria di prestazione da soddisfare è la C2, definita nella predetta Linea guida.

11.4.2. GIUNTI DI DILATAZIONE STRADALE

Per la qualificazione dei giunti di dilatazione si applica quanto specificato al punto C) del § 11.1, sulla base della Linea guida di benestare tecnico europeo ETAG 032, la quale vale anche per le modalità di esecuzione delle prove di accettazione.

11.5. SISTEMI DI PRECOMPRESSIONE A CAVI POST-TESI E TIRANTI DI ANCORAGGIO

11.5.1. SISTEMI DI PRECOMPRESSIONE A CAVI POST TESI

Ai sistemi di precompressione a cavi post-tesi si applica quanto specificato al punto C) del § 11.1.

Ai fini della qualificazione mediante Certificato di valutazione tecnica si applica la "Linea guida per la certificazione dell'idoneità tecnica dei sistemi di precompressione a cavi post-tesi" approvata dal Consiglio Superiore dei Lavori Pubblici.

Ogni fornitura deve essere accompagnata da copia del certificato di valutazione tecnica oppure dalla documentazione di marcatura CE sulla base di ETA, nonché dal manuale contenente le specifiche tecniche per la posa in opera e la manutenzione.

Il Direttore dei Lavori è tenuto a verificare nell'ambito delle proprie competenze, quanto sopra indicato ed a rifiutare le eventuali forniture prive della documentazione di qualificazione e che le procedure di posa in opera siano conformi alle specifiche tecniche del fabbricante del sistema stesso; dovrà inoltre effettuare idonee prove di accettazione, che comprendano in ogni caso la verifica geometrica e delle tolleranze dimensionali, nonché la valutazione delle principali caratteristiche meccaniche dei materiali componenti e/o delle principali prestazioni del sistema, al fine di verificare la conformità degli ancoraggi a quanto richiesto per lo specifico progetto.

Le modalità di esecuzione delle prove di accettazione sono riportate nella Linea Guida di Benestare tecnico Europeo ETAG 013.

11.5.2. TIRANTI DI ANCORAGGIO PER USO GEOTECNICO

Ai tiranti di ancoraggio per uso geotecnico di tipo attivo e passivo si applica quanto specificato al punto C) del § 11.1.

Per i tiranti di tipo attivo, ai fini della qualificazione mediante Certificazione di valutazione Tecnica, si applica la Linea Guida per il rilascio della certificazione di idoneità tecnica all'impiego di tiranti per uso geotecnico di tipo attivo approvata dal Consiglio Superiore dei Lavori Pubblici.

Ogni fornitura deve essere accompagnata da copia del certificato di valutazione tecnica oppure dalla documentazione di marcatura CE sulla base di ETA, nonché dal manuale contenente le specifiche tecniche per la posa in opera e la manutenzione.

Il Direttore dei Lavori è tenuto a verificare nell'ambito delle proprie competenze, quanto sopra indicato ed a rifiutare le eventuali forniture prive della documentazione di qualificazione e che le procedure di posa in opera siano conformi alle specifiche tecniche del fabbricante del sistema stesso; dovrà inoltre effettuare idonee prove di accettazione, che comprendano in ogni caso la verifica geometrica e delle tolleranze dimensionali, nonché la valutazione delle principali caratteristiche meccaniche dei materiali componenti e/o delle principali prestazioni del sistema, al fine di verificare la conformità dei tiranti a quanto richiesto per lo specifico progetto.

11.6. APPOGGI STRUTTURALI

Gli appoggi strutturali sono dispositivi di vincolo utilizzati nelle strutture, nei ponti e negli edifici, allo scopo di trasmettere puntualmente carichi e vincolare determinati gradi di libertà di spostamento.

Gli appoggi strutturali, per i quali si applica quanto specificato al punto A del § 11.1, devono essere conformi alla pertinente norma europea armonizzata della serie UNI EN 1337 e recare la Marcatura CE. Si applica il Sistema di Valutazione e Verifica della Costanza della Prestazione 1, previsto nelle pertinenti specifiche tecniche armonizzate per le applicazioni critiche. Nel caso di appoggi strutturali non ricadenti, o non completamente ricadenti, nel campo di applicazione di una delle norme europee armonizzate della serie UNI EN 1337, si applica il caso C) del §11.1.

Ogni fornitura deve essere accompagnata dalla documentazione di marcatura CE oppure da copia del certificato di valutazione tecnica, nonché dal manuale contenente le specifiche tecniche per la posa in opera e la manutenzione.

Il Direttore dei Lavori è tenuto a verificare nell'ambito delle proprie competenze, quanto sopra indicato ed a rifiutare le eventuali forniture prive della documentazione di qualificazione e che le procedure di posa in opera siano conformi alle specifiche tecniche del fabbricante del sistema stesso; dovrà inoltre effettuare idonee prove di accettazione, che comprendano in ogni caso la verifica geometrica e delle tolleranze dimensionali, nonché la valutazione delle principali caratteristiche meccaniche dei materiali componenti e/o delle principali prestazioni degli appoggi, al fine di verificare la conformità degli appoggi stessi a quanto richiesto per lo specifico progetto.

MATERIALI E PRODOTTI A BASE DI LEGNO 11.7.

11.7.1 GENERALITÀ

I materiali e prodotti a base di legno per usi strutturali devono essere qualificati secondo le procedure di cui al § 11.1. Per l'applicazione del caso C) del punto 11.1 si fa riferimento alle Linee Guida per l'impiego di prodotti , materiali e manufatti innovativi in legno per uso strutturale approvate dal Consiglio Superiore dei Lavori Pubblici.

La produzione, la lavorazione, fornitura e utilizzazione dei prodotti di legno e dei prodotti a base di legno per uso strutturale dovranno avvenire in applicazione di un sistema di assicurazione della qualità e di un sistema di rintracciabilità che copra la catena di distribuzione dal momento della prima classificazione e marcatura dei singoli componenti e/o semilavorati almeno fino al momento della prima messa in opera.

Oltre che dalla documentazione indicata al pertinente punto del §11.1 e del § 11.7.10, ogni fornitura deve essere accompagnata, secondo quanto indicato al §11.7.10.1.2, da un manuale contenente le specifiche tecniche per la posa in opera. Il Direttore dei Lavori è tenuto a rifiutare le eventuali forniture non conformi a quanto sopra prescritto.

Il progettista sarà tenuto ad indicare nel progetto le caratteristiche dei materiali secondo le indicazioni di cui al presente capitolo. Tali caratteristiche devono essere garantite dai produttori, dai centri di lavorazione, dai fornitori intermedi, per ciascuna fornitura, secondo le disposizioni applicabili di cui alla marcatura CE oppure di cui al § 11.7.10.

Il Direttore dei Lavori effettuerà i controlli di accettazione in cantiere previsti al §11.7.10.2. Il Direttore dei Lavori potrà far eseguire ulteriori prove di accettazione sul materiale pervenuto in cantiere e sui collegamenti, secondo le metodologie di prova indicate nella presente norma.

Sono abilitati ad effettuare le prove ed i controlli, sia sui prodotti che sui cicli produttivi, i laboratori di cui all'art. 59 del DPR n. 380/2001 ed i laboratori, o gli organismi certificazione del controllo della produzione in fabbrica notificati ai sensi del D.Lgs. 106/2017 e del Regolamento UE 305/2011 in materia di prove e controlli sul legno.

11.7.1.1 PROPRIETÀ DEI MATERIALI

Si definiscono valori caratteristici di resistenza di un tipo di legno i valori del frattile 5% della distribuzione delle resistenze, ottenuti sulla base dei risultati di prove sperimentali effettuate con una durata di 300 secondi su provini all'umidità di equilibrio del legno corrispondente alla temperatura di 20 ±2 °C ed umidità relativa dell'aria del 65 ± 5%.

Per il modulo elastico, si fa riferimento sia ai valori caratteristici di modulo elastico corrispondenti al frattile 5% sia ai valori medi, ottenuti nelle stesse condizioni di prova sopra specificate.

Si definisce massa volumica caratteristica il valore del frattile 5% della relativa distribuzione con massa e volume misurati in condizioni di umidità di equilibrio del legno alla temperatura di 20 ± 2 °C ed umidità relativa dell'aria del 65 ± 5%

Per il progetto e la verifica di strutture realizzate con legno massiccio, lamellare o con prodotti per uso strutturale derivati dal legno, si utilizzano i valori di resistenza, modulo elastico e di massa volumica costituenti il profilo resistente, che deve comprendere almeno quanto riportato nella seguente Tab. 11.7.I.

Tab. 11.7.I – Profilo resistente per materiali e prodotti a base di legno

Resistenze caratteristicl			Moduli elastici	i	N
Flessione	f _{m,k}		Modulo elastico paral- lelo medio **	E _{0,mean}	Mass ca car
Trazione paral- lela	f _{t,0,k}		Modulo elastico paral- lelo caratteristico	E _{0,05}	Mass ca me
Trazione per- pendicolare	f _{t,90,k}		Modulo elastico per- pendicolare medio **	E _{90,mean}	
Compressione parallela	f _{c,0,k}	_	Modulo elastico tan- genziale medio **	G _{mean}	
Compressione perpendicolare	f _{c,90,k}				
Taglio	$f_{v,k}$	_			

Massa volumica					
Massa volumi- ca caratteristica	$\rho_{\mathbf{k}}$				
Massa volumi- ca media *,**	ρ_{mean}				

^{*} La massa volumica media può non essere dichiarata.

^{**} Il pedice mean può essere abbreviato con m

Per il legno massiccio, i valori caratteristici di resistenza, desunti da indagini sperimentali, sono riferiti a dimensioni standardizzate del campione di prova secondo le norme pertinenti. In particolare, per la determinazione della resistenza a flessione l'altezza della sezione trasversale del campione di prova è pari a 150 mm, mentre per la determinazione della resistenza a trazione parallela alla fibratura, il lato maggiore della sezione trasversale del campione di prova è pari a 150 mm.

Pertanto, per elementi di legno massiccio sottoposti a flessione o a trazione parallela alla fibratura che presentino rispettivamente una altezza o il lato maggiore della sezione trasversale inferiore a 150 mm, i valori caratteristici $f_{m,k}$ e $f_{t,0,k}$, indicati nei profili resistenti, possono essere incrementati tramite il coefficiente moltiplicativo k_h , così definito:

$$k_h = \min\left\{ \left(\frac{150}{h}\right)^{0,2}; 1,3 \right\}$$
 [11.7.1]

essendo *h*, in millimetri, l'altezza della sezione trasversale dell'elemento inflesso oppure il lato maggiore della sezione trasversale dell'elemento sottoposto a trazione.

Per il legno lamellare incollato i valori caratteristici di resistenza, desunti da indagini sperimentali, sono riferiti a dimensioni standardizzate del campione di prova secondo le norme pertinenti. In particolare, per la determinazione della resistenza a flessione l'altezza della sezione trasversale del campione di prova è pari a 600 mm, mentre per la determinazione della resistenza a trazione parallela alla fibratura, il lato maggiore della sezione trasversale del provino è pari a 600 mm.

Di conseguenza, per elementi di legno lamellare sottoposti a flessione o a trazione parallela alla fibratura che presentino rispettivamente una altezza o il lato maggiore della sezione trasversale inferiore a 600 mm, i valori caratteristici $f_{m,k}$ e $f_{t,0,k}$, indicati nei profili resistenti, possono essere incrementati tramite il coefficiente moltiplicativo k_h , così definito:

$$k_h = \min \left\{ \left(\frac{600}{h} \right)^{0.1}; 1,1 \right\}$$
 [11.7.2]

essendo h, in millimetri, l'altezza della sezione trasversale dell'elemento inflesso oppure il lato maggiore della sezione trasversale dell'elemento sottoposto a trazione.

11.7.2 LEGNO MASSICCIO

La produzione di elementi strutturali di legno massiccio a sezione rettangolare dovrà risultare conforme alla norma europea armonizzata UNI EN 14081-1 e, secondo quanto specificato al punto A del § 11.1, recare la Marcatura CE.

Qualora non sia applicabile la marcatura CE, i produttori di elementi di legno massiccio per uso strutturale, secondo quanto specificato al punto B del § 11.1, devono essere qualificati con le procedure di cui al § 11.7.10.

Il legno massiccio per uso strutturale è un prodotto naturale, selezionato e classificato in dimensioni d'uso secondo la resistenza, elemento per elemento, sulla base delle normative applicabili.

I criteri di classificazione garantiscono all'elemento prestazioni meccaniche minime statisticamente determinate, senza necessità di ulteriori prove sperimentali e verifiche, definendone il profilo resistente, che raggruppa le proprietà fisico-meccaniche, necessarie per la progettazione strutturale.

La classificazione può avvenire assegnando all'elemento una Categoria, definita in relazione alla qualità dell'elemento stesso con riferimento alla specie legnosa e alla provenienza geografica, sulla base di specifiche prescrizioni normative. Al legname appartenente a una determinata categoria, specie e provenienza, si assegna uno specifico profilo resistente, armonizzato con le classi di resistenza proposte dalla UNI EN 338, utilizzando metodi di classificazione previsti nelle normative applicabili. Può farsi utile riferimento ai profili resistenti indicati nelle norme UNI 11035:2010 parti 1, 2 e 3, per quanto applicabili.

In generale è possibile definire il profilo resistente di un elemento strutturale anche sulla base dei risultati documentati di prove sperimentali, in conformità a quanto disposto nella UNI EN 384:2016.

11.7.3 LEGNO STRUTTURALE CON GIUNTI A DITA

Ai prodotti con giunti a dita, in assenza di specifica norma europea armonizzata, si applica il p.to C del paragrafo 11.1.

Il controllo della produzione deve essere effettuato a cura del Direttore Tecnico della produzione, che deve provvedere alla trascrizione dei risultati delle prove su appositi registri di produzione. Detti registri devono essere resi disponibili al Servizio Tecnico Centrale e, limitatamente alla fornitura di competenza, al Direttore dei Lavori e al Collaudatore della costruzione.

I singoli elementi utilizzati per la composizione del legno strutturale con giunti a dita dovranno soddisfare i requisiti minimi della norma europea armonizzata UNI EN 14081-1 al fine di garantirne una corretta attribuzione ad una classe di resistenza.

Inoltre il sistema di gestione della qualità del prodotto che sovrintende al processo di fabbricazione deve essere predisposto in coerenza con le norme UNI EN ISO 9001 e certificato da parte di un organismo terzo indipendente, di adeguata competenza ed organizzazione, che opera in coerenza con le norme UNI CEI EN ISO/IEC 17021-1.

11.7.4. LEGNO LAMELLARE INCOLLATO E LEGNO MASSICCIO INCOLLATO

Gli elementi strutturali di legno lamellare incollato e legno massiccio incollato debbono essere conformi alla norma europea armonizzata UNI EN 14080 e, secondo quanto specificato al punto A del paragrafo 11.1, recare la marcatura CE.

Le singole tavole, per la composizione di legno lamellare, dovranno soddisfare i requisiti della norma europea armonizzata UNI EN 14081-1 al fine di garantirne una corretta attribuzione ad una classe di resistenza. Per classi di resistenza delle singole tavole superiori a C30 si farà riferimento esclusivo ai metodi di classificazione a macchina.

Le singole lamelle vanno tutte individualmente classificate dal fabbricante come previsto al § 11.7.2.

11.7.5 PANNELLI A BASE DI LEGNO

I pannelli a base di legno per uso strutturale, per i quali si applica il caso A di cui al §11.1, debbono essere conformi alla norma europea armonizzata UNI EN 13986. Per i pannelli a base di legno per i quali non sia applicabile la suddetta norma europea armonizzata UNI EN 13986 si applicano le procedure di cui al caso C di cui al paragrafo 11.1.

Per la valutazione dei valori caratteristici di resistenza, rigidezza e massa volumica da utilizzare nella progettazione di strutture che incorporano pannelli a base di legno, può farsi riferimento alle norme UNI EN 12369-1 (OSB, pannelli di particelle e pannelli di fibra), UNI EN 12369-2 (pannello compensato) e UNI EN 12369-3 (pannelli di legno massiccio con spessore inferiore a 80 mm).

11.7.6 ALTRI PRODOTTI DERIVATI DAL LEGNO PER USO STRUTTURALE

Per gli altri prodotti derivati dal legno per uso strutturale per i quali non è applicabile una norma europea armonizzata di cui al punto A del § 11.1 o non è applicabile quanto specificato al punto B del medesimo § 11.1, si applica quanto riportato ai punti C del paragrafo 11.1 della presente norma.

11.7.7 ADESIVI

Gli adesivi per usi strutturali devono produrre unioni aventi resistenza e durabilità tali che l'integrità dell'incollaggio sia conservata, nella classe di servizio assegnata, durante tutta la vita prevista della struttura.

11.7.7.1 ADESIVI PER ELEMENTI INCOLLATI IN STABILIMENTO

Gli adesivi fenolici ed amminoplastici devono soddisfare le specifiche della norma UNI EN 301:2013. Adesivi poliuretanici e isocianatici devono soddisfare i requisiti della UNI EN 15425:2017.

Gli adesivi di natura chimica diversa devono soddisfare le specifiche della medesima norma e, in aggiunta, dimostrare un comportamento allo scorrimento viscoso non peggiore di quello di un adesivo fenolico od amminoplastico così come specificato nella norma UNI EN 301:2013, tramite idonee prove comparative.

11.7.7.2 ADESIVI PER GIUNTI REALIZZATI IN CANTIERE

Gli adesivi utilizzati in cantiere (per i quali non sono rispettate le prescrizioni di cui alla norma UNI EN 301:2013) devono essere sottoposti a prove in conformità ad idoneo protocollo di prova, per dimostrare che la resistenza a taglio del giunto non sia minore di quella del legno, nelle medesime condizioni previste nel protocollo di prova.

11.7.8 ELEMENTI MECCANICI DI COLLEGAMENTO

Tutti gli elementi di collegamento (metallici e non metallici quali spinotti, chiodi, viti, piastre, ecc.) devono essere idonei a garantire le prestazioni previste dalle presenti norme ed in particolare, in presenza di azioni sismiche, al § 7.7.5.2.

Ai suddetti dispositivi meccanici, si applica quanto riportato ai punti A) o C) del §11.1.

11.7.9 DURABILITÀ DEL LEGNO E DERIVATI

11.7.9.1 GENERALITÀ

Al fine di garantire alla struttura adeguata durabilità, si devono considerare i seguenti fattori correlati:

- la classe di servizio prevista:
- la destinazione d'uso della struttura;
- le condizioni ambientali prevedibili;
- la composizione, le proprietà e le prestazioni dei materiali;
- la forma degli elementi strutturali ed i particolari costruttivi;
- la qualità dell'esecuzione ed il livello di controllo della stessa;
- le particolari misure di protezione;
- la manutenzione programmata durante la vita presunta.

Si adotteranno, in fase di progetto, idonei provvedimenti volti alla protezione dei materiali.

Per i materiali trattati con agenti preservanti contro attacchi di tipo biologico si dovrà fare riferimento ai principi generali della UNI EN 15228:2009.

11.7.9.2 REQUISITI DI DURABILITÀ NATURALE DEI MATERIALI A BASE DI LEGNO

Il legno ed i materiali a base di legno devono possedere un'adeguata durabilità naturale per la classe di rischio prevista in servizio, oppure devono essere sottoposti ad un trattamento preservante in accordo alla UNI EN 15228:2009.

Inoltre, quale utile riferimento ai fine della valutazione della durabilità dei materiali a base di legno, si precisa quanto segue:

- la norma UNI EN 350-1 fornisce indicazioni sui metodi per la determinazione della durabilità naturale e i principi di classificazione delle specie legnose basati sui risultati di prova;
- la stessa norma UNI EN 350 fornisce una classificazione della durabilità del legno massiccio nei confronti di funghi, coleotteri, termiti e organismi marini;
- la norma UNI EN 460 fornisce una guida alla scelta delle specie legnose in base alla loro durabilità naturale nelle classi di rischio così come definite all'interno della UNI EN 335;
- la norma UNI EN 335 fornisce una guida per l'applicazione del sistema delle classi di rischio secondo le definizioni fornite nella norma stessa.

Le specifiche relative alle prestazioni dei preservanti per legno ed alla loro classificazione ed etichettatura sono indicate nelle norme UNI EN 599-1 e UNI EN 599-2.

11.7.10 PROCEDURE DI IDENTIFICAZIONE, QUALIFICAZIONE E ACCETTAZIONE – CENTRI DI LAVORAZIONE

Le caratteristiche e le prestazioni dei materiali devono essere garantite dai fabbricanti, dai centri di lavorazione, dai fornitori intermedi, per ciascuna fornitura, secondo le disposizioni che seguono.

11.7.10.1 FABBRICANTI E CENTRI DI LAVORAZIONE

Qualora non sia applicabile la procedura di marcatura CE, per tutti i prodotti a base di legno per impieghi strutturali valgono integralmente, per quanto applicabili, le seguenti disposizioni che sono da intendersi integrative di quanto specificato al punto B del § 11.1.

Per l'obbligatoria qualificazione della produzione di elementi denominati uso "Fiume" e "Trieste", i fabbricanti di elementi in legno strutturale devono trasmettere al Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici, per ciascun stabilimento, la documentazione seguente:

- l'individuazione dello stabilimento cui l'istanza si riferisce;
- il tipo di elementi strutturali che l'azienda è in grado di produrre;
- l'organizzazione del sistema di rintracciabilità relativo alla produzione di legno strutturale;
- l'organizzazione del controllo interno di produzione, con l'individuazione di un "Direttore Tecnico della produzione";
- il marchio afferente al fabbricante specifico per la classe di prodotti "elementi di legno per uso strutturale";
- la documentazione relativa alle prove di qualificazione e di autocontrollo interno, effettuate secondo le modalità delle norme europee applicabili, da un laboratorio di cui all'articolo 59 del DPR 380/01. Per gli elementi denominati uso "Fiume" e "Trieste" si applicano i metodi di prova e campionamento di cui alla UNI EN 14081-1.

Le procedure riguardanti la qualificazione effettuata dal Servizio Tecnico Centrale (punto B, §11.1) si applicano ai produttori di elementi base in legno massiccio e/o lamellare non ancora lavorati a formare elementi strutturali pronti per la messa in opera. Ai suddetti produttori, il Servizio Tecnico Centrale, ultimata favorevolmente l'istruttoria, rilascia un Attestato di Qualificazione, recante il riferimento al prodotto, alla ditta, allo stabilimento, al marchio. Circa quest'ultimo aspetto, si precisa che ogni fabbricante deve depositare presso il Servizio Tecnico Centrale il disegno del proprio marchio, che deve essere impresso in modo permanente (a caldo, con inchiostro indelebile, mediante punzonatura, etc.) su ogni elemento base prodotto.

I produttori, entro il 31 gennaio di ogni anno, trasmettono al Servizio tecnico centrale evidenza documentale dei controlli effettuati sulla produzione nell'anno precedente.

L'attestato ha validità finché permangono le condizioni poste alla base della qualificazione stessa, e comunque non oltre cinque anni. Gli attestati di qualificazione già rilasciati ai sensi del DM 14.01.2008 cessano comunque di validità cinque anni dopo l'entrata in vigore della presente versione delle Norme tecniche per le Costruzioni.

Si definiscono Centri di Lavorazione del legno strutturale, gli stabilimenti nei quali viene effettuata la lavorazione degli elementi base qualificati per dare loro la configurazione finale in opera (intagli, forature, applicazione di piastre metalliche, etc), sia di legno massiccio che lamellare. Come tali devono documentare la loro attività al Servizio Tecnico Centrale, il quale, ultimata favorevolmente l'istruttoria, rilascia un Attestato di denuncia di attività, recante il riferimento al prodotto, alla ditta, allo stabilimento, al marchio. Ogni Centro di lavorazione deve depositare presso il Servizio Tecnico Centrale il disegno del proprio marchio, che deve essere impresso in modo permanente (anche mediante etichettatura, etc.) su ogni elemento lavorato. Il centro di lavorazione può ricevere e lavorare solo prodotti qualificati all'origine, accompagnati dalla relativa documentazione di qualificazione.

Nel caso di impiego di prodotti base marcati CE, ogni lavorazione successiva a tale marcatura, non effettuata in cantiere sotto la responsabilità del direttore dei lavori, deve essere effettuata presso un centro di lavorazione.

Per l'obbligatoria denuncia di attività, i Centri di Lavorazione di legno strutturale devono trasmettere al Servizio Tecnico Centrale del Consiglio Superiore dei lavori Pubblici, per ciascun stabilimento, la seguente documentazione:

- l'individuazione dello stabilimento cui l'istanza si riferisce;
- il tipo di elementi strutturali che l'azienda è in grado di produrre;
- il sistema di identificazione e tracciabilità dei materiali.

Il Direttore Tecnico della produzione, di comprovata esperienza e dotato di attestato conseguito tramite apposito corso di formazione, assume le responsabilità relative alla conformità alle presenti norme delle attività svolte nel centro di lavorazione. Il Direttore tecnico di produzione deve altresì frequentare un corso di aggiornamento con cadenza almeno triennale.

I Regolamenti, i curricula dei docenti e i rispettivi programmi didattici dei corsi sopra citati devono essere preventivamente approvati dal Servizio Tecnico Centrale, sentito il Consiglio Superiore dei Lavori Pubblici, che verificherà la complessiva congruenza dei corsi con i requisiti richiesti dalle presenti norme.

I produttori ed i centri di lavorazione sono tenuti a comunicare ogni variazione rispetto a quanto dichiarato in sede di presentazione dell'istanza di qualificazione o di denuncia di attività.

Qualora nel medesimo stabilimento si produca legno base e si effettuino altresì le lavorazioni per ottenere gli elementi strutturali pronti per l'uso, allo stesso saranno rilasciati, ove sussistano i requisiti, entrambi gli Attestati.

Tutte le forniture di elementi in legno per uso strutturale devono riportare il marchio del fabbricante e del centro di lavorazione nel quale siano state eventualmente lavorate, ed essere accompagnate da una documentazione riportante la dichiarazione delle caratteristiche tecniche essenziali del prodotto.

Il Servizio Tecnico Centrale, in base ai progressi tecnici ed agli aggiornamenti normativi che dovessero successivamente intervenire, provvede ad aggiornare l'elenco della documentazione necessaria ad ottenere la qualificazione.

È prevista la sospensione o, nei casi più gravi o di recidiva, la revoca degli attestati di qualificazione e di denuncia attività ove il Servizio Tecnico Centrale accerti, in qualsiasi momento, difformità tra i documenti depositati e la produzione effettiva, oppure la mancata ottemperanza alle prescrizioni contenute nella vigente normativa tecnica. I provvedimenti di sospensione e di revoca vengono adottati dal Servizio Tecnico Centrale.

11.7.10.1.1 Identificazione e rintracciabilità dei prodotti qualificati

Tenuto conto di quanto riportato al paragrafo precedente, ciascun prodotto qualificato deve costantemente essere riconoscibile per quanto concerne le caratteristiche qualitative e riconducibile allo stabilimento di produzione tramite marchiatura indelebile depositata presso il Servizio Tecnico Centrale, conforme alla relativa norma armonizzata.

Ogni prodotto deve essere marchiato con identificativi diversi da quelli di prodotti aventi differenti caratteristiche, ma fabbricati nello stesso stabilimento e con identificativi differenti da quelli di prodotti con uguali caratteristiche ma fabbricati in altri stabilimenti, siano essi o meno dello stesso fabbricante. La marchiatura deve essere inalterabile nel tempo e senza possibilità di manomissione.

Per stabilimento si intende una unità produttiva autonoma, con impianti propri e magazzini per il prodotto finito. Nel caso di unità produttive multiple appartenenti allo stesso fabbricante, la qualificazione deve essere ripetuta per ognuna di esse e per ogni tipo di prodotto in esse fabbricato.

Considerata la diversa natura, forma e dimensione dei prodotti, le caratteristiche degli impianti per la loro produzione, nonché la possibilità di fornitura sia in pezzi singoli sia in lotti, differenti possono essere i sistemi di marchiatura adottati, anche in relazione alla destinazione d'uso.

Comunque, per quanto possibile, anche in relazione alla destinazione d'uso del prodotto, il fabbricante ed il centro di lavorazione sono tenuti ad identificare mediante marchiatura ogni singolo pezzo. Ove ciò non sia possibile, per la specifica tipologia del prodotto, la marchiatura deve essere tale che prima dell'apertura dell'eventuale ultima e più piccola confezione il prodotto sia riconducibile al fabbricante o al centro di lavorazione, al tipo di legname nonché al lotto di classificazione e alla data di classificazione.

Tenendo presente che l'elemento determinante della marchiatura è costituito dalla sua inalterabilità nel tempo, e dalla impossibilità di manomissione, il fabbricante ed il centro di lavorazione devono rispettare le modalità di marchiatura denunciate nella documentazione presentata al Servizio Tecnico Centrale e deve comunicare tempestivamente eventuali modifiche apportate.

Qualora, sia presso gli utilizzatori, sia presso i commercianti (quali fornitori intermedi), l'unità marchiata (pezzo singolo o lotto) viene scorporata, per cui una parte, o il tutto, perde l'originale marchiatura del prodotto è responsabilità sia degli utilizzatori sia dei commercianti documentare la provenienza mediante i documenti di accompagnamento del materiale e gli estremi del deposito del marchio presso il Servizio Tecnico Centrale.

I produttori, i successivi intermediari e gli utilizzatori finali devono assicurare una corretta archiviazione della documentazione di accompagnamento dei materiali garantendone la disponibilità per almeno 10 anni e devono mantenere evidenti le marchiature o etichette di riconoscimento per la rintracciabilità del prodotto.

Eventuali disposizioni supplementari atte a facilitare l'identificazione e la rintracciabilità del prodotto attraverso il marchio potranno essere emesse dal Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici.

11.7.10.1.2 Forniture e documentazione di accompagnamento

Tutte le forniture di legno strutturale devono essere accompagnate da:

- una copia della documentazione di marcatura CE, secondo il sistema di valutazione e verifica della costanza della prestazione applicabile al prodotto, oppure copia dell'attestato di qualificazione o del certificato di valutazione tecnica rilasciato dal Servizio Tecnico Centrale;
- dichiarazione di prestazione di cui al Regolamento (UE) n.305/2011 oppure dichiarazione resa dal Legale Rappresentante dello stabilimento in cui vengono riportate le informazioni riguardanti le caratteristiche essenziali del prodotto ed in particolare: la classe di resistenza del materiale, l'euroclasse di reazione al fuoco e il codice identificativo dell'anno di produzione; sulla stessa dichiarazione deve essere riportato il riferimento al documento di trasporto.

Nel caso di prodotti provenienti da un centro di lavorazione, oltre alla suddetta documentazione, le forniture devono accompagnate da:

- una copia dell'attestato di denuncia dell'attività del centro di lavorazione;
- dichiarazione del Direttore tecnico della produzione inerente la descrizione delle lavorazioni eseguite;

11.7.10.2 CONTROLLI DI ACCETTAZIONE IN CANTIERE

I controlli di accettazione in cantiere sono obbligatori per tutte le tipologie di materiali e prodotti a base di legno e sono demandati al Direttore dei Lavori il quale, prima della messa in opera, è tenuto ad accertare e a verificare quanto sopra indicato e a rifiutare le eventuali forniture non conformi.

Il Direttore dei Lavori esegue i controlli di accettazione, così come disciplinato di seguito. Il Direttore dei Lavori potrà far eseguire ulteriori prove di accettazione sul materiale pervenuto in cantiere e sui collegamenti, secondo le metodologie di prova indicate nella presente norma.

Il laboratorio incaricato di effettuare le prove provvede all'accettazione dei campioni accompagnati dalla lettera di richiesta sottoscritta dal direttore dei lavori. Il laboratorio verifica lo stato dei provini e la documentazione di riferimento ed in caso di anomalie riscontrate sui campioni oppure di mancanza totale o parziale degli strumenti idonei per la identificazione degli stessi, deve sospendere l'esecuzione delle prove e darne notizia al Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici.

Il prelievo potrà anche essere eseguito dallo stesso laboratorio incaricato della esecuzione delle prove. I laboratori devono conservare i campioni sottoposti a prova per almeno trenta giorni dopo l'emissione dei certificati di prova, in modo da consentirne l'identificabilità e la rintracciabilità.

Per gli elementi di legno massiccio, su ogni fornitura, dovrà essere eseguita obbligatoriamente una classificazione visuale in cantiere su almeno il cinque per cento degli elementi costituenti il lotto di fornitura, da confrontare con la classificazione effettuata nello stabilimento.

Per gli elementi di legno lamellare dovrà essere acquisita la documentazione relativa alla classificazione delle tavole e alle prove meccaniche distruttive svolte obbligatoriamente nello stabilimento di produzione relativamente allo specifico lotto della fornitura in cantiere (prove a rottura sul giunto a pettine e prove di taglio e/o delaminazione sui piani di incollaggio). Inoltre, su almeno il 5% del materiale pervenuto in cantiere, deve essere eseguito il controllo della disposizione delle lamelle nella sezione trasversale e la verifica della distanza minima tra giunto e nodo, secondo le disposizioni della UNI EN 14080.

Per gli altri elementi giuntati di cui ai paragrafi 11.7.3, 11.7.5 ed 11.7.6, dovrà essere acquisita la documentazione relativa alla classificazione del materiale base e alle prove meccaniche previste nella documentazione relativa al controllo di produzione in fabbrica, svolte obbligatoriamente in stabilimento relativamente allo specifico lotto della fornitura in cantiere. Inoltre, su almeno il 5% del materiale pervenuto in cantiere, deve essere eseguito il controllo della disposizione delle lamelle nella sezione trasversale e la verifica della distanza minima tra giunto e nodo, secondo le disposizioni delle specifiche tecniche applicabili.

Infine, su almeno il 5% degli elementi di legno lamellare e degli elementi giuntati di cui ai paragrafi 11.7.3, 11.7.4 ed 11.7.6 ed 11.7.6 forniti in cantiere, deve essere eseguito il controllo dello scostamento dalla configurazione geometrica teorica secondo le tolleranze di cui al § 4.4.

Per gli elementi meccanici di collegamento di cui al § 11.7.8, in fase di accettazione in cantiere, il Direttore dei lavori verifica la prevista documentazione di qualificazione, la corrispondenza dimensionale, geometrica e prestazionale a quanto previsto in progetto, ed acquisisce i risultati delle prove meccaniche previste nelle procedure di controllo di produzione in fabbrica. Il Direttore dei lavori effettua, altresì, prove meccaniche di accettazione in ragione della criticità, della differenziazione e numerosità degli elementi di collegamento.

Nei casi in cui non siano soddisfatti i controlli di accettazione, oppure sorgano dubbi sulla qualità e rispondenza dei materiali o dei prodotti a quanto dichiarato, oppure qualora si tratti di elementi lavorati in situ, oppure non si abbiano a disposizione le prove condotte in stabilimento relative al singolo lotto di produzione, si deve procedere ad una valutazione delle caratteristiche prestazionali degli elementi attraverso una serie di prove distruttive e non distruttive con le modalità specificate di seguito.

Per quanto riguarda il legno massiccio potrà fatto farsi utile riferimento ai criteri di accettazione riportati nella norma UNI EN 384:2016.

Per il legno lamellare e gli altri elementi giuntati di cui ai § 11.7.3, 11.7.4, 11.7.5 ed 11.7.6, in considerazione dell'importanza dell'opera, potranno essere effettuate, da un laboratorio di cui all'articolo 59 del DPR 380/2001, prove di carico in campo elastico anche per la determinazione del modulo elastico parallelo alla fibratura secondo le modalità riportate nella UNI EN 408:2012 o nella UNI EN 380:1994, ciascuna in quanto pertinente.

Qualora i risultati dei controlli di accettazione non risultassero soddisfacenti, il Direttore dei lavori rifiuta la fornitura.

11.8. COMPONENTI PREFABBRICATI IN C.A. E C.A.P.

11.8.1. GENERALITÀ

Gli elementi costruttivi prefabbricati devono essere prodotti attraverso un processo industrializzato che si avvale di idonei impianti, nonché di strutture e tecniche opportunamente organizzate.

In particolare, deve essere presente ed operante un sistema permanente di controllo della produzione in stabilimento, che deve assicurare il mantenimento di un adeguato livello di affidabilità nella produzione del calcestruzzo, nell'impiego dei singoli materiali costituenti e nella conformità del prodotto finito.

Detto sistema di controllo deve comprendere anche la produzione del calcestruzzo secondo quanto prescritto al § 11.2.

Per tutti gli elementi prefabbricati qualificati secondo quanto previsto nei punti A oppure C del § 11.1, si considerano assolti i requisiti procedurali di cui al deposito ai sensi dell'articolo 58 del DPR 380/2001. Resta comunque l'obbligo degli adempimenti di cui al DPR 380/01 presso il competente ufficio territoriale, nonché, nel caso di edifici con struttura a pannelli portanti quelli dell'articolo 56 del DPR 380/2001. Ai fini dell'impiego, tali prodotti devono comunque rispettare, laddove applicabili, i seguenti punti 11.8.2, 11.8.3.4 ed 11.8.5, per quanto non in contrasto con le specifiche tecniche europee armonizzate.

Per la dichiarazione delle prestazioni ed etichettatura si applicano i metodi previsti dalla norme europee armonizzate, ed in particolare:

- Metodo 1: Dichiarazione delle caratteristiche geometriche e delle proprietà del materiale.
- -Metodo 2: Dichiarazione delle proprietà di prodotto, da valutarsi applicando le vigenti Appendici Nazionali agli Eurocodici;
- -Metodo 3: Dichiarazione basata su una determinata specifica di progetto, per la quale si applicano le presenti norme tecniche.

In ogni caso ai fini dell'accettazione e dell'impiego, tutti i componenti o sistemi strutturali devono rispondere ai requisiti della presente norma; in particolare i materiali base devono essere qualificati all'origine ai sensi del §11.1.

Per tutti gli elementi prefabbricati ai quali non sia applicabile quanto specificato al punto A oppure al punto C del § 11.1, valgono le disposizioni di seguito riportate.

In questo ambito, gli elementi costruttivi di produzione occasionale devono essere comunque realizzati attraverso processi sottoposti ad un sistema di controllo della produzione, secondo quanto di seguito indicato.

11.8.2. REQUISITI MINIMI DEGLI STABILIMENTI E DEGLI IMPIANTI DI PRODUZIONE

Il processo di produzione degli elementi costruttivi prefabbricati, oggetto delle presenti norme, deve essere caratterizzato almeno da:

- a) impianti in cui le materie costituenti siano conservate in sili, tramogge e contenitori che ne evitino ogni possibilità di confusione, dispersione o travaso;
- b) dosaggio a peso dei componenti solidi e dosaggio a volume, o a peso, dei soli componenti liquidi, mediante utilizzo di idonei strumenti soggetti a taratura secondo le normative applicabili;
- c) organizzazione mediante una sequenza completa di operazioni essenziali in termini di produzione e controllo;
- d) organizzazione di un sistema permanente di controllo documentato della produzione;
- e) rispetto delle norme di protezione dei lavoratori e dell'ambiente.

11.8.3. CONTROLLO DI PRODUZIONE

Gli impianti per la produzione di elementi costruttivi prefabbricati, disciplinati dalle presenti norme, devono essere idonei ad una produzione continua, disporre di apparecchiature adeguate per il confezionamento nonché di personale esperto e di attrezzature idonee a provare, valutare e correggere la qualità del prodotto.

Il fabbricante di elementi prefabbricati deve dotarsi di un sistema di controllo della produzione allo scopo di assicurare che il prodotto abbia i requisiti previsti dalle presenti norme e che tali requisiti siano costantemente mantenuti fino alla posa in opera.

Il sistema di gestione della qualità del prodotto che sovrintende al processo di fabbricazione deve essere predisposto in coerenza con la norma UNI EN ISO 9001 e certificato da parte un organismo terzo indipendente, di adeguata competenza ed organizzazione, che opera in coerenza con la norma UNI CEI EN ISO/IEC 17021-1.

Ai fini della certificazione del sistema di gestione della qualità il fabbricante e l'organismo di certificazione di processo potranno fare riferimento alle indicazioni contenute nelle relative norme europee od internazionali applicabili.

I controlli sui materiali dovranno essere eseguiti in conformità a quanto riportato nella presente norma o alle normative comunque applicabili.

11.8.3.1 CONTROLLO SUI MATERIALI PER ELEMENTI DI SERIE

Per il calcestruzzo impiegato con fini strutturali nei centri di produzione dei componenti prefabbricati di serie, il Direttore tecnico di Stabilimento dovrà effettuare il controllo continuo del calcestruzzo stesso secondo le prescrizioni contenute nel § 11.2, operando con apparecchiature di misura di forza e spostamenti tarate annualmente da uno dei laboratori di cui all'art. 59 del DPR n. 380/2001 o da organismi terzi di taratura appositamente accreditati secondo i regolamenti vigenti nel settore.

Il tecnico suddetto provvederà alla trascrizione giornaliera dei risultati su appositi registri di produzione con data certa, da conservare per dieci anni da parte del fabbricante. Detti registri devono essere disponibili per i competenti organi del Consiglio Superiore dei lavori pubblici - Servizio Tecnico Centrale, per i direttori dei lavori e per tutti gli aventi causa nella costruzione.

Le prove di stabilimento dovranno essere eseguite a 28 giorni di stagionatura e ai tempi significativi nelle varie fasi del ciclo tecnologico, secondo le modalità precisate in § 11.2.4.

La resistenza caratteristica dovrà essere determinata secondo il metodo di controllo di tipo B di cui al § 11.2.5, ed immediatamente registrata.

Inoltre dovranno eseguirsi controlli del calcestruzzo a 28 giorni di stagionatura, presso un laboratorio di cui all'art. 59 del DPR n. 380/2001, per non meno di un prelievo ogni cinque giorni di produzione effettiva per ogni tipo di calcestruzzo omogeneo; tali risultati dovranno soddisfare il controllo di tipo A di cui al § 11.2.5, operando su tre prelievi consecutivi, indipendentemente dal quantitativo di calcestruzzo prodotto.

Sarà responsabilità del Direttore Tecnico dello stabilimento la trascrizione sullo stesso registro dei risultati delle prove di stabilimento e quelli del laboratorio esterno.

Infine, il direttore tecnico dovrà predisporre periodicamente, almeno su base annua, una verifica della conformità statistica dei risultati dei controlli interni e di quelli effettuati da laboratorio esterno, tra loro e con le prescrizioni contenute nelle vigenti norme tecniche.

Per l'acciaio d'armatura impiegato con fini strutturali nei centri di produzione dei componenti prefabbricati di serie, il direttore tecnico di stabilimento deve verificare che il materiale in ingresso sia provvisto della documentazione di qualificazione prevista e sia accompagnato dai documenti di cui al punto 11.3.1.5 (attestato di qualificazione del STC, documenti di trasporto, etc.). Il Direttore tecnico di stabilimento è tenuto a rifiutare le eventuali forniture non conformi.

Nel caso di piegatura, saldatura e raddrizzatura dell'acciaio, è responsabilità del Direttore tecnico di Stabilimento verificare, tramite opportune prove, che le lavorazioni non alterino le caratteristiche meccaniche e geometriche originarie del prodotto. Le prove devono essere eseguite dopo le lavorazioni. Per i processi sia di saldatura che di piegatura, si può fare utile riferimento alla normativa europea applicabile.

La prova di piegatura va eseguita su tre campioni ogni 90 tonnellate di acciaio lavorato (in uscita dalla/e apparecchiatura/e dello stabilimento), e comunque almeno 1 volta al mese, secondo la norma UNI EN ISO 15630-1:2010. Vanno usati mandrini di diametro opportuno. Dopo la prova il campione non deve presentare cricche.

Le prove sulle saldature strutturali, eseguite da operatore qualificato, devono essere definite all'interno del controllo di produzione in fabbrica aziendale. Per le modalità di esecuzione dei controlli ed i livelli di accettabilità si potrà fare utile riferimento alla norma UNI EN ISO 17635. Ogni due anni, al rinnovo della qualifica dell'operatore, verranno effettuate sulle saldature tutte le prove previste dalle norme europee applicabili.

A valle dell'operazione di raddrizzamento dei rotoli, verrà effettuata una prova a trazione su tre campioni ogni 10 rotoli presso uno dei laboratori di cui all'art. 59 del DPR n. 380/2001.

Il Direttore tecnico di stabilimento curerà la registrazione di tutti i risultati delle prove di controllo interno e del laboratorio esterno su apposito registro di produzione, da conservare per dieci anni, di cui dovrà essere consentita la visione a quanti ne abbiano titolo

I suddetti controlli si applicano solo a prodotti per i quali non sia applicabile la marcatura CE, per i quali si applica integralmente quanto previsto dalle norme pertinenti specifiche tecniche armonizzate.

11.8.3.2 CONTROLLO DI PRODUZIONE IN SERIE CONTROLLATA

Per le produzioni per le quali è prevista, al §4.1.10.2.2, la serie controllata, è richiesto il rilascio preventivo, da parte del Servizio Tecnico Centrale, della Certificazione di Valutazione tecnica, secondo quanto previsto al § 11.8.4.3.

11.8.3.3 PROVE INIZIALI DI TIPO PER ELEMENTI IN SERIE CONTROLLATA

La produzione in serie controllata di componenti strutturali deve essere preceduta da verifiche sperimentali su prototipi eseguite da un laboratorio di cui all'art. 59 del DPR n. 380/2001, appositamente incaricato dal fabbricante.

11.8.3.4 MARCHIATURA

Ogni elemento prefabbricato prodotto in serie, deve essere appositamente contrassegnato da marchiatura fissa, indelebile o comunque non rimovibile, in modo da garantire la rintracciabilità del fabbricante e dello stabilimento di produzione, nonché individuare la serie di origine dell'elemento.

Inoltre, per manufatti di peso superiore ad 8 kN, dovrà essere indicato in modo visibile, per lo meno fino all'eventuale getto di completamento, anche il peso dell'elemento.

11.8.4. PROCEDURE DI QUALIFICAZIONE

La valutazione dell'idoneità del processo produttivo e del controllo di produzione in stabilimento, nonché della conformità del prodotto finito, è effettuata attraverso la procedura di qualificazione di seguito indicata.

I produttori di elementi prefabbricati di serie devono procedere alla qualificazione dello stabilimento e degli elementi costruttivi di serie prodotti trasmettendo, ai sensi dell'art. 58 del DPR n. 380/2001, idonea documentazione al Servizio Tecnico Centrale della Presidenza del Consiglio Superiore dei Lavori Pubblici.

La documentazione di cui sopra sarà resa nota dal Servizio Tecnico Centrale a mezzo di specifica Circolare.

Il Servizio Tecnico Centrale ha facoltà, anche attraverso sopralluoghi, di accertare la validità e la rispondenza della documentazione, come pure il rispetto delle prescrizioni contenute nelle presenti norme.

Il Servizio Tecnico Centrale provvede ad aggiornare l'elenco della documentazione necessaria ad ottenere la qualificazione, in base ai progressi tecnici ed agli aggiornamenti normativi che dovessero successivamente intervenire.

11.8.4.1 QUALIFICAZIONE DELLO STABILIMENTO

La qualificazione dello stabilimento è il presupposto per ogni successivo riconoscimento di tipologie produttive.

La qualificazione del sistema organizzativo dello stabilimento e del processo produttivo deve essere dimostrata attraverso la presentazione di idonea documentazione, relativa alla struttura organizzativa della produzione ed al sistema di controllo in stabilimento.

Nel caso in cui gli elementi costruttivi siano prodotti in più stabilimenti, la qualificazione deve essere riferita a ciascuna unità di produzione.

11.8.4.2 QUALIFICAZIONE DELLA PRODUZIONE IN SERIE DICHIARATA

Tutte le ditte che procedono in stabilimento alla costruzione di manufatti prefabbricati in serie dichiarata, di cui al § 4.1.10.2.1, prima dell'inizio di una nuova produzione devono presentare apposita domanda Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici.

Tale domanda deve essere corredata da idonea documentazione, ai sensi dell'art. 58 del DPR n. 380/2001 e di quanto indicato al \S 11.8.4.1.

Sulla base della documentazione tecnica presentata il Servizio Tecnico Centrale rilascerà apposito attestato, avente validità quinquennale.

Tale attestato, necessario per la produzione degli elementi, sottintende anche la qualificazione del singolo stabilimento di produzione

L'attestato è rinnovabile su richiesta, previa presentazione di idonei elaborati relativi all'attività svolta ed ai controlli eseguiti nel quinquennio di validità.

11.8.4.3 QUALIFICAZIONE DELLA PRODUZIONE IN SERIE CONTROLLATA

Oltre a quanto specificato per produzione in serie dichiarata, la documentazione necessaria per la qualificazione della produzione in serie controllata dovrà comprendere la documentazione relativa alle prove a rottura su prototipo ed una relazione interpretativa dei risultati delle prove stesse.

Sulla base della documentazione tecnica presentata il Servizio Tecnico Centrale, sentito il Consiglio Superiore dei Lavori Pubblici, rilascerà il Certificato di Valutazione Tecnica, con validità quinquennale e rinnovabile su richiesta.

Tale certificato, necessario per la produzione degli elementi, sottintende anche la qualificazione del singolo stabilimento di produzione.

11.8.4.4 Sospensioni e revoche

È prevista la sospensione o, nei casi più gravi o di recidiva, la revoca degli attestati di qualificazione dello stabilimento e/o della produzione in serie dichiarata o controllata, ove il Servizio Tecnico Centrale accerti, in qualsiasi momento, difformità tra i documenti depositati e la produzione effettiva, oppure la mancata ottemperanza alle prescrizioni contenute nella vigente normativa tecnica. I provvedimenti di sospensione e di revoca vengono adottati dal Servizio Tecnico Centrale.

11.8.5. DOCUMENTI DI ACCOMPAGNAMENTO

Il Direttore dei Lavori è tenuto a rifiutare le eventuali forniture non conformi a quanto riportato nel presente paragrafo.

Oltre a quanto previsto nei punti applicabili del § 11.1, ogni fornitura in cantiere di elementi costruttivi prefabbricati, sia di serie che occasionali, dovrà essere accompagnata da apposite istruzioni nelle quali vengono indicate le procedure relative alle operazioni di trasporto e montaggio degli elementi prefabbricati, ai sensi dell'art. 58 del DPR n. 380/2001, da consegnare al Direttore dei Lavori dell'opera in cui detti elementi costruttivi vengono inseriti, che ne curerà la conservazione:

Tali istruzioni dovranno almeno comprendere, di regola:

a) i disegni d'assieme che indichino la posizione e le connessioni degli elementi nel complesso dell'opera, compreso l'elenco degli elementi forniti con relativi contrassegni;

- b) apposita relazione sulle caratteristiche dei materiali richiesti per le unioni e le eventuali opere di completamento;
- c) le istruzioni di montaggio con i necessari dati per la movimentazione, la posa e la regolazione dei manufatti;
- d) elaborati contenenti istruzioni per il corretto impiego e la manutenzione dei manufatti. Tali elaborati dovranno essere consegnati dal Direttore dei Lavori al Committente, a conclusione dell'opera;
- e) per elementi di serie qualificati, certificato di origine firmato dal fabbricante, il quale con ciò assume per i manufatti stessi le responsabilità che la legge attribuisce al costruttore, e dal Direttore Tecnico responsabile della produzione. Il certificato, che deve garantire la rispondenza del manufatto alle caratteristiche di cui alla documentazione depositata presso il Servizio Tecnico Centrale, deve riportare il nominativo del progettista e copia dell'attestato di qualificazione rilasciato dal Servizio Tecnico Centrale;
- f) documentazione, fornita quando disponibile, attestante i risultati delle prove a compressione effettuate in stabilimento su cubi di calcestruzzo (estratto del Registro di produzione) e copia dei certificati relativi alle prove effettuate da un laboratorio incaricato ai sensi dell'art. 59 del DPR n. 380/2001; tali documenti devono essere relativi al periodo di produzione dei manufatti.

Copia del certificato d'origine dovrà essere allegato alla relazione del Direttore dei Lavori di cui all'art. 65 del DPR n. 380/2001.

Prima di procedere all'accettazione dei manufatti, il Direttore dei Lavori deve verificare che essi siano effettivamente contrassegnati, come prescritto dal § 11.8.3.4.

Il fabbricante di elementi prefabbricati deve altresì fornire al Direttore dei Lavori, e questi al Committente, gli elaborati (disegni, particolari costruttivi, ecc.) firmati dal Progettista e dal Direttore Tecnico di stabilimento, secondo le rispettive competenze, contenenti istruzioni per il corretto impiego dei singoli manufatti, esplicitando in particolare:

- g) destinazione del prodotto;
- h) requisiti fisici rilevanti in relazione alla destinazione;
- i) prestazioni statiche per manufatti di tipo strutturale;
- j) prescrizioni per le operazioni integrative o di manutenzione, necessarie per conferire o mantenere nel tempo le prestazioni e i requisiti dichiarati;
- k) tolleranze dimensionali nel caso di fornitura di componenti.

Nella documentazione di cui sopra il progettista deve indicare espressamente:

- le caratteristiche meccaniche delle sezioni, i valori delle coazioni impresse, i momenti di servizio, gli sforzi di taglio massimo, i valori dei carichi di esercizio e loro distribuzioni, il tipo di materiale protettivo contro la corrosione per gli apparecchi metallici di ancoraggio, dimensioni e caratteristiche dei cuscinetti di appoggio, indicazioni per il loro corretto impiego;
- se la sezione di un manufatto resistente deve essere completata in opera con getto integrativo, la resistenza richiesta;

la possibilità di impiego in ambiente aggressivo e le eventuali variazioni di prestazioni che ne conseguono.

11.8.6. DISPOSITIVI MECCANICI DI COLLEGAMENTO

I dispositivi meccanici che garantiscono il collegamento fra elementi prefabbricati devono essere idonei a garantire le prestazioni previste dalle presenti norme ed in particolare, in presenza di azioni sismiche, al § 7.4.5.2.

Ai suddetti dispositivi meccanici, si applica quanto riportato ai punti A) o C) del §11.1.

11.9. DISPOSITIVI ANTISISMICI E DI CONTROLLO DI VIBRAZIONI

Per dispositivi antisismici e di controllo delle vibrazioni si intendono gli elementi che contribuiscono a modificare la risposta sismica, o in generale dinamica, di una struttura, ad esempio incrementandone il periodo fondamentale, modificando la forma dei modi di vibrare fondamentali, incrementando la dissipazione di energia, limitando la forza trasmessa alla struttura e/o introducendo vincoli permanenti o temporanei che migliorano la risposta sismica o dinamica.

Tutti i dispositivi devono avere una vita di servizio maggiore di 10 anni nel campo di temperatura di riferimento indicato nelle specifiche tecniche applicabili a ciascun dispositivo. In assenza di indicazioni riportate nelle suddette specifiche tecniche il campo di temperatura di riferimento deve essere almeno compreso fra $-15\,^{\circ}\text{C}$ e $+45\,^{\circ}\text{C}$. Per opere particolari, per le quali le temperature prevedibili non rientrano nel suddetto intervallo, potrà farsi riferimento a campi di temperatura diversi da quello sopra citato; per dispositivi operanti in luoghi protetti, si può assumere un campo di temperatura ridotto in relazione ai valori estremi di temperatura ambientale.

Devono essere previsti piani di manutenzione e di sostituzione allo scadere della vita di servizio, senza significativi effetti sull'uso delle strutture in cui sono installati.

Nei casi in cui si applica la norma europea armonizzata UNI EN 15129, le grandezze di riferimento ivi citate andranno desunte da quanto prescritto nelle presenti Norme Tecniche per le Costruzioni; in particolare si intende per d_{bd} lo spostamento valutato per un terremoto riferito allo SLV, e per γ_x · d_{bd} lo spostamento valutato per un terremoto riferito allo SLC (d_{bd} e γ_x · sono i simboli utilizzati nella UNI EN 15129 rispettivamente per lo spostamento di progetto di un dispositivo e per il fattore di amplificazione di al § 4.1.2 della stessa UNI EN 15129).

11.9.1. TIPOLOGIE DI DISPOSITIVI

In generale, ai fini della presente norma, si possono individuare le seguenti tipologie di dispositivi:

DISPOSITIVI DI VINCOLO TEMPORANEO: questi dispositivi sono utilizzati per obbligare i movimenti in uno o più direzioni secondo modalità differenziate a seconda del tipo e dell'entità dell'azione. Si distinguono in :

Dispositivi di vincolo del tipo "a fusibile": caratterizzati dall'impedire i movimenti relativi fra le parti collegate sino al raggiungimento di una soglia di forza oltre la quale, al superamento della stessa, consentono tutti i movimenti. Abitualmente sono utilizzati per escludere il sistema di protezione sismica nelle condizioni di servizio, consentendone il libero funzionamento durante il terremoto di progetto, senza modificarne il comportamento.

Dispositivi (dinamici) di vincolo provvisorio: caratterizzati dalla capacità di solidarizzare gli elementi che collegano, in presenza di movimenti relativi rapidi, quali quelli sismici, e di lasciarli liberi, o quasi, in presenza di movimenti relativi lenti imposti o dovuti ad effetti termici.

DISPOSITIVI DIPENDENTI DALLO SPOSTAMENTO, a loro volta suddivisi in:

Dispositivi a comportamento lineare o "Lineari": caratterizzati da un legame forza-spostamento sostanzialmente lineare, fino ad un dato livello di spostamento, con comportamento stabile per il numero di cicli richiesti e sostanzialmente indipendente dalla velocità; nella fase di scarico non devono mostrare spostamenti residui significativi.

Dispositivi a comportamento non lineare o "Non Lineari": caratterizzati da un legame forza-spostamento non lineare, con comportamento stabile per il numero di cicli richiesti e sostanzialmente indipendente dalla velocità.

DISPOSITIVI DIPENDENTI DALLA VELOCITÀ detti anche *Dispositivi a comportamento viscoso* o "Viscosi": caratterizzati dalla dipendenza della forza soltanto dalla velocità o da velocità e spostamento contemporaneamente; il loro funzionamento è basato sulle forze di reazione causate dal flusso di un fluido viscoso attraverso orifizi o sistemi di valvole.

DISPOSITIVI DI ISOLAMENTO *o "Isolatori"*: svolgono fondamentalmente la funzione di sostegno dei carichi verticali, con elevata rigidezza in direzione verticale e bassa rigidezza o resistenza in direzione orizzontale, permettendo notevoli spostamenti orizzontali. A tale funzione possono essere associate o no quelle di dissipazione di energia, di ricentraggio del sistema, di vincolo laterale sotto carichi orizzontali di servizio (non sismici). Essendo fondamentalmente degli apparecchi di appoggio, essi debbono rispettare le relative norme per garantire la loro piena funzionalità rispetto alle azioni di servizio.

In generale, ai fini della presente norma, si possono individuare le seguenti tipologie di isolatori:

Isolatori elastomerici: costituiti da strati alternati di materiale elastomerico (gomma naturale o materiali artificiali idonei) e di acciaio, quest'ultimo con funzione di confinamento dell'elastomero, risultano fortemente deformabili per carichi paralleli alla giacitura degli strati (carichi orizzontali).

Isolatori a scorrimento: costituiti da appoggi a scorrimento, con superficie piana o curva, caratterizzati da bassi valori delle resistenze per attrito.

DISPOSITIVI costituti da una COMBINAZIONE DELLE PRECEDENTI CATEGORIE.

11.9.2. PROCEDURA DI QUALIFICAZIONE

I dispositivi antisismici, per i quali si applica quanto specificato al punto A) del § 11.1, devono essere conformi alla norma europea armonizzata UNI EN 15129 e recare la Marcatura CE. Si applica il sistema di valutazione e verifica della costanza della prestazione previsto nella suddetta norma europea armonizzata per le applicazioni critiche.

Nel caso di dispositivi antisismici non ricadenti, o non completamente ricadenti, nel campo di applicazione della norma europea armonizzata UNI EN 15129, si applica il caso C) del §11.1.

In aggiunta a quanto previsto ai punti A) o C) del § 11.1, ogni fornitura deve essere accompagnata da un manuale contenente le specifiche tecniche per la posa in opera e la manutenzione.

Le procedure di qualificazione hanno lo scopo di dimostrare che il dispositivo è in grado di mantenere la propria funzionalità nelle condizioni d'uso previste durante tutta la vita di progetto.

11.9.3. PROCEDURA DI ACCETTAZIONE

I controlli di accettazione in cantiere sono obbligatori per tutte le tipologie di dispositivi e sono demandati al Direttore dei Lavori il quale, prima della messa in opera, è tenuto ad accertare e a verificare la prescritta documentazione di qualificazione, e a rifiutare le eventuali forniture non conformi. Il Direttore dei Lavori dovrà inoltre effettuare la verifica geometrica e delle tolleranza dimensionali, nonché le prove di accettazione di seguito specificate.

Le prove di accettazione devono essere eseguite e certificate da un laboratorio di cui all'articolo 59 del DPR 380/2001, dotato di adeguata competenza, attrezzatura ed organizzazione.

Per i dispositivi rientranti nel campo di applicazione della norma europea armonizzata UNI EN 15129, le metodologie per le prove di accettazione ed i relativi criteri di valutazione, ove non diversamente specificato nel seguito, sono quelli indicati, per ciascun tipo di dispositivo, nella suddetta norma europea armonizzata con riferimento alle prove di Controllo di Produzione in Fabbrica (*Factory Production Control tests*). Il numero dei dispositivi da sottoporre a prove di accettazione è di seguito specificato per ciascun tipo di dispositivo.

E' possibile impiegare, ai fini delle prove di accettazione, le prove di Controllo di Produzione in Fabbrica effettuate nell'ambito del mantenimento della qualificazione dei dispositivi stessi ai sensi della norma europea sopra detta, nel numero che la stessa norma prevede, a condizione che:

- il campionamento dei dispositivi sia stato effettuato, sui lotti destinati allo specifico cantiere, dal Direttore dei Lavori del cantiere stesso:
- le prove siano eseguite e certificate da un laboratorio di cui all'articolo 59 del DPR 380/2001, dotato di adeguata competenza, attrezzatura ed organizzazione.
- I suddetti certificati riportino esplicitamente l'indicazione del o dei cantieri ove viene utilizzata la fornitura.

Per dispositivi non ricadenti nel campo di applicazione della norma europea armonizzata UNI EN 15129 le prove di accettazione, che rimangono obbligatorie, saranno eseguite secondo le modalità e con i criteri di valutazione riportate nelle specifiche tecniche europee, oppure nella Certificazione di valutazione tecnica, di riferimento.

Qualora i risultati dei controlli di accettazione non risultassero soddisfacenti, il Direttore dei lavori rifiuta la fornitura.

I dispositivi sottoposti a prove di qualificazione o di accettazione potranno essere utilizzati nella costruzione solo se gli elementi sollecitati in campo non lineare vengono sostituiti o se la loro resistenza alla fatica oligociclica è almeno di un ordine di grandezza superiore al numero dei cicli delle prove, e comunque previo accertamento della loro perfetta integrità e piena funzionalità a seguito delle prove, da accertare attraverso la successiva effettuazione delle prove di accettazione ed il controllo dei relativi parametri di verifica.

11.9.4. DISPOSITIVI A COMPORTAMENTO LINEARE

Il comportamento dei dispositivi a comportamento lineare è definito tramite la rigidezza equivalente K_e e il coefficiente di smorzamento viscoso equivalente $\xi_{e'}$ che devono rispettare le limitazioni

$$\xi_{\rm e} < 15\%$$
 [11.9.1]

$$|K_e - K_{in}| / K_{in} < 20\%$$
 [11.9.2]

essendo K_{in} la rigidezza iniziale valutata come rigidezza secante tra i valori corrispondenti al 10% ed il 20% della forza di progetto.

Per assicurare un comportamento ciclico stabile, le variazioni in una serie di cicli di carico riferiti allo stesso spostamento massimo devono essere limitate nel modo seguente:

$$|K_{e,(i)} - K_{e,(3)}| / K_{e,(3)} \le 10\%$$
 [11.9.3]

$$\left|\xi_{e,(i)} - \xi_{e,(3)}\right| / \left|\xi_{e,(3)} \le 10\%\right|$$
 [11.9.4]

dove il pedice "(3)" si riferisce a quantità determinate nel terzo ciclo di carico ed il pedice "(i)" si riferisce a quantità relative all'iesimo ciclo, escluso il primo ($i \ge 2$).

Le massime differenze tra le caratteristiche meccaniche ottenute nelle prove di qualificazione ed i valori di progetto o le normali condizioni d'uso devono essere contenute entro limiti riportati in Tab. 11.9.I

Le variazioni devono essere valutate con riferimento al 3° ciclo di prova.

Tab. 11.9.I

	Fornitura	Invecchiamento	Temperatura	Frequenza di prova
K _e	±15%	±20%	±40%	±10%
ξρ	±15%	±15%	±15%	±10%

11.9.4.1 Prove di accettazione sui dispositivi

Le prove di accettazione devono essere effettuate su almeno il 20% dei dispositivi, comunque non meno di 4 e non più del numero di dispositivi da mettere in opera.

Su almeno un dispositivo verrà anche condotta una prova "quasi statica", imponendo almeno 5 cicli completi di deformazioni alternate, con ampiezza massima pari a \pm d $_2$.

Qualora il dispositivo abbia caratteristiche costruttive analoghe a quelle di un isolatore elastomerico, geometricamente simile e soggetto ad azione tagliante senza però svolgere funzione portante dei carichi verticali, le prove di accettazione dovranno essere condotte secondo le modalità e numerosità previste per le prove su isolatori elastomerici, ma con la seguente variante:

 caratterizzazione dei dispositivi in assenza di carico iniziale, riproducendo le condizioni di vincolo sulle facce, superiori ed inferiori del dispositivo in opera.

11.9.5. DISPOSITIVI A COMPORTAMENTO NON LINEARE

I dispositivi a comportamento non lineare possono realizzare comportamenti meccanici diversi, ad elevata o bassa dissipazione di energia, con riduzione o incremento della rigidezza al crescere dello spostamento, con o senza spostamenti residui all'azzeramento della forza. Nel seguito si tratteranno dispositivi caratterizzati da una riduzione della rigidezza, ma con forza sempre crescente, al crescere dello spostamento, i cui diagrammi forza-spostamento sono sostanzialmente indipendenti dalla velocità di percorrenza e possono essere schematizzati come nella Fig. 11.9.1.

I dispositivi a comportamento non lineare sono costituiti da elementi base che ne determinano le caratteristiche meccaniche fondamentali ai fini della loro utilizzazione

Il loro comportamento è individuato dalla curva caratteristica che lega la forza trasmessa dal dispositivo al corrispondente spostamento; tali curve caratteristiche sono, in generale, schematizzabili con delle relazioni bilineari definite imponendo il passaggio per il punto di coordinate (F_1, d_1) , corrispondente al limite teorico del comportamento elastico lineare del dispositivo, e per il punto di coordinate (F_2, d_2) , corrispondente alla condizione di progetto allo SLC.

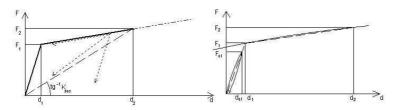


Fig. 11.9.1 - Diagrammi forza – spostamento per dispositivi non lineari

Il ciclo bilineare teorico è definito dai seguenti parametri:

- d_{el} = spostamento nel primo ramo di carico in una prova sperimentale entro il quale il comportamento è sostanzialmente lineare. In generale può assumersi un valore pari a $d_2/20$;
- F_{el} = Forza corrispondente a d_{el}, nel ramo di carico iniziale sperimentale.
- d_1 = ascissa del punto d'intersezione della linea retta congiungente l'origine con il punto (d_{el}, F_{el}) e la linea retta congiungente i punti $(d_2/4, F(d_2/4))$ e (d_2, F_2) nel terzo ciclo della prova sperimentale;
- F_1 = ordinata del punto d'intersezione della linea retta congiungente l'origine con il punto $(d_{el'}, F_{el})$ e la linea retta congiungente i punti $(d_2/4, F(d_2/4))$ e (d_2, F_2) nel terzo ciclo della prova sperimentale;
- d₂ = spostamento massimo di progetto del dispositivo corrispondente allo SLC;
- F_2 = forza corrispondente allo spostamento d_2 , ottenuta al terzo ciclo sperimentale.

Le rigidezze elastica e post-elastica, rispettivamente del primo ramo e del secondo ramo, vengono definite come: K_1 = F_1/d_1 ; K_2 = $(F_2$ - $F_1)/(d_2$ - $d_1)$, mentre la rigidezza secante è data da K_{sec} = F_2/d_2 e lo smorzamento equivalente è ξ_e = $E_d/(2\pi \cdot F_2 \cdot d_2)$ essendo E_d l'area del ciclo d'isteresi.

Per assicurare un comportamento ciclico stabile, le variazioni in una serie di cicli di carico riferiti allo stesso spostamento massimo devono essere limitate nel modo seguente:

$$\left|K_{2,(i)} - K_{2,(3)}\right| / K_{2,(3)} \le 10\%$$
 [11.9.5]

$$\left|\xi_{e,(i)} - \xi_{e,(3)}\right| / \xi_{e,(3)} \le 10\%$$
 [11.9.6]

dove il pedice "(3)" si riferisce a quantità determinate nel terzo ciclo di carico ed il pedice "(i)" si riferisce a quantità relative all'iesimo ciclo, escluso il primo ($i\ge 2$).

Il ciclo teorico che eventualmente si assume per l'esecuzione delle analisi non lineari per la progettazione della struttura, completato dei rami di scarico e ricarico coerenti con il comportamento reale, deve essere tale che l'energia dissipata in un ciclo non differisca di più del 10% dall'energia dissipata nel terzo ciclo di carico della prova sperimentale.

Le massime differenze tra le caratteristiche meccaniche ottenute nelle prove di qualificazione ed i valori di progetto o nelle normali condizioni d'uso devono essere contenute entro limiti riportati in Tab. 11.9.II.

Le variazioni devono essere valutate con riferimento al 3° ciclo di prova.

Tab. 11.9.II

	Fornitura	Invecchiamento	Temperatura	Frequenza di prova (1)	
K ₂	±15%	±20%	±20%	±10%	
K _{sec}	±15%	±20%	±40%	±10%	
ξ _e	±10%	±15%	±15%	±10%	

(1) Valori ottenuti o dichiarati con riferimento alle stesse frequenze delle prove di qualificazione.

Quando il rapporto d'incrudimento risulta $K_2/K_1 \le 0.05$, il limite su K_2 viene sostituito dal limite sulla variazione di K_2/K_1 che deve differire meno di 0.01 dal valore di progetto.

11.9.5.1 Prove di accettazione sui dispositivi

Si applica quanto previsto al § 11.9.4.1 per i dispositivi lineari.

11.9.6. DISPOSITIVI A COMPORTAMENTO VISCOSO

I dispositivi a comportamento viscoso trasmettono, in generale, soltanto azioni orizzontali ed hanno rigidezza trascurabile nei confronti delle azioni verticali. Essi sono caratterizzati da un valore della forza proporzionale a v^{α} , e pertanto non contribuiscono significativamente alla rigidezza del sistema. La relazione forza spostamento di un dispositivo viscoso, per una legge sinusoidale dello spostamento, è riportata in Fig. 11.9.2. La forma del ciclo è ellittica per α =1.

Il loro comportamento è caratterizzato dalla massima forza sviluppata F_{max} e dall'energia dissipata E_d in un ciclo, per una prefissata ampiezza e frequenza, ossia dalle costanti C e α .

Per assicurare un comportamento ciclico stabile, le variazioni dell'energia dissipata E_d in una serie di cicli di carico riferiti a stessa velocità e spostamento massimi devono essere limitate nel modo seguente:

$$|E_{d(i)} - E_{d(3)}| / E_{d(3)} \le 10\%$$
 [11.9.7]

dove il pedice "(3)" si riferisce a quantità determinate nel terzo ciclo di carico ed il pedice "(i)" si riferisce a quantità relative all'iesimo ciclo, escluso il primo ($i\ge 2$).

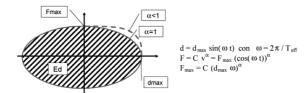


Fig. 11.9.2 – Dispositivi a comportamento viscoso

Le massime differenze tra le caratteristiche meccaniche ottenute nelle prove di qualificazione ed i valori di progetto o nelle normali condizioni d'uso devono essere contenute entro limiti riportati in Tab. 11.9.III, tenendo conto dei rapporti di scala tra i dispositivi sottoposti a prove di qualificazione e quelli reali.

Tab. 11.9.III

	Fornitura	Fornitura Invecchiamento Temperatura		Frequenza di prova
F_{max}	±15%	±5%	±5%	±10%
E _d	-15%	-5%	-5%	±10%

Per tener conto di possibili valori di velocità superiori a quelli di progetto, la forza massima di progetto del dispositivo va amplificata con un fattore di affidabilità γ_v dato da

$$\gamma_{\rm v} = (1 + t_{\rm d}) \cdot (1.5)^{\alpha}$$
 [11.9.8]

in cui t_d è la tolleranza sulla forza di progetto fornita dal fabbricante, comprensiva della variabilità per effetto della temperatura, e α è l'esponente delle legge costitutiva.

Il dispositivo deve possedere due cerniere sferiche alle estremità onde evitare effetti di trafilamento e deterioramento delle guarnizioni, e la capacità rotazionale deve essere valutata tenendo conto dei carichi che interesseranno la struttura nel corso della vita, degli effetti del sisma e dei disallineamenti di montaggio. In ogni caso la rotazione consentita dalle cerniere non deve essere inferiore ai 2 gradi sessagesimali.

I dispositivi devono essere progettati in modo da evitare snervamenti sotto l'applicazione dei carichi di servizio e rotture sotto le condizioni di collasso. Devono essere inoltre in grado di sopportare le accelerazioni laterali risultanti dalle analisi sismiche strutturali allo SLC e, in assenza di tale valutazione, devono resistere ad una forza minima trasversale pari ad almeno due volte il peso proprio del dispositivo. Il progetto e la costruzione del dispositivo devono consentire la manutenzione nel corso della vita utile ed evitare che fenomeni di instabilità interessino gli steli, nelle condizioni di massima estensione ed in riferimento alla configurazione di messa in opera

11.9.6.1 Prove di accettazione sui dispositivi

Le prove di accettazione devono essere effettuate su almeno il 20% dei dispositivi, comunque non meno di 4 e non più del numero di dispositivi da mettere in opera.

11.9.7. ISOLATORI ELASTOMERICI

Gli isolatori debbono avere pianta con due assi di simmetria ortogonali, così da presentare un comportamento il più possibile indipendente dalla direzione dell'azione orizzontale agente. Ai fini della determinazione degli effetti di azioni perpendicolari agli strati, le loro dimensioni utili debbono essere riferite alle dimensioni delle piastre in acciaio, depurate di eventuali fori, mentre per gli effetti delle azioni parallele alla giacitura degli strati si considererà la sezione intera dello strato di gomma.

Le piastre di acciaio devono essere conformi a quanto previsto nelle norme per gli apparecchi di appoggio, con un allungamento minimo a rottura del 18% e spessore minimo pari a 2 mm per le piastre interne e a 20 mm per le piastre esterne.

Si definiscono due fattori di forma:

- S₁ fattore di forma primario, rapporto tra la superficie A' comune al singolo strato di elastomero ed alla singola piastra d'acciaio, depurata degli eventuali fori (se non riempiti successivamente), e la superficie laterale libera L del singolo strato di elastomero, maggiorata della superficie laterale degli eventuali fori (se non riempiti successivamente) ossia S₁=A'/L;
- S_2 fattore di forma secondario, rapporto tra la dimensione in pianta D della singola piastra in acciaio, parallelamente all'azione orizzontale agente, e lo spessore totale t_e degli strati di elastomero ossia S_2 = D/ t_e .

Gli isolatori in materiale elastomerico ed acciaio sono individuati attraverso le loro curve caratteristiche forza -spostamento, generalmente non lineari, tramite i due parametri sintetici: la rigidezza equivalente $K_{e^{\prime}}$ il coefficiente di smorzamento viscoso equivalente $\xi_{e^{\prime}}$.

La rigidezza equivalente K_{er} relativa ad un ciclo di carico, è definita come rapporto tra la forza F corrispondente allo spostamento massimo d raggiunto in quel ciclo e lo stesso spostamento $(K_e = F/d)$ e si valuta come prodotto del modulo dinamico equivalente a taglio G_{din} per A/t_e .

Il coefficiente di smorzamento viscoso equivalente ξ_e si definisce come rapporto tra l'energia dissipata in un ciclo completo di carico E_d e $2\pi Fd$, ossia $\xi_e = E_d/(2\pi Fd)$.

 $La\ rigidezza\ verticale\ K_v\ e\ definita\ come\ rapporto\ tra\ la\ forza\ verticale\ di\ progetto\ F_v\ e\ lo\ spostamento\ verticale\ d_v\ (K_v=F_v/d_v).$

Le massime differenze tra le caratteristiche meccaniche ottenute nelle prove di qualificazione ed i valori di progetto o nelle normali condizioni d'uso devono essere contenute entro limiti riportati in Tab. 11.9.IV.

Le variazioni devono essere valutate con riferimento al 3° ciclo di prova. Le frequenze di prova per valutare le variazioni delle caratteristiche meccaniche sono 0,1Hz e 0,5Hz.

Tab. 11.9.IV

	Fornitura	Invecchiamento	Temperatura	Frequenza di prova
K _e	±20%	±20%	±20%	±20%
K _v	-30%	-	-	-
ξ _e	±20%	±20%	±20%	±20%

Le variazioni dovute al carico verticale, valutate come differenza tra i valori corrispondenti al carico verticale massimo ed a quello minimo, non dovranno superare il 15% del valore di progetto.

11.9.7.1 Prove di accettazione sui dispositivi

Le prove di accettazione devono essere effettuate su almeno il 20% dei dispositivi, e comunque non meno di 4 e non più del numero di dispositivi da mettere in opera.

11.9.8. ISOLATORI A SCORRIMENTO

Gli isolatori a scorrimento devono essere in grado di sopportare, sotto spostamento massimo impresso pari a d2, almeno 5 cicli di carico e scarico. I cicli si riterranno favorevolmente sopportati se il coefficiente d'attrito (f), nei cicli successivi al primo, non varierà di più del 25% rispetto alle caratteristiche riscontrate durante il terzo ciclo, ossia

$$\left| f_{(i)} - f_{(3)} \right| / f_{(3)} \le 0.25,$$
 [11.9.9]

avendo contrassegnato con il pedice "(i)" le caratteristiche valutate all'i-esimo ciclo e con il pedice "(3)" le caratteristiche valutate al terzo ciclo. Detto d_{dc} lo spostamento massimo di progetto del centro di rigidezza del sistema d'isolamento, corrispondente allo SLC, qualora l'incremento della forza nel sistema di isolamento per spostamenti tra $0.5~d_{dc}$ e d_{dc} sia inferiore all' 1.25% del peso totale della sovrastruttura, gli isolatori a scorrimento debbono essere in grado di garantire la loro funzione di appoggio fino a spostamenti pari ad $1.25~d_2$.

11.9.8.1 Prove di accettazione sui dispositivi

Le prove di accettazione, devono essere effettuate su almeno il 20% dei dispositivi, comunque non meno di 4 e non più del numero di dispositivi da mettere in opera.

20-2-2018

Qualora gli isolatori fossero dotati di elementi o meccanismi supplementari atti a migliorarne le prestazioni sismiche, su almeno un dispositivo completo di tali parti supplementari verrà anche condotta una prova "quasi statica", imponendo almeno 5 cicli completi di deformazioni alternate, con ampiezza massima pari a \pm d₂. Il dispositivo non potrà essere utilizzato nella costruzione, a meno che il suo perfetto funzionamento non sia ripristinabile con la sostituzione degli elementi base.

11.9.9. DISPOSITIVI A VINCOLO RIGIDO DEL TIPO A "FUSIBILE"

I dispositivi a fusibile sono classificabili in due categorie: di tipo meccanico, quando lo svincolo è determinato dal rilascio di fermi sacrificali, o di tipo idraulico, quando lo svincolo è governato dall'apertura di una valvola di sovrappressione.

11.9.9.1 Prove di accettazione sui dispositivi

Le prove di accettazione sui dispositivi saranno effettuate con le modalità di seguito indicate, e si riterranno superate se i risultati ottenuti non differiranno da quelli delle prove di qualificazione di oltre il $\pm 10\%$.

- misura della geometria esterna, con tolleranza di ±10% sugli spessori e ±5% sulle lunghezze, per i componenti determinanti ai fini del comportamento.
- Valutazione della capacità di sostenere almeno 3 cicli monotonici con carico massimo impresso pari al valore di progetto di servizio, con una tolleranza del +10%, in assenza di snervamenti o rotture.
- Valutazione della forza di rilascio, sottoponendo il campione ad un carico monotonico sino al raggiungimento della rottura del fusibile (forza di rilascio). La tolleranza, rispetto al valore di progetto, deve essere definita dal progettista e, in assenza di tale valutazione, è pari a ±15%.

Le prove di accettazione devono essere effettuate su almeno il 20% dei dispositivi, comunque non meno di 4 e non più del numero di dispositivi da mettere in opera. Il dispositivo non potrà essere utilizzato nella costruzione, a meno che il suo perfetto funzionamento non sia ripristinabile con la sostituzione degli elementi base.

11.9.10. DISPOSITIVI (DINAMICI) DI VINCOLO PROVVISORIO

La corsa disponibile deve essere funzione dello spostamento di progetto non sismico, derivante da azioni lente, quali effetti termici, ritiro, viscosità e da qualsiasi altro spostamento relativo che può interessare le parti che il dispositivo connette, incluso lo spostamento dovuto alla comprimibilità del fluido in presenza di azione sismica. In ogni caso, la corsa non deve essere minore di ±50 mm per i ponti e ±25 mm per gli edifici.

Il dispositivo deve possedere due cerniere sferiche alle estremità onde evitare effetti di trafilamento e deterioramento delle guarnizioni, e la capacità rotazionale deve essere valutata tenendo conto dei carichi che interesseranno la struttura nel corso della vita, degli effetti del sisma e dei disallineamenti di montaggio. In ogni caso la rotazione consentita dalle cerniere non deve essere inferiore ai 2 gradi.

I dispositivi devono essere progettati in modo da evitare snervamenti sotto l'applicazione dei carichi di servizio e rotture sotto le condizioni di collasso. Devono essere inoltre in grado di sopportare le accelerazioni laterali risultanti dalle analisi sismiche strutturali allo SLC e, in assenza di tale valutazione, devono resistere ad una forza minima pari ad almeno due volte il peso proprio del dispositivo. Il progetto e la costruzione del dispositivo devono consentire la manutenzione nel corso della vita utile ed evitare che fenomeni di instabilità interessino gli steli, nelle condizioni di massima estensione ed in riferimento alla configurazione di messa in opera.

Il fattore di sicurezza nei confronti delle sovrapressioni, rispetto alle condizioni di progetto sismico allo SLC, deve essere pari ad 1,5, salvo che per i dispositivi dotati di sistema di protezione dal sovraccarico incorporato, per i quali il sistema deve attivarsi per una forza minore del 110% della forza di progetto ed il fattore di sicurezza deve essere assunto almeno pari ad 1,1.

La velocità di attivazione dei dispositivi, tipicamente, è compresa tra 0,5 mm/s e 5 mm/s, valori decisamente maggiori di 0,01 mm/s.

11.9.10.1 Prove di accettazione sui dispositivi

Le prove di accettazione devono essere effettuate su almeno il 20% dei dispositivi, comunque non meno di 4 e non più del numero di dispositivi da mettere in opera. Il dispositivo potrà essere utilizzato nella costruzione, salvo verifica della sua perfetta integrità al termine delle prove.

Per le prove di accettazione per le quali non ci si avvalga delle prove di controllo di produzione in fabbrica, la prova di "sovrappressione" è effettuata secondo la valutazione del comportamento rispetto ad un sovraccarico, accertando che il dispositivo attivi il meccanismo di protezione dalle sovrapressioni per una forza minore ad 1,5 volte quella di progetto, se dotato di meccanismo di protezione interno, o che non subisca né perdite di fluido né alcun danno al sistema, se ne è sprovvisto, sotto l'applicazione della storia di carico seguente:

- a) Raggiungimento del carico di progetto in meno di 0,5 secondi e mantenimento costante dello stesso per un tempo stabilito dal progettista e, comunque, per almeno 5 secondi;
- b) Inversione del carico in meno di 1 secondo e mantenimento costante dello stesso per un tempo stabilito dal progettista e, comunque, per almeno 5 secondi.

11.10. MURATURA PORTANTE

11.10.1. ELEMENTI PER MURATURA

Gli elementi per muratura portante devono essere conformi alla pertinente norma europea armonizzata della serie UNI EN 771 e, secondo quanto specificato al punto A del § 11.1, recare la Marcatura CE, secondo il sistema valutazione e verifica della costanza della prestazione indicato nella seguente tabella.

Tab 11 10 I

Specifica Tecnica Europea di riferimento	Categoria	Sistema di Valutazione e Verifica della Costanza della Prestazione
Specifica per elementi per muratura - Elementi per muratura di laterizio, silicato di calcio, in calcestruzzo vi-	Categoria I	2+
brocompresso (aggregati pesanti e leggeri), calcestruzzo aerato autoclavato, pietra agglomerata, pietra naturale UNI EN 771-1, 771-2, 771-3, 771-4, 771-5, 771-6	Categoria II	4

Come più precisamente specificato nelle norme europee armonizzate della serie UNI EN 771, gli elementi di categoria I hanno una resistenza alla compressione dichiarata, determinata tramite il valore medio o il valore caratteristico, e una probabilità di insuccesso nel raggiungerla non maggiore del 5%. Gli elementi di categoria II non soddisfano questo requisito.

L'uso di elementi per muratura portante di Categoria I e II è subordinato all'adozione, nella valutazione della resistenza di progetto, del corrispondente coefficiente di sicurezza $\gamma_{\rm M}$ riportato nel relativo paragrafo 4.5.6.

11.10.1.1 PROVE DI ACCETTAZIONE

Oltre a quanto previsto al punto A del §11.1, il Direttore dei Lavori è tenuto a far eseguire ulteriori prove di accettazione sugli elementi per muratura portante pervenuti in cantiere secondo le metodologie di prova indicate nelle citate nome europee armonizzate.

Le prove di accettazione su materiali di cui al presente paragrafo sono obbligatorie per i soli elementi che costituiscono muratura portante e devono essere eseguite e certificate presso un laboratorio di cui all'art. 59 del DPR n. 380/2001.

Il laboratorio incaricato di effettuare le prove provvede all'accettazione dei campioni accompagnati dalla lettera di richiesta sottoscritta dal direttore dei lavori. Il laboratorio verifica lo stato dei provini e la documentazione di riferimento ed in caso di anomalie riscontrate sui campioni oppure di mancanza totale o parziale degli strumenti idonei per la identificazione degli stessi, deve sospendere l'esecuzione delle prove e darne notizia al Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici.

Il prelievo potrà anche essere eseguito dallo stesso laboratorio incaricato della esecuzione delle prove. I laboratori devono conservare i campioni sottoposti a prova per almeno trenta giorni dopo l'emissione dei certificati di prova, in modo da consentirne l'identificabilità e la rintracciabilità.

11.10.1.1.1 Resistenza a compressione degli elementi resistenti artificiali o naturali

Il controllo di accettazione in cantiere ha lo scopo di accertare se gli elementi da mettere in opera abbiano le caratteristiche dichiarate dal fabbricante.

Nel caso in cui il fabbricante abbia dichiarato la resistenza media, il controllo sarà effettuato su almeno un campione per ogni 350 m³ di fornitura per elementi di Categoria II, e per ogni 650 m³ per elementi di Categoria I. Ogni campione sarà costituito da n elementi (n≥6) da sottoporre a prova di compressione. Per ogni campione siano $f_1, f_2, ... f_n$ le resistenze a compressione degli elementi con $f_1 < f_2 < ... < f_n$; il controllo sul campione si considera positivo se risultino verificate entrambe le disuguaglianze:

$$(f_1 + f_2 + \dots + f_n)/n \ge f_{bm}$$
 [11.10.1]
 $f_1 \ge 0.80 f_{bm}$ [11.10.2]

dove $f_{bm}\,\grave{e}$ la resistenza media a compressione dichiarata dal fabbricante.

Nel caso in cui il fabbricante non abbia dichiarato la resistenza media ma abbia dichiarato la sola resistenza caratteristica, il controllo di accettazione in cantiere sarà effettuato su almeno un campione per ogni 350 m³ di fornitura per elementi di Categoria II, innalzabili a 650 m³ per elementi di Categoria I. Per ogni campione, siano f_1 , f_2 , ... f_6 la resistenza a compressione dei sei elementi con $f_1 < f_2 < ... f_6$, il controllo si considera effettuato con esito positivo se risulta verificata la seguente disuguaglianza: $f_1 \ge f_{bk}$, dove f_{bk} è la resistenza caratteristica a compressione dichiarata dal fabbricante.

Al Direttore dei Lavori spetta comunque l'obbligo di curare, mediante sigle, etichettature indelebili, ecc., che i campioni inviati per le prove ai laboratori siano effettivamente quelli prelevati in cantiere con indicazioni precise sulla fornitura e sulla posizione che nella muratura occupa la fornitura medesima.

Le modalità di prova sono riportate nella UNI EN 772-1:2015.

11.10.2. MALTE PER MURATURA

Le prestazioni meccaniche di una malta sono definite mediante la sua resistenza media a compressione f_m.

La classe di una malta è definita da una sigla costituita dalla lettera M seguita da un numero che indica la resistenza f_m espressa in N/mm^2 secondo la Tab. 11.10.II. Per l'impiego in muratura portante non sono ammesse malte con resistenza $f_m < 2.5 \ N/mm^2$.

Per garantire la durabilità è necessario che i componenti la miscela rispondano ai requisiti contenuti nelle norme UNI EN 1008:2003 (acqua di impasto), nelle norme europee armonizzate UNI EN 13139 (aggregati per malta) e UNI EN 13055 (aggregati leggeri).

Le malte possono essere prodotte in fabbrica oppure prodotte in cantiere mediante la miscelazione di sabbia, acqua ed altri componenti leganti.

Le malte per muratura prodotte in fabbrica devono essere specificate o come malte a prestazione garantita oppure come malte a composizione prescritta.

La composizione delle malte per muratura prodotte in cantiere deve essere definita dalle specifiche del progetto.

11.10.2.1 MALTE A PRESTAZIONE GARANTITA

La malta a prestazione garantita deve essere specificata per mezzo della classe di resistenza a compressione con riferimento alla classificazione riportata nella tabella 11.10.II.

Tab. 11.10.II - Classi di malte a prestazione garantita

Classe	M 2,5	M 5	M 10	M 15	M 20	M d
Resistenza a compressione N/mm ²	2,5	5	10	15	20	d
d è una resistenza a compressione maggiore di 25 N/mm² dichiarata dal fabbricante						

Le modalità per la determinazione della resistenza a compressione delle malte sono riportate nella UNI EN 1015-11:2007.

La malta per muratura portante deve garantire prestazioni adeguate al suo impiego in termini di durabilità e di prestazioni meccaniche e deve essere conforme alla norma europea armonizzata UNI EN 998-2 e, secondo quanto specificato al punto A del § 11.1, recare la Marcatura CE, secondo il sistema di Valutazione e Verifica della Costanza della Prestazione indicato nella seguente Tab. 11.10.III.

Tab. 11.10.III

Specifica Tecnica Europea di Riferimento	Uso Previsto	Sistema di Valutazione e Verifica della Costanza della Prestazione	
Malta per murature UNI EN 998-2	Usi strutturali	2+	

11.10.2.2 MALTE A COMPOSIZIONE PRESCRITTA

Per le malte a composizione prescritta le proporzioni di composizione in volume o in massa di tutti i costituenti devono essere dichiarate dal fabbricante.

La resistenza meccanica dovrà essere verificata mediante prove sperimentali svolte in accordo con le UNI EN 1015-11:2007.

Le malte a composizione prescritta devono inoltre rispettare le indicazioni riportate nella norma europea armonizzata UNI EN 998-2 secondo il sistema di valutazione e verifica della costanza della prestazione indicato nella tabella 11.10.IV.

Tab. 11.10.IV

Specifica Tecnica Europea di Riferimento	Uso Previsto	Sistema di Valutazione e Verifica della Costanza della Prestazione
Malta per murature UNI EN 998-2	Usi strutturali e non	4

Per le composizioni in volume descritte nella tabella 11.10.V è possibile associare la classe di resistenza specificata.

Tab. 11.10.V - Corrispondenza tra classi di resistenza e composizione in volume delle malte

Classe	Tipo di malta		Composizione					
		Cemento	Calce aerea	Sabbia	Pozzolana			
M 2,5	Idraulica	-	ı	1	3	1		
M 2,5	Pozzolanica	-	1	-	-	3		
M 2,5	Bastarda	1	Ι	2	9	-		
M 5	Bastarda	1	_	1	5	_		
M 8	Cementizia	2	_	1	8	_		
M 12	Cementizia	1	_	-	3	-		

11.10.2.3 MALTE PRODOTTE IN CANTIERE

Nel caso di malte prodotte in cantiere, le miscele andranno calibrate in funzione delle specifiche di progetto. Le malte devono garantire prestazioni adeguate al loro impiego in termini di durabilità e di prestazioni meccaniche.

11.10.2.4 PROVE DI ACCETTAZIONE

Le prove di accettazione sulle malte ad uso strutturale mirano a verificare che la resistenza della malta rispetti i valori di progetto assunti e specificati dal progettista.

Il laboratorio incaricato di effettuare le prove provvede all'accettazione dei campioni accompagnati dalla lettera di richiesta sottoscritta dal direttore dei lavori. Il laboratorio verifica lo stato dei provini e la documentazione di riferimento ed in caso di anomalie riscontrate sui campioni oppure di mancanza totale o parziale degli strumenti idonei per la identificazione degli stessi, deve sospendere l'esecuzione delle prove e darne notizia al Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici.

Il prelievo potrà anche essere eseguito dallo stesso laboratorio incaricato della esecuzione delle prove. I laboratori devono conservare i campioni sottoposti a prova per almeno trenta giorni dopo l'emissione dei certificati di prova, in modo da consentirne l'identificabilità e la rintracciabilità.

Il Direttore dei Lavori deve far eseguire prove di accettazione sulle malte, secondo quanto di seguito indicato.

Il controllo di accettazione va eseguito su miscele omogenee e prevede il campionamento di almeno 3 provini prismatici $40 \times 40 \times 160$ mm ogni 350 m^3 di muratura realizzata con la stessa miscela nel caso di malte a composizione prescritta o prodotte in cantiere, oppure ogni 700 m^3 di muratura realizzata con la stessa miscela nel caso di malte a prestazione garantita, da sottoporre a flessione, e quindi a compressione sulle 6 metà risultanti, secondo quanto indicato nella norma UNI EN 1015-11:2007. Il valore medio delle resistenze a compressione misurate deve risultare maggiore o uguale del valore di progetto.

11.10.3. DETERMINAZIONE DEI PARAMETRI MECCANICI DELLA MURATURA

11.10.3.1 RESISTENZA A COMPRESSIONE

11.10.3.1.1 Determinazione sperimentale della resistenza a compressione

La resistenza caratteristica sperimentale a compressione si determina su n muretti ($n \ge 6$), secondo la procedura descritta nella norma UNI EN 1052-1:2001.

La determinazione della resistenza caratteristica deve essere completata con la verifica dei materiali, da condursi come segue:

- malta: n. 3 provini prismatici 40 x 40 x 160 mm da sottoporre a flessione, e quindi a compressione sulle 6 metà risultanti, secondo la norma UNI EN 1015-11:2007;
- elementi resistenti: n. 10 elementi da sottoporre a compressione con direzione del carico normale al letto di posa, secondo la norma europea armonizzata UNI EN 772-1.

11.10.3.1.2 Stima della resistenza a compressione

In sede di progetto, per le murature formate da elementi artificiali pieni o semipieni il valore della resistenza caratteristica a compressione della muratura f_k può essere dedotto dalla resistenza caratteristica a compressione degli elementi e dalla classe di appartenenza della malta tramite la Tab. 11.10.VI. Ai fini dell'uso di tale tabella, nel caso la resistenza a compressione degli elementi sia dichiarata mediante il suo valore medio f_{Dm} , in assenza di una determinazione sperimentale diretta, la resistenza caratteristica dell'elemento f_{Dk} può essere stimata mediante la relazione f_{Dk} = 0,8 f_{Dm} . La validità della tabella è limitata a quelle murature aventi giunti orizzontali e verticali riempiti di malta e di spessore compreso tra 5 e 15 mm. Per valori non contemplati in tabella è ammessa l'interpolazione lineare; in nessun caso sono ammesse estrapolazioni.

 $\textbf{Tab. 11.10.VI -} \textit{Valori di } f_k \textit{ per murature in elementi artificiali pieni e semipieni (valori in N/mm^2)}$

Resistenza caratteristica a compressione f _{bk}	Tipo di malta			
dell'elemento N/mm²	M15	M10	M5	M2,5
2,0	1,2	1,2	1,2	1,2
3,0	2,2	2,2	2,2	2,0
5,0	3,5	3,4	3,3	3,0
7,5	5,0	4,5	4,1	3,5
10,0	6,2	5,3	4,7	4,1
15,0	8,2	6,7	6,0	5,1
20,0	9,7	8,0	7,0	6,1
30,0	12,0	10,0	8,6	7,2
40,0	14,3	12,0	10,4	-

Nel caso di murature costituite da elementi naturali si assume convenzionalmente la resistenza caratteristica a compressione dell'elemento f_{bk} pari a:

$$f_{bk} = 0.75 f_{bm}$$
 [11.10.3]

 $dove \ f_{bm} \ rappresenta \ la \ resistenza \ media \ a \ compressione \ degli \ elementi \ in \ pietra \ squadrata.$

Il valore della resistenza caratteristica a compressione della muratura f_k può essere dedotto dalla resistenza caratteristica a compressione degli elementi f_{bk} e dalla classe di appartenenza della malta tramite la seguente Tab. 11.10.VII.

Tab. 11.10.VII - Valori di f_k per murature in elementi naturali di pietra squadrata (valori in N/mm²)

Resistenza caratteristica a compressione f _{bk} dell'elemento		Tipo di malta				
		M10	M5	M2,5		
2,0	1,0	1,0	1,0	1,0		
3,0	2,2	2,2	2,2	2,0		
5,0	3,5	3,4	3,3	3,0		
7,5	5,0	4,5	4,1	3,5		
10,0	6,2	5,3	4,7	4,1		
15,0	8,2	6,7	6,0	5,1		
20,0	9,7	8,0	7,0	6,1		
30,0	12,0	10,0	8,6	7,2		
≥ 40,0	14,3	12,0	10,4	_		

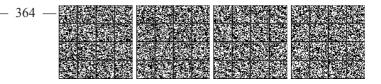
Anche in questo caso, per valori non contemplati in tabella è ammessa l'interpolazione lineare; in nessun caso sono ammesse e-strapolazioni.

In alternativa alla determinazione sperimentale della resistenza a compressione, per la stima della resistenza caratteristica a compressione della muratura in elementi artificiali e naturali, è anche possibile fare riferimento a quanto riportato al \S 3.6 della norma UNI EN 1996-1-1:2013, integrata dalla relativa Appendice Nazionale. Per la determinazione della resistenza normalizzata del blocco f_0 a cui queste norme si riferiscono, qualora essa non sia dichiarata dal fabbricante, si utilizzano i fattori di conversione della resistenza alla compressione media del blocco contenuti nella appendice A della UNI EN 772-1.

11.10.3.2 RESISTENZA CARATTERISTICA A TAGLIO IN ASSENZA DI TENSIONI NORMALI

11.10.3.2.1 Determinazione sperimentale della resistenza a taglio

La resistenza caratteristica sperimentale a taglio si determina su n campioni ($n \ge 6$), seguendo sia, per la confezione che per la prova, le modalità indicate nella norma UNI EN 1052-3:2007 e, per quanto applicabile, UNI EN 1052-4:2001. In alternativa, la resistenza caratteristica a taglio può essere valutata con prove di compressione diagonale su n campioni di muratura ($n \ge 6$) seguendo, sia per la confezione che per la prova, le modalità indicate in normative di comprovata validità.


11.10.3.2.2 Stima della resistenza a taglio

In sede di progetto, per le murature formate da elementi artificiali oppure in pietra naturale squadrata, il valore di f_{vk0} , in alternativa alla determinazione sperimentale, può essere dedotto dalla Tab. 11.10.VIII. Per valori non contemplati in tabella è ammessa l'interpolazione lineare; in nessun caso sono ammesse estrapolazioni. Per caratteristiche dei materiali (resistenza della malta o resistenza dei blocchi) diverse da quelle contemplate in tabella, è necessario ricorrere alla determinazione sperimentale.

Tab. 11.10.VIII - Resistenza caratteristica a taglio in assenza di tensioni normali f_{vk0} (valori in N/mm²)

Elementi per muratura		f _{vk0} (N/mm²)					
	Malta ordinaria di classe di resistenza data (giunto orizzontale ≥ 0,5 mm e ≤ 3 mm)		Malta alleggerita				
Laterizio	M10 - M20	0,30					
	M2,5 - M9	0,20	0,30*	0,15			
	M1 - M2	0,10					
Silicato di calcio	M10 - M20	0,20					
	M2,5 - M9	0,15	0,20**	0,15			
	M1 - M2	0,10					
Calcestruzzo vibrocompresso Calcestruzzo areato autoclavato Pietra artificiale e pietra naturale a massello	M10 - M20 M2,5 - M9 M1 - M2	0,20 0,15 0,10	0,20**	0,15			

^{*} valore valido per malte di classe M10 o superiore e resistenza dei blocchi fы≥ 5.0 N/mm²

^{**} valore valido per malte di classe M5 o superiore e resistenza dei blocchi fы≥ 3.0 N/mm²

I valori in tabella possono essere direttamente utilizzati nel caso di giunti orizzontali e verticali riempiti di malta. Nel caso di giunti orizzontali riempiti di malta e giunti verticali non riempiti, ma con le facce adiacenti degli elementi di muratura poste in contatto l'una con l'altra, i valori della tabella vanno dimezzati. Per la stima della resistenza a taglio della muratura con letto di malta interrotto, nella quale gli elementi di muratura sono disposti su due o più strisce uguali di malta ordinaria riempiti, i valori di f_{vk0} relativi al letto pieno vanno opportunamente ridotti secondo quanto indicato nella norma UNI EN 1996-1-1 integrata dalla relativa Appendice Nazionale.

11.10.3.3 RESISTENZA CARATTERISTICA A TAGLIO

In presenza di tensioni di compressione, la resistenza caratteristica a taglio della muratura, f_{vk} , è definita come resistenza all'effetto combinato delle forze orizzontali e dei carichi verticali agenti nel piano del muro e può essere ricavata tramite la relazione

$$f_{vk} = f_{vk0} + 0.4 \sigma_n$$
 [11.10.4]

dove:

 f_{vk0} è la resistenza caratteristica a taglio in assenza di carichi verticali;

 $\sigma_{\!_{n}}$ è la tensione normale media dovuta ai carichi verticali agenti nella sezione di verifica.

Deve risultare inoltre soddisfatta la relazione

$$f_{vk} \leq f_{vk,lim} \tag{11.10.5}$$

con:

f_{vklim} valore massimo della resistenza caratteristica a taglio che può essere impiegata nel calcolo;

Il valore massimo della resistenza caratteristica a taglio si pone pari a:

$$f_{vk,\text{lim}} = 0,065 f_b$$
 [11.10.6]

ad eccezione degli elementi pieni in calcestruzzo aerato autoclavato e di tutti gli elementi caratterizzati da una resistenza a trazione (misurata in direzione orizzontale parallelamente al piano di posa) maggiore o uguale a $0.2~\rm f_0$, per i quali si pone:

$$f_{vk,\text{lim}} = 0.10 f_b$$
 [11.10.7]

dove f_b è la resistenza normalizzata a compressione verticale dei blocchi valutata secondo le norme armonizzate della serie UNI EN 771. I valori di f_{vk,lim} sopra riportati sono relativi a muratura con giunti verticali riempiti di malta. Nel caso di giunti orizzonta-li riempiti di malta e giunti verticali non riempiti, ma con le facce adiacenti degli elementi di muratura poste in contatto l'una dell'altra, si adotta f_{vk,lim}= 0,045 f_b.

11.10.3.4 MODULI DI ELASTICITÀ SECANTI

Il modulo di elasticità normale secante della muratura è valutato sperimentalmente su n muretti ($n \ge 6$), seguendo sia per la confezione che per la prova le modalità indicate nella norma UNI EN 1052-1:2001.

In sede di progetto, in mancanza di determinazione sperimentale, nei calcoli possono essere assunti i seguenti valori:

modulo di elasticità normale secante E = 1000 f_k [11.10.8]
 modulo di elasticità tangenziale secante G = 0.4 E [11.10.9].

CAPITOLO 12.

RIFERIMENTI TECNICI

Per quanto non diversamente specificato nella presente norma, si intendono coerenti con i principi alla base della stessa, le indicazioni riportate nei seguenti documenti:

- Eurocodici strutturali pubblicati dal CEN, con le precisazioni riportate nelle Appendici Nazionali;
- Norme UNI EN armonizzate i cui riferimenti siano pubblicati su Gazzetta Ufficiale dell'Unione Europea;
- Norme per prove su materiali e prodotti pubblicate da UNI.

Inoltre, a integrazione delle presenti norme e per quanto con esse non in contrasto, possono essere utilizzati i documenti di seguito indicati che costituiscono riferimenti di comprovata validità:

- Istruzioni del Consiglio Superiore dei Lavori Pubblici;
- Linee Guida del Servizio Tecnico Centrale del Consiglio Superiore dei Lavori Pubblici;
- Linee Guida per la valutazione e riduzione del rischio sismico del patrimonio culturale e successive modificazioni del Ministero per i Beni e le Attività Culturali, previo parere del Consiglio Superiore dei Lavori Pubblici sul documento stesso;
- Istruzioni e documenti tecnici del Consiglio Nazionale delle Ricerche (C.N.R.).

Per quanto non trattato nella presente norma o nei documenti di comprovata validità sopra elencati, possono essere utilizzati anche altri codici internazionali; è responsabilità del progettista garantire espressamente livelli di sicurezza coerenti con quelli delle presenti Norme tecniche.

Il Consiglio Superiore dei Lavori Pubblici, per il tramite del Servizio Tecnico Centrale, predispone e pubblica, sentiti il Consiglio Nazionale delle Ricerche (C.N.R.) e l'Ente Italiano di Normazione (UNI), l'elenco dei documenti che costituiscono riferimento tecnico per le Norme tecniche per le costruzioni ai sensi del presente capitolo. Con analoga procedura sono anche predisposti e pubblicati gli aggiornamenti periodici a tale elenco, nonché gli aggiornamenti degli elenchi delle specifiche tecniche volontarie UNI, EN ed ISO richiamate nella presente norma.

18A00716

Leonardo Circelli, redattore

Delia Chiara, vice redattore

(WI-GU-2018-SON-005) Roma, 2018 - Istituto Poligrafico e Zecca dello Stato S.p.A.

€ 24,00